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FOREWORD

It gives me great pleasure to write the foreword to Dr. Nazrul 1slam’ s book entitled “ Tensors and Their
Applications. | know the author as a research scholar who has worked with me for several years. This

book is a humble step of efforts made by him to prove him to be a dedicated and striving teacher who
has worked relentlessly in this field.

This book fills the gap as methodology has been explained in a simple manner to enable students
to understand easily. This book will prove to be a complete book for the students in this field.

Ram Nivas

Professor,

Department of Mathematics and Astronomy,
Lucknow University,

Lucknow
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PREFACE

‘Tensors’ were introduced by Professor Gregorio Ricci of University of Padua (Italy) in 1887
primarily as extension of vectors. A quantity having magnitude only is called Scalar and a quantity with
magnitude and direction both, called Vector. But certain quantities are associated with two or more
directions, such a quantity is called Tensor. The stress at a point of an elastic solid is an example of a
Tensor which depends on two directions one normal to the area and other that of the force on it.

Tensors have their applicationsto Riemannian Geometry, Mechanics, Elagticity, Theory of Relativity,
Electromagnetic Theory and many other disciplines of Science and Engineering.

Thisbook has been presented in such aclear and easy way that the students will have no difficulty
in understanding it. The definitions, proofs of theorems, notes have been given in details.

The subject is taught at graduate/postgraduate level in almost al universities.

In the end, | wish to thank the publisher and the printer for their full co-operation in bringing out
the book in the present nice form.

Suggestions for further improvement of the book will be gratefully acknowledged.

Dr. Nazrul 1slam
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CHAPTER -1

PRELIMINARIES

1.1 n-DIMENSIONAL SPACE

In three dimensional rectangular space, the coordinates of apoint are (x, y, 2. It is convenient to write
(XL, X2, x3) for (x, y, 2. The coordinates of apoint in four dimensional space are given by (X%, X, X, x%).
In general, the coordinates of a point in n-dimensional space are given by (X%, 2, X3,...., X) such n-
dimensional space is denoted by V,,.

1.2 SUPERSCRIPT AND SUBSCRIPT

In the symbol AH , theindicesi, j written in the upper position are called superscriptsand k, | written
in the lower position are called subscripts

1.3 THE EINSTEIN'S SUMMATION CONVENTION

n .
Consider the sum of the series S=a x" +a,x* +...+a X" = i§lai x'. By using summation convention,
drop the sigma sign and write convention as

n . X
. I = . I
iiax a; X

This convention is caled Einstein’s Summation Convention and stated as

“If asuffix occurstwice in aterm, oncein the lower position and once in the upper position then
that suffix implies sum over defined range.”
If the range is not given, then assume that the range is from 1 to n.

1.4 DUMMY INDEX

Any index which is repeated in agiven term is called a dummy index or dummy suffix. Thisisalso called
Umbral or Dextral Index.

e.g. Consider the expression a X where i is dummy index; then

ax = ax +a,x* +x0+a x"



2 Tensors and Their Applications

and ax = ax'+a,x’ +xue g X"
These two equations prove that _
ax =a; X
So, any dummy index can be replaced by any other index ranging the same numbers.
1.5 FREE INDEX

Any index occurring only once in a given term is called a Free Index.
e.g. Consider the expression alx' wherej isfree index.

1.6 KRONECKER DELTA

The symbol d', called Krénecker Delta (a German mathematician Leopold Krénecker, 1823-91 A.D.)
is defined by

PR ALY
ITL0 it
Similarly d; and d" are defined as
gL i=j
d'=loif i1 j
; oL i)
o iTloif it
Properties
1. If xt, %2, ... X" are independent coordinates, then
x L
ﬂx—j:o if i1
XI
LS i =]
Iix!
Thisimplies that
x
Cl
i Xk )
It is also written as %% = dj.

2. d=d+d3+d+x»ctdl  (by summation convention)
dl =1+1+1+x0+1
d=n

3. aljdli :aik

Since  a%d) = a®'d; +a%d +a¥d} +xa®d}  (asj is dummy index)
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= a%  (es#y =43 ==& =0and&; =1)

In general,
ald) = a'ld} +a'?d? +a'3d? + 0+ a¥d + 04 a'"d]
gl = @ (asdl = =x0=df =0anddf =1)
P
4. djdk - dk
i = dich + 0 + il + oock i, + et ]
= d (asd) =d, =d; ==d| =0andd] =1)
EXAMPLE 1
Wit df _de i dx? + oot K ax" . " i
rite & Tt 'ﬂx2 o o dt using summation convention.
Solution
1 2 n
LA L | N SOPOOD L
dt — qx* dt qx® dt X" dt
df 9 ax
dt "~ qx' dt
EXAMPLE 2
Expand: (i) &; X¥; (ii) G Gnyp
Solution
(i) a;Xx) = ay X'x! 4+, x°x! +x0d- g, x"x!
— a11x1x1+a2 X2X2 +>°°<+an Xan
XX] a'.l.l(x) +322(X) +><><>e|rann(x)
(asi and j are dummy indices)
(i) OmImp= 91191p * 91292p +>** QinQnp, as mis dummy index.
EXAMPLE 3

If &; are constant and &;; = &, calculate:

(i) ﬂ%k(aijxixi) (ii) ‘ﬂx‘n o (@%X))

Solution

(i) ﬂTt(ainin) = aij&(xi X;)
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= aini ﬂi"‘ ainj ﬂi
X X
Tix; _
= Xy +ay X dj, as E—djk
= (a;dj) % + (a;di) X
= Xt agX asa” ik = Sk
=ay X+ ag X asj is dummy index
Nitaxix;) _
T, = 28 % asgiven a, = ay
B Nt xix;) _,
ii = 2a,x;
(i) " 2
Differentiating it w.r.t. X, :
ﬂz(aijxi Xj) _ i
xdx gy
= 2a,d,
ﬂz(aijxi Xj) B -
%% 28y, as a;d = g
EXAMPLE 4
If a; X ¥=0
where a; are constant then show that
g +8;=0
Solution
Given
aijxixj: 0
= a,Xx™=0  sincei andj are dummy indices
Differentiating it w.r.t. X partialy,
ﬂ I,m
D mX X =
™ (& )=0

ﬂ I ,m
Y — (X X)) =
lﬂXi( )=0

ﬂxl m ﬂxm |
Am—X +ta,—X =
! 1% A i 0
'
1% !

Since
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a,d'x"+a d"x'=0
X" +a;x =0
as a,d =3, and a,d" =4,
Differentiating it w.r.t. x partialy
x™ X!
aimj]Tj"' & :TTTJ: 0
and] +a,d;=0
ay +a;= 0 Proved.

NP

w

&~

EXERCISES

Write the following using the summation convention.
() O+ (@R + (PR ++ ()2
(i) ds* =gy (AX1)? + gpp(dX?)? + -+ gy (dX")?
(i) a3 +aex3 + -+ a X3
Expand the following:
, l i 4
i ax (i) @(«/Ea') (i) A‘B
Evaluate:
() x'd; (i) djdid" (i) did’

Expresshily;y; intheterms of x variableswherey; = ;% and biicy = dj.

- ANSWERS ———
(i) xix (i) ds?=g;; dx'dx (iii) ayxx3.
(i) axt+a X +ad+ - +aX"
(i) %(«/Eal)’fﬂTﬂz(ﬁaz)Jow—D(ﬁa“)
(i) AB'+ASB%+..+ AB"
@ x (i) d (i) n

Cix X

ij



CHAPTER -2

TENSOR ALGEBRA

2.1 INTRODUCTION

A scalar (density, pressure, temperature, etc.) is a quantity whose specification (in any coordinate
system) requires just one number. On the other hand, a vector (displacement, acceleration, force, etc.)
is a quantity whose specification requires three numbers, namely its components with respect to some
basis. Scalers and vectors are both special cases of a more general object called a tensor of order
n whose specification in any coordinate system requires 3" numbers, called the components of tensor.
Infact, scalars are tensors of order zero with 3° = 1 component. Vectors are tensors of order one with
3! = 3 components.

2.2 TRANSFORMATION OF COORDINATES

In three dimensional rectangular space, the coordinates of a point are (X, y, 2 wherex,y, zare real
numbers. It is convenient to write (x, X, x3) for (x, y, z) or simply X wherei = 1, 2, 3. Similarly in
n- dimensional space, the coordinate of apoint are n-independent variables (x, X2,..., x") in X-coordinate
system. Let (X%, X2,...,X") be coordinate of the same point in Y-coordinate system.

Let X%,%%,%4,X" be independent single valued function of X%, 32....., X", so that,
X = A %2, X
X7 = x2(x, %3, .., x")

X® = 234 %2, .., x")

X" = X", %2, .., x")

X = X %2, X" 1=1,2,...,n (1)
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Solving these equations and expressing x' as functions of X ,%2,..., X", so that

x = x (%L, %2, X"); i=1,2 ..,n

The equations (1) and (2) are said to be a transformation of the coordinates from one coordinate
system to another

2.3 COVARIANT AND CONTRAVARIANT VECTORS (TENSOR OF RANK ONE)
Let (3, %2, ..., X") or X' be coordinates of a point in X-coordinate system and (X%, X2,...,X") or X be
coordinates of the same point in the Y-coordinate system.

Let A, j = 1,2, ..., n(or AL, A2 ..., A") be n functions of coordinates x, X2, ..., x"
in X-coordinate system. If the quantitiesA' are transformed to A" in Y-coordinate system then according
to the law of transformation

_ X N 2
AI = —.AJ or AJ = —— Qi
% w A
Then Al are called components of contravariant vector.
Let A, i=1,2..,n(orA, A, .., A) ben functions of the coordinates x}, X2, ..., x"

in X-coordinate system. If the quantities A, are transformed to KI in Y-coordinate system then
according to the law of transformation

_ %/
Ai = ﬁ A]
Then A' are called components of covariant vector.

The contravariant (or covariant) vector is also called a contravariant (or covariant) tensor of rank
one.

= —
o A= 1_[X_J'Aj

Note: A superscript isalwaysused to indicate contravariant component and asubscript isalwaysused toindicate
covariantcomponent.

EXAMPLE 1

If X be the coordinate of a point in n-dimensional space show that dx are component of a
contravariant vector.

Solution
Let %L, %2, ..., x"or X are coordinates in X-coordinate system and X',X,...X" or X' are

coordinates in Y-coordinate system.
If

dx' = Kidxl+ﬁdx2 +><><><+‘”_Li

dxn
'S x2 %"
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It is law of transformation of contravariant vector. So, dx' are components of a contravariant
vector.

EXAMPLE 2

. . . .
Show that _‘ﬂx‘ isacovariant vector where f is ascalar function.
Solution

Let X, X%, ..., X" or X' are coordinates in X-coordinate system and X', %2, ..., X"or x are
coordinates in Y-coordinate system.

Consider (X X?,...,X") =f(x}, x?,...,x")

ﬂf = ﬂﬂxl +£ﬂx2 + XXX+ Lﬂxn
'S x> ©"
1 2 n
RN (OO " OOV
1'|)—(I ﬂXl ﬂ)_(l TIXZ WI ﬂxn ﬂ)—(l
LI .
" X
L U i
or - =
® X X
Itislaw of transformation of component of covariant vector. So, l. is component of covariant
vector. L
EXAMPLE 3
Show that the velocity of fluid at any point is a component of contravariant vector
or

Show that the component of tangent vector on the curve in n-dimensional space are component
of contravariant vector.

Solution

' dx® | dx" it (L 2 i
Let TR /a, pm be the component of the tangent vector of the point (x*, x%,...,x") i.e.,

X
s be the component of the tangent vector in X-coordinate system. Let the component of tangent
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ax .
vector of the point (x%,%2,...,.X") in Y-coordinate system are e Then x*, X2, ..., X" or X' beinga

function of x', x?,...,.x" which is afunction of t. So,

—i i n
d_x _ ™ dxt ‘I]_ dx? o0t ' dx
dt dtt dt dx2 dt dx" dt
dx' X ox/
dat —  dx) dt
i
It is law of transformation of component of contravariant vector. So, —— is component of

dt
contravariant vector.

i.e. the component of tangent vector on the curve in n-dimensiona space are component of
contravariant vector.

2.4 CONTRAVARIANT TENSOR OF RANK TWO
Let Al (i,j =1, 2, ..., n) be n? functions of coordinates X!, X%, ..., X" in X-coordinate system. If the
quantities A” are transformed to A" in Y-coordinate system having coordinates X!, %2, ..., X". Then
according to the law of transformation
i = ﬂx ﬂ‘ j
xk 'ﬂx

Then A’ are called components of Contravariant Tensor of rank two.

2.5 COVARIANT TENSOR OF RANK TWO
LetAj (i,]=1,2, ..., n)be n? functions of coordinates x%, X2, ..., X" in X-coordinate system. If the
quantities A; are transformed to A; in Y-coordinate system having coordinates x*,x?,... X", then
according to the law of transformation,

™ IX

z}j ﬂ__ A}(I

Then A;; called components of covariant tensor of rank two.

2.6 MIXED TENSOR OF RANK TWO
Let A (i,j =1, 2, ..., n) be n? functions of coordinates X, 5, ..., X" in X-coordinate system. If the

quantities A, are transformed to A’ in Y-coordinate system having coordinates %*,%?,...,X", then
according to the law of transformation

_ R
AJ- ﬂT—A

Then A are called components of mixed tensor of rank two.
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Note: (i) Therank of thetensor isdefined asthetotal number of indicesper component.

(ii) Instead of sayingthat “ Al arethe components of atensor of rank two” weshall often say “ All isatensor
of rank two.”

THEOREM 2.1 To show that the Kronecker delta is a mixed tensor of rank two.
Solution

Let X and Y be two coordinate systems. Let the component of Kronecker deltain X-coordinate

system dj and component of Krénecker delta in Y-coordinate be d;, then according to the law of
transformation

§ - X o
S U Ol O
This shows that Kronecker dij is mixed tensor of rank two.
EXAMPLE 4
If A isacovariant tensor, then prove that % do not form a tensor.
Solution

Let X and Y be two coordinate systems. As given A isacovariant tensor. Then

_ XK
A=
Differentiating it w.r.t. X'
TA _ 1 ex 0
" WER
7w _XIA L, X "
x X X ™ IX!

. _ A
It isnot any law of transformation of tensor due to presence of second term. So, ) isnot a
tensor.

THEOREM 2.2 To show that dij is an invariant i.e, it has same components in every coordinate
system.

Proof: Since dij is a mixed tensor of rank two, then

i |
ai_ﬂ)_(ﬂxdk

j_ﬂ7ﬂ7j
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= ko] _dl =—
%" X ﬂ)—(l ﬂ)—(l
e TI)—(i — Al TI)—(I — Al
4 = 4wy

So, dj isan invariant.

THEOREM 2.3 Prove that the transformation of a contravariant vector is transitive.
or
Prove that the transformation of a contravariant vector form a group.

Proof: Let A beacontravariant vector in a coordinate system x‘(i =1,2,...,n). Let the coordinates

X be transformed to the coordinate system X' and X' be transformed to X' .
When coordinate x be transformed to X' , the law of transformation of a contravariant vector is

AP = WAq (D)
When coordinate X' be transformed to X', the law of transformation of contravariant vector is
il — EKP
ﬂ>_(p
— x TxP
A = = A%from (1
AI ﬂil ﬂXq ( )
<
ii = ﬂ—iAq
x?

This showsthat if we make direct transformation from X' to X', we get samelaw of transformation.
This property is called that transformation of contravariant vectors is transitive or form a group.

THEOREM 2.4 Prove that the transformation of a covariant vector is transitive.
or
Prove that the transformation of a covariant vector form a group.
Proof: Let A beacovariant vector in acoordinate system x' (i =1, 2, ..., n) . Let the coordinates X be
transformed to the coordinate system X' and X' be transformed to i .
When coordinate x' be transformed to %', the law of transformation of a covariant vector is

_ x4

A = w - (D
When coordinate X' be transformed to X' , the law of transformation of a covariant vector is

_ P _

A=A

_ﬂii p
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:_TI)—(pﬂXq
A_ﬂiiﬂfp
-
A=gh

This showsthat if we make direct transformation from X' to X', we get samelaw of transformation.
This property is called that transformation of covariant vectors is transitive or form a group.

THEOREM 2.5 Prove that the transformations of tensors form a group
or

Prove that the equations of transformation a tensor (Mixed tensor) posses the group property.
Proof: Let A'J be amixed tensor of rank two in acoordinate system x' (i =1, 2,...,n) . Let the coordinates
X' be transformed to the coordinate system X' and X' be transformed to X' .

When coordinate X' be transformed to X', the transformation of a mixed tensor of rank two is

— _ &P
P= ——— A .. (1)
. x e

When coordinate X' be transformed to i, the law of transformation of a mixed tensor of rank

two is

ii Eﬂfi_p

P qx

=i q p s

= Wp ﬂz- Wr ﬂfq Ag from (1)
™ X Ix X

x X’

J

A

Thisshowsthat if we make direct transformation from x' to X', we get samelaw of transformation.
This property is called that transformation of tensors form a group.

THEOREM 2.6 Thereis no distinction between contravariant and covariant vectors when we restrict

ourselves to rectangular Cartesian transfor mation of coordinates.

Proof: Let P(x, y) be apoint with respect to the rectangular Cartesian axes X and Y. Let (X,y) bethe

coordinate of the same point P in another rectangular cartesian axes X and Y, Let (1, my) and (I, my)

be the direction cosines of the axes X , Y respectively. Then the transformation relations are given by
X=lx+my i
y=lx+my},

and solving these equations, we have

x=LX+1,y U

y:ml)_(+m2)_/g

(1)

(2)

e}
c
—*
X
1
><n—\
<
1
x
N
X
1
x
<
1
X
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Consider the contravariant transformation

Ki
Ki
for i =12.
Kl
KZ
From (1) E:Il, but x=x",
x
Then
Similarly,
So, we have

ALYV j=12

A it et

1"72

ix?

2

o, = ~43)
iy

o

Al=| At +mA? i

A? :|2A1+m2A2i§ -4

Consider the covariant transformation

A

A
fori=12.

A

A,
From (3)

j

ixt ix?
- +
' = &

TD( 2
W
x°
W'

s
"t

x*
"

=hA+mA {i

=lo7y + A ~(5)

A
A
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So, from (4) and (5), we have
Al=A and A2=A
Hence the theorem is proved.
2.7 TENSORS OF HIGHER ORDER
(@) Contravariant tensor of rank r

Let A% pen' function of coordinates xt, %2, ..., X" in X-coordinates system. If the quantities A"z

are transformed to A" in Y-coordinate system having coordinates X*, X2, ..., X". Then according
to the law of transformation

X! X2 K"
ﬂxpl ﬂxpz ...ﬂxpr
Then A"z are called components of contravariant tensor of rank r.

Alzdr = APP2-- e

(b) Covariant tensor of rank s

Let A, .. be n° functions of coordinates x!, x?, ..., X" in X-coordinate system. If the quantities
A

N1io---Js

are transformed to Kjljz___js in Y- coordinate system having coordinates X %%, X" Then
according to the law of transformation

G a2 Js
— B Ixt qx M‘nx

AJ'ﬂz---E - ﬂ)—(jl 1]7(j2 WJS A‘lqu---qs

Then A;;, ;. are called the components of covariant tensor of rank s.

(c) Mixed tensor of rank r + s

Let :ﬂfﬁjf.’js be n'*s functions of coordinates x, X2, ..., X" in X-coordinate system. If the quantities

2t are transformed to Kil‘?“%s in Y-coordinate system having coordinates x*,%?, %, X" . Then

J1i2.--is J1i2.--

according to the law of transformation
K?li.z__jr. _ TIT(il Wiz T]T(ir ﬂqu ﬂXqZ Mﬂsz Aplpz...pr
J1l2--s ﬂxpl ﬂsz Tb(pr ﬂ)—(h sz TI)—(js 0192--9s

Then A*2"" arecaled component of mixed tensor of rank r +s.

J1l2-)s

A tensor of type A7 is known as tensor of type (r,s), In (r,s), the first component r
indicates the rank of contravariant tensor and the second component sindicates the rank of covariant
tensor.

Thus the tensors A; and A aretype (0, 2) and (2, 0) respectivelyWhiletensorAij istype(1,1).
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EXAMPLE

AX is a mixed tensor of type (3, 2) in which contravariant tensor of rank three and covariant
tensor of rank two. Then according to the law of transformation
Aijk =

(L SR S S S
N S S LS P

2.8 SCALAR OR INVARIANT

A function f (xt, x?, ...,x") iscalled Scalar or an invariant if its original value does not change upon
transformation of coordinates from xt, ¥, ..., X"to x*, %2, ..., X". i.e
fOxd, %3, x") = F(x4%3,...,X")
Scalar is also called tensor of rank zero.
For example, A'B isscalar.

2.9 ADDITION AND SUBTRACTION OF TENSORS

THEOREM 2.7 Thesum (or difference) of two tensors which have same number of covariant and the
same contravariant indices is again a tensor of the same rank and type as the given tensors.

Proof: Consider two tensors A" and B": of the same rank and type (i.e., covariant tensor of

12--s 1)2--)

rank s and contravariant tensor of rank r.). Then according to the law of transformation
Rizir X X2 XX X I 300¢ APIP2 - Pr
Nl2--s ﬂXpl T[sz ﬂXp’ TI)_(h Wiz ﬂfis U192.-9s
and
iy i i Sl dz q
Biz-ir _ X IXZ e X IXE X MﬂXSWBplpz...p,
Jul2--)s ﬂXpl ﬂXpZ ﬂXpr ﬂ)_(jl 1]7(]2 WJS 0102 ds
Then
S . i1 i2 i G qTyd2 q
Azl 4 Biiz-dr > X xxxﬂ)_(' x™ X 1, X (Aplpz...pr+Bp1p2...p,)
i2-ds T Tidads T ﬂXpl ﬂxpz ﬂxpr le sz st Chdz2--8s ~  h92--s
If
Nizdr 4 Rhiz-de  _ iy
id2-ds T Biliz---is - leiz---is
and
PiP2..Pr 4 BPiP2-Pr _ (CPLP2-Pr
Aqqu--qs _Bvava--os = Tagz..05
So,

i i i
6|1|ZJ, _ TlT(l ﬂ)_(Z Mﬂ)_(r ﬂqu ﬂXqZ >°°(1'[)((:15 ngpz ..... o
Jul2--)s ﬂXpl ﬂXpZ ﬂXp' ﬂfjl sz ﬂfjs 1, 02---0s

gy
iz

Thisislaw of transformation of a mixed tensor of rank r+s. So, C i« is a mixed tensor of

rank r+s or of type (r, 9.
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If A,'(l and B:]m are tensors then their sum and difference are tensors of the same rank and type.

Asgiven Al and B} are tensors. Then according to the law of transformation

16
EXAMPLE 5
Solution
Rii
and
Ey
then
iji ij
If
Al +B)
So,

(:ii =

~ X B e
™P Ix? X

X B
P Ix¢ X i

X &

P TR o <8

(:ij and AP +BP = CM

TR K

r

P Ixt %~

The shows that CE is atensor of same rank and type as AQ and B{(J .

2.10 MULTIPLICATION OF TENSORS (OUTER PRODUCT OF TENSOR)

THEOREM 2.8 The multiplication of two tensors is a tensor whose rank is the sum of the ranks of

two tensors.

Proof: Consider two tensors A'Jll'fz ”J

(which is covariant tensor of rank sand contravariant tensor of

rank r) and Bklkz k’" (which is covariant tensor of rank mand contravariant tensor of rank n). Then

according to the Iaw of transformation.

Ridiody  _

iid2--ds
and

B kika: -k
(S

Then their product is

A|1|2 Ly B‘klkz...km _

J1i2ds  hlzedn

i i ir G qyd ar
M SR A LR PSS S
ﬂxpl ﬂsz ﬂxpr T|)_(Ji le ﬂ)—(ls SICPREHN
k k K b by,
_ e Y DO XY o,

S

S SR Sl G 4l
ﬂ)_(il WWi, ﬂqu Mﬂxqs Wkl Mﬂ?km yﬂxbl Mﬂxbn
TP P ORE e e X e

PiP2.--Pr RA182--8m
102 ds Bblbz--bn
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If
Cllzidakebn Ry Eklkz..kn
Wz ddla, T Tllads Mol
and
P1P2-- Prddz-.am _ AP1P2---Pr aijaz..am
CI1Q2--CIsb1b2--bn Gd2---ds l:)lean
So,

) : K
o IS S SRV SR LSl Sl i
iz ddila-dn T P xPr 1]7(]1 ﬂ)_(js )3
Km by by
MW yﬂx mﬂx C PiP2--prafz..ap
x2m ﬂ7(|1 1]7|n 0102 Osb1bz.. by

iy K

This is law of transformation of a mixed tensor of rank r +m+s+n.. So, C;2 %% " is a

mixed tensor of rank r + m+ s+n. or of type (r +m,s+ n). Such product is called outer product or
open proudct of two tensors.

THEOREM 2.9 If Al and B, are the components of a contravariant and covariant tensors of rank one

then prove that Al B; are components of a mixed tensor of rank two.

Proof: As A is contravariant tensor of rank one and B; is covariant tensor of rank one. Then
according to the law of transformation

Al = %Ak (1)
and
_ ﬂx'
Multiply (1) and (2), we get
—~ig = X L«
AB; = WﬂXTJA B

This is law of transformation of tensor of rank two. So, AB ; are mixed tensor of rank two.
Such product is called outer product of two tensors.

EXAMPLE 6
Show that the product of two tensors A'J and BX isatensor of rank five.

Solution

As A and BX aretensors. Then by law of transformation

k | t
BRI s

t

_i_EﬂX_q p ok —
AJ - xP Wi A4 and m = X xS X"
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Multiplying these, we get
K-ignfl _ Wi ﬂxq Wk W ﬂxt Apars
: ™ &I oaxe ™ o

Thisis law of transformation of tensor of rank five. So, A/B is atensor of rank five.

2.11 CONTRACTION OF A TENSOR

The process of getting a tensor of lower order (reduced by 2) by putting a covariant index equal to a
contravariant index and performing the summation indicated is known as Contraction.

In other words, if in a tensor we put one contravariant and one covariant indices equal, the
process is called contraction of a tensor.

For example, consider a mixed tensor A* of order five. Then by law of transformation,

e KRR )

= AR

" ™P X Ix X X"

Put the covariant index | = contravariant index i, so that
ik _ ﬂ)_(i ﬂ)_(j TRK ﬂXS ﬂXt A%ipqr

TP XY XX X™
O SR .
x* X" IxP Ix™
™ ™ oo ™
T o g oefs Since
ik Eﬂ)_(kﬂ_xt,qpqr

m xd X" %" pt

xP =%

Thisislaw of transformation of tensor of rank 3. So, A'¥ isatensor of rank 3 and type (1, 2)

while A‘L‘f is atensor of rank 5 and type (2, 3). It means that contraction reduces rank of tensor by
two.

2.12 INNER PRODUCT OF TWO TENSORS
Consider the tensors Ajj and Br'nn if we first form their outer product A‘j Br'nn and contract this by

putting | =k then the result is A'B ~ which is also a tensor, called the inner product of the given
tensors.

Hence the inner product of two tensors is obtained by first taking outer product and then
contracting it.

EXAMPLE 7

If Al and B, are the components of a contravariant and covariant tensors of rank are respectively
then prove that A'B; is scalar or invariant.
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Solution

As A and B, are the components of a contravariant and covariant tensor of rank one respectively,
then according to the law of the transformation
BN SIS

Al_ﬂxp andB:ﬂ?Bq

Multiplying these, we get

R@-wwx :

AB = A%B,

This shows that A'B; is scalar or Invariant.

EXAMPLE 8
If A ismixed tensor of rank 2 and BX is mixed tensor of rank 3. Provethat A/B}, isamixed
tensor of rank 3.

Solution
As Aij is mixed tensor of rank 2 and B/ is mixed tensor of rank 3. Then by law of transformation
1r x® "X X s

—i b _kl _ X B
Al T[XJ AJI m ﬂXr ﬂXS Wm t (1)
Put k = j then
I 2 - O
I = B
Br# ﬂXr ﬂXS Wm t (2)

Multiplying (1) & (2) we get
x X X X

Apl = X 2 s
AJBm %P x! ﬂXr % X" Ail t
_ KR X e gnee PO
- ﬂxp T[XS ﬂ—m Aq since TIYJ ﬂ-xr _ﬂxr - dr
AEL - BB wae e auep - o

Thisisthelaw of transformation of a mixed tensor of rank three. Hence A'J Brﬂ isamixed tensor
of rank three.
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2.13SYMMETRIC TENSORS

A tensor is said to be symmetric with respect to two contravariant (or two covariant) indices if its
components remain unchanged on an interchange of the two indices.

EXAMPLE
(1) Thetensor Al issymmetricif A = A
(2) Thetensor A is symmetric if Al = Al
1
THEOREM 210 A symmetric tensor of rank two has only En(n+l) different components in n-

dimensional space.
Proof: Let Al be a symmetric tensor of rank two. So that A’ = AJ',

6pll Al2 A3 Al
é a
The component of Aii are 2A31 A2 A8 LA H
S g
gAnl A2 aAN3 AnnH

i.e., All will have n? components. Out of these n? components, n components AL, A2 A% . AMare
different. Thus remaining components are (n°—n). In which A2 = A2, A3 = A% etc. due to symmetry.

1
So, the remaining different components are E(nz - N). Hence the total number of different
components

1,2 1
=n+=(n"-n==n(n+1
2( ) 2( )

2.14SKEW-SYMMETRIC TENSOR

A tensor is said to be skew-symmetric with respect to two contravariant (or two covariant) indices if
its components change sign on interchange of the two indices.

EXAMPLE
(i) Thetensor Al is Skew-symmetric of Al =- All
(i) Thetensor Al is Skew-symmetric if Ak =- plik
THEOREM 211 A Skew symmetric tensor of second order has only %n(n— 1) different non-zero

components.

Proof: Let Al be a skew-symmetric tensor of order two. Then AJ =- Al
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é 0 A12 AlS . Aln l;l
gA21 0 A® ... A 3
The components of Al are €a3 A2 o ... AU
e . . . u
e : : : U
gAnl An2 An3 . 0 H

SinceA' =-A'p 2A"=0p A'=0b A= A¥ =A™ =0
i.e., Al will have n? components. Out of these n? components, n components A, A%, A3 A™

are zero. Omitting there, then the remaining components are n> —n. In which A% = —AZL A13 = _A3L

1,2
etc. Ignoring the sign. Their remaining the different components are E(n -n).

1
Hence the total number of different non-zero components :En(n -1)
Note: Skew-symmetric tensor isalso called anti-symmetric tensor.

THEOREM 212 A covariant or contravariant tensor of rank two say A; can always be written as the
sum of a symmetric and skew-symmetric tensor.
Proof: Consider a covariant tensor A;;. We can write A;; as

1 1
A = E(AJ +A)) +§(A1j - A
A = § +T;
1 1
where Si = S(A T A) and Ty =5 (A - A;)
Now,
1
Sji = E(Aji +A)
Sji = §
So, §;j issymmetric tensor.
and
1
Ty = 5 (A +Aj)
1
Tji:E(Aji B /‘\j)
1
=" E(ATJ B Aji)
T =T,
or TI = -Tji

So, T; is Skew-symmetric Tensor.
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EXAMPLE 9

If f =a;, A’ A“. Show that we can always write f =by A’ A where by is symmetric.

Solution
Asgiven
f =a, AA" (1)
Interchange the indicesi and j
f = a; AA (2

Adding (1) and (2),
2f = (aj +ag) Al A
l .
f = E(ajk +a;) Al AK
f = b, Al A"
_1
where Djy _E(ajk +ay)
To show that by is symmetric.
Since
1
by = 5 (@) *3y)
1
by = E(akj +ay,)
1
= E(ajk +ay)
bk' = b]k
So, by is Symmetric.
EXAMPLE 10
T; 6

) %é are component of a Skew-

If T, bethe component of acovariant vector show that
symmetric covariant tensor of rank two.
Solution
As T, iscovariant vector. Then by the law of transformation
k
T
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Differentiating it w.r.t. to xi partidly,

RILF -

R EW 5

ﬂy]
2,k k
_ TIx .Tk+ﬂx. L
!X x' qx’
T. 2,k K qyl
LTRSS 14 (1)
x X!’ X x! qx
Similarly,
I

R L LY
w® o~ ORX O X X
Interchanging the dummy indicesk & |
E B 2xk T +ﬂxk ax' ﬂ
"~ ®KK X XX
Substituting (1) and (2), we get
RTINS o 3 L UK
® XX XX Ko

(2)

- (T,
Thisislaw of transformation of covariant tensor of rank two. So, :]]I—'] ﬂ_x'J are component of
a covariant tensor of rank two.
m T ,
To show that ——- — is Skew-symmetric tensor.
™
Let
N
I ﬂxj ﬂXi
1T T
Ay = —-- ﬂ—'.
™@
_ L @m 9T
- éﬂxj ™ 5
Aji = - A
or A] = - AJI
. T, )
So, A, =—- — is Skew-symmetric.
A] ﬂxj ﬂX' Sy
m 1T, : ,
So, ——- — are component of a Skew-symmetric covariant tensor of rank two.

P X



24 Tensors and Their Applications

2.15 QUOTIENT LAW

By thislaw, we can test a given quantity is atensor or not. Suppose given quantity be A and we do not
know that A is atensor or not. To test A, we take inner product of A with an arbitrary tensor, if this
inner product is atensor then A is also atensor.

Statement

If the inner product of a set of functions with an atbitrary tensor is a tensor then these set of
functions are the components of a tensor.
The proof of this law is given by the following examples.

EXAMPLE 11

Show that the expression A(i,j,K) is a covariant tensor of rank three if A(i,j,k)B¥ is covariant
tensor of rank two and BX is contravariant vector

Solution

Let X and Y be two coordinate systems.
Asgiven A (i, j, K)BXis covariant tensor of rank two then

o P X ‘
A, j,k)BX = FFA(D ,q,1)B e
Since B is contravariant vector. Then
k r
B = x B"  or B" = ﬂXk BX
ix X
So, from (1)
p I’
Al j,K)BK = ﬂx—,ﬂLA(p q, r) BX
x 1%
R L LS =k
A, j,k)B¥ = — — Alp.q.,nB
™ X X
- xP ax® ax"
Al k) = e A(p,q,r)

As BX isarbitrary.

So, A, j,k) iscovariant tensor of rank three.

EXAMPLE 12
If A(i, j, KAIBIC, is ascalar for arbitrary vectors A, BJ, C,. Show that A(i, j, K) is atensor of
type (1, 2).
Solution
Let X and Y be two coordinate systems. As given A(i, j,k)A'B/C, isscalar. Then

A, j,k) A'B'C, = A(p,q.r)A’BC, (1)
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Since A’ g' and C, are vectors. Then

i p_
A= pr o oar= X R
xP x
J
l=—B% or BY-= g
fx? !’
k r
(_:k:ﬂ)—( c’ or cr = ﬂxk oL
ix' x
So, from (1)
o P qyd aigk _
AG,j.k)A'B'C, = A(p, q,r)‘”i.ﬂi.ﬂi,o\'B‘Ck
x
As A',B!,C, arearitrary.
Then
_ xP Ix? X~
- - — , ’r
A(IiJ!k) ﬂ)_(l 1&] ﬂxl' A(pq )

So, A(l, j, k) istensor of type (1, 2).

2.16 CONJUGATE (OR RECIPROCAL) SYMMETRIC TENSOR
Consider a covariant symmetric tensor A; of rank two. Let d denote the determinant |A,—| with the

elements A ie, d =|AJ| and d* 0,
Now, define A’ by

~ Cofactorof A, isthedetermi nant|AJ- |
AI] =
d

Al is acontravariant symmetric tensor of rank two which is called conjugate (or Reciprocal) tensor

of Aj .
THEOREM 2.13If By is the cofactor of A; in the determinant d = |A;| * 0and Al defined as
Aii - 4

Then prove that A; AY =df.
Proof: From the properties of the determinants, we have two results.

(i) AB;=d

b A—- =1
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(i) ABg =0
B.
/*j __EFL = ()’ dtro
AN =0 ifjrk
from (i) & (ii)
, 1Lif =k
AR =10 itk
e, AN =

2.17 RELATIVE TENSOR
If the components of atensor Az transform according to the equation

J1i2.-Js

Aklkz..kr _

il

W i, TROTRE R g gx g
= J1iz--Js ﬂXi1 ﬂXi2 ﬂxir ﬂy(lr ﬂy'z ﬂ)_(ls

Hence A']ll'fz“lr is caled arelative tensor of weight w, where

x
w =1, therelative tensor is called a tensor density. If w= 0 then tensor is said to be absolute.

Ix
*{ is the Jacobian of transformation. If

MISCELLANEOUS EXAMPLES

1. Show that there is no distinction between contravariant and covariant vectors when we
restrict ourselves to transformation of the type

% = a x"+b';
where a's and b's are constants such that

aa, = d,
Solution
Given that
X = apX" +b’ (1)
or a X" = X' - b (2

Multiplying both sides (2) by a', we get
aa,x" = aX -ba
dix™ = a,X - ba, asgiven alal =df_
X" = aX -ba asd x"=x
or x* = aX' - b'al
Differentiating Partially it w.r.t. to xi
™

w o

(3
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Now, from (1)

i iyS i
X' =ax>+b

X i
ﬂXS = as (4)
The contravariant transformation is
i .
A= ﬂﬂj A = a Al .(5)
The covariant transformation is
— &% i
A= A = aA ...(6)

Thus from (5) and (6), it shows that there is no distinction between contravariant and
covariant tensor law of transformation

2. If thetensors &; and g;; are symmetric and u v are components of contravariant vectors
satisfying the egquations

@ - kgju' =0, i,j=12...n
(a; - klgij)vi =0, kt k¢

Prove that gu'v’ =0, a,u'v’ =0.

Solution
The equations are
(aj - kgj)u' =0 (1)
(ajj - k@ W =0 (2

Multiplying (1) and (2) by ul and v | respectively and subtracting, we get

u'v' =0

au'v! - ayviu’ - kgyu'v! + ke
Interchanging i and j in the second and fourth terms,
au'v' - av'u' - kgu'v! +kgu'v! =0
As g; and Q;; issymmetrici.e., &;=a; & 0j = 0j;
- kgijvjui +k@)ijuivj =0
(k& K)gu'v' =0
gyu'v! =0since k1 kop k- k¢t 0
Multiplying (1) by v!, we get
a;v'u' - kg;u'v' =0

auv) =0as gyu'v' =0. Proved.
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3. If A; isa Skew-Symmetric tensor prove that
ik ik
(djd +dd))A, =0
Solution

Given A; isa Skew-symmetric tensor then A; =- A;; .
Now,

ik ik i i
(did +dd))A, = did A +dd]A,
dijAI +d:Aij
A+ A,

(did" +dd)A, = 0 as A =-A
4. If a; issymmetric tensor and b, isavector and &b, + a; by + ab; =0 then prove that
a;=0orb =0.

Solution
The equation is
a;b, +ayb +a4b; =0
b ajﬁ +5jk5 +aki6j =0
By tensor law of transformation, we have
P qyd r P qya r P qyd r
Ix* 9x b X + Ix*F qx X ™" X b x

ex” x4 x| Ix” x4 X", x” x4 X' U
b & T Tk Tl ok aol ok oo a) U
o IR XK ORIR R g

a

P a,b =0P a,=0orb =0
P a;=0o0r b =0

5. 1f @uX"™X" =By X"X" for arbitrary values of x', show that &gy = by i-€.,

B + 8y = By + By

If &y, and b, are symmetric tensors then further show the a,,, = (NN

Solution
Given
a xX"x" = b_x"x"

mn mn

(amn - bmn )men =0
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Differentiating w.r.t. ' partidly

(ain - lQn)xn +(ami - bmi)Xm =0
Differentiating again w.r.t. xi partialy

(& - by) +(a; - b;) =0
& ta;i = by +by

or a‘mn + a‘nm = bmn +bnm or a-(mn) = b(mn)

Also, since a,,, and b,,, are symmetric then @, =a,,,, b, =0,

So,

Zamn = 2bmn
8pn = bmn
EXERCISES
1. Write down the law of transformation for the tensors

(i) A
(i) B
ik
(i) ¢

2. If A™ and B® aretensorsthen provethat A™B’ isalso atensor.

3. If All isacontravariant tensor and B; is covariant vector then prove that A”Bk is atensor of rank
three and All B; isatensor of rank one.

4. If Alisan arbitrary contravariant vector and C;; A' Al isan invariant show that C;; + C;; isacovariant
tensor of the second order.

5. Show that every tensor can be expressed in the terms of symmetric and skew-symmetric tensor.

n n
6. Provethat inn-dimensional space, symmetric and skew-symmetric tensor havez(n +1) and E(n -1
independent components respectively.

7. 1f U;; & O are components of atensor of the type (0, 2) and if the equation fU;; +gU ;; =0 holds
w.r.t to abasisthen provethat either f= g and U;; isskew-symmetricorf=—gand Uj; issymmetric.
8. If A isskew-symmetric then (Bij B* + B BJ-k)Ak =0.

9. Explain the process of contraction of tensors. Show that & ,-a” = dij .
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10.

11.

13.
14.

15.

16.

Tensors and Their Applications

If AP isatensor of rank three. Show that A™ isa contravariant tensor of rank one.

If aEI irr]gk isascalar or invariant, | im ,g® are vectors then a,) isamixed tensor of type (2, 1).

Show that if ay;) "mll "m =0 where | and 1} are components of two arbitrary vectors then
3nijk T 8nkji T Ajibk t@jkn =0

Prove that A;B'Clisinvariant if B' and C! are vector and A; is tensor of rank two.

If A(r, s, t) be afunction of the coordinates in n-dimensional space such that for an arbitrary vector
B' of the type indicated by theindex a A(r, s, t)B" is equal to the component Cst of a contravariant

tensor of order two. Prove that A(r, s, t) are the components of atensor of the form Af‘ .

If Al and A, ; are components of symmetric relative tensors of weight w. show that

. . w- 2 w+2
FlIAR = Bl

Prove that the scalar product of arelative covariant vector of weight w and arelative contravariant
vector of weight \wd isarelative scalar of weight w+ wd.



CHAPTER -3

METRIC TENSOR AND RIEMANNIAN METRIC

3.1 THE METRIC TENSOR

In rectangular cartesian coordinates, the distance between two neighbouring point are (X, y, 2 and
(x+dx, y+dy,z+dz) isgiven by ds? = dx? +dy? +dz?.

In n-dimensional space, Riemann defined the distance ds between two neighbouring points i
and x +dx' (i=12,..n) by quadratic differential form

ds? = gy, (dx})? + g, dxidx? + 0 g, dxidx”
+ g3, (A7) X" + g,y (0X?)® + 3006+ g, XX
b +
+ g, dx"dx! + g ,dx"dx? + oot g (dx")?
ds® =

g;ax'dx’ (i,j =12..n)
using summation convention.

(D)
Where j; are the functions of the coordinates x' such that
g= |gij| to

The quadratic differential form (1) is called the Riemannian Metric or Metric or line element for n-

dimensional space and such n-dimensional space is called Riemannian space and denoted by V., and
0;; iscalled Metric Tensor or Fundamental tensor.

The geometry based on Riemannian Metric is called the Riemannian Geometry.

THEOREM 3.1 The Metric tensor g;; is a covariant symmetry tensor of rank two.
Proof: The metric is given by

ds? = g dx’ (D)
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Let X' be the coordinates in X-coordinate system and X' be the coordinates in Y-coordinate
system. Then metric ds? = g;; dx'dX transformsto ds® = g;;dx dx’ .
Since distance being scalar quantity.
So, ds? = gdx dx' =g, dx ox’ (2
The theorem will be proved in three steps.
(i) To show that dx'isa contravariant vector.

If X = % %2, xM)
dx = = 2yt +ﬂ_ dx? + >0t —— 1S dx"
% % x"
dx' = TlidX
-

It islaw of transformation of contravariant vector. So, gxi is contravariant vector.

(i) Toshow that gj; isa covariant tensor of rank two. Since

Exikdxk and dx/ = %HX'

dx

from eguation (2)
X X
gyl = gij;r—kdxkﬂ

x %!

dxdx! = 22 qx<dx!
g;;dx dx 0 —¢ o~ T
_ X X! K
gklkadXI = glj 1.[ K ﬂ —-ax dX

Since g;;dx'dx’ = g, dx“dx' (i, j are dummy indices).

e RO
§9k| g”ﬂ_kﬂ _dX dx' =0
_ X X! ,
or 9 - 9 e 0as dx* and dx' are arbitrary.
W
9 = G ﬂxk 'ﬂx'
N S
or 0ij = 9u w X

So, Gj; is covariant tensor of rank two.
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(iii) Toshow that g;; issymmetric. Then g;; can be written as
1 1
gj = E(gij +gji)+§(gij - 9ji)
gj = A tB;
Ly +q. _
where A = E(gu gji) = symmetric

1 .
Bj = 5(9i - 9ji) = Skew-symmetric

Now, gyax'dx’ = (A; +Bj)dXdx! from (3)
(gij - Aj)axdx! = BydX dx’ (4)
Interchanging the dummy indicesin By dx'dx’, we have
&jdxidxj Bjidxidxj
I_%Hd%dxj = - Bijdxidxj

Since B; is Skew-symmetrici.e., B; =-B;;

3jdxidxj + ajdxidxj =0

2B;dx'dx' =0
) B;dXdx' =0
So, from (4),
(gj - Apdddd =0
P Oij = Aj as dx ,dx! areabitrary.

So, 9ij issymmetric since A; issymmetric. Hence Jj; isacovariant symmetric tensor of rank
two. Thisis called fundamental Covariant Tensor.

THEOREM 3.2 To show that gijdxi dx! isan invariant.

Proof: Let X' be coordinates of a point in X-coordinate system and X ' be coordinates of asame point
in Y-coordinate system.

Since G;j isa Covariant tensor of rank two.

_ e xt

Then, g = u w
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™I
b g - Oy— ﬂ_' 1]7( =0
& x< qx' 0
i —Tx'dx! =0
(égl Ow— X 2
— i ‘ITX x'
(g;dx'dx’) = =gy — dx'dx!
Oy Tb(_dx' ﬂX
x' TI>_<'
gjdx'dx’ = g, dx ax'

So, g;dx'dx’ isan ivariant.

3.2 CONJUGATE METRIC TENSOR: (CONTRAVARIANT TENSOR)

The conjugate Metric Tensor to g;; , which is written as g', is defined by

BI.
g = Ej (by Art.2.16, Chapter 2)

where Bj; isthe cofactor of gj; in the determinant 9=|gij|1 0.

By theorem on page 26
AAT = de

So, gi;9 M= dik
Note (i) Tensorsg; and gi areMetric Tensor or Fundamental Tensors.
(i) g;iscaledfirstfundamental Tensor andg? second fundamental Tensors.

EXAMPLE 1
Find the Metric and component of first and second fundamental tensor is cylindrical coordinates.

Solution

Let (x%, X%, x°) be the Cartesian coordinates and (! %% %x3) be the cylindrical coordinates of a
point. The cylindrical coordinates are given by

X=rcog, y=rsng, z=z
So that

xX=x,x?=y,x*=zand X'=r,x*=q,x3=z2 (1)

Let g; and Gj be the metric tensors in Cartesian coordinates and cylindrical coordinates

respectively.
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The metric in Cartesian coordinate is given by

dSz =

ds?

But dSZ

Comparing (2) and (3), we have

O =9 =Ugs=1land g, =05 =
On transformation

dx? +dy? + dz
(dX)? +(@X)? +(dX)

g;;ax dx’

Go(AR) +Gro0OXTE + G130 o + gy’

+ oA D)% + 0,,dX%dx® + g, dx %Xt

+ ga,0x%dx? +gg3(d)g)3

021 =9p3= 031 =03, =0

X' qx!
9 = 9j; ﬂﬂ_l ﬂﬂ_J » since gj;; is Covariant Tensor of rank two. (i,j = 1, 2, 3)
fori=j= 1
a-[xloz a-[ 29 a-[x3 02
J11 =31 T t022g—71%033 H
S T T
since g;, = §;3 =X¥%=0g,, =0.
2
axo Ay o aéTZo
= T+ T+
O = 9119? gzzgﬂ_ 933 S o
Since x=rcosq, y=rs€nqg, z=z
x _ Ty - Tz _
— =CO0S ——sm L
T q, q, T
and Oy; =0z = 033 =1
91 = cos’q+sin®q+0
0. =1
Puti=j=2

1 ,.2 > .2 3 .2
X 9 &x” 9 Hx” 9

el

0, gllcg‘_ﬂ)_(z B
&y 0 oz &

&
Lk ===
0., 9119_ S o d2 ec,—ﬂq J33C 9o

35

(2)

(3
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Since 011595 =033 =

X _ Ty _ Tz _
-rsn , —=rcosq, —-=
% 4 19

T = (- rang)” +(rcosq)® +
= r2sn?q+r2cos’q
G =12
Puti=j=3
L 6, 5, B0
=9 é__ t+g §_: g_:
[0 11 < 22 3 33 3ﬂ
X0 Ay o Az 6
= 9+, 9 b
9119_1] gzzQﬂZ J33 eg’_ﬂzﬁ
Xy W, T2
X-o, M=o, ¥=1 -
Sinc 1 1z 1z . S0, O35 =1

So, 0,=1 §,,=r% Jzp=1

and 001370, =030, =05, =
(i) The metric in cylindrical coordinates

ds? = gijdy(idij i,j=123.
gll(d)_(l)z +0y (ﬁz)z + a3 (dis)2
since gy, = §;3 ==, =0

ds? = dr?+r?(dqg)? +df 2
(ii) The first fundamental tensor is

ds?

egll (73 913U él. 0 0d
eng 022 923u é) r2

&0:, O TssH g’ 0 13

C

1 0
since g:|§ij|:0 r2 0
0 1
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(iii) The cofactor of g are given by
B, =r% By=1 By=r?

and B, =B, =B;3=B,;=B;; =B;, =0
. B
The second fundamental tensor or conjugate tensor is g" = j
gt = cofactor of g;,ing
g
B 2
gll = ?ll::_z =1
B 1
g
B, r?
933 = f:r—zzl
and gl=gBl=g¥t=gB=gi=g2=0
é 0 Ou
é a
¢ 1 U
Hence the second fundamental tensor in matrix form is g) = OH.
Do if

EXAMPLE 2
Find the matrix and component of first and second fundamental tensorsin spherical coordinates.

Solution

Let (x*, x?, x*) be the cartesian coordinates and (X*, X2, X®) be the spherical coordinates of a

point. The spherical coordinates are given by
x=rdgnqcosf, y=rdngsnf, z=r cosq

Sothat X! =x,x2=y,x*=z and X' =r, X% =q, X°® =f

Let gi; and Q;; be the metric tensors in cartesian and spherical coordinates respectively.

The metric in cartesian coordinates is given by
ds? = dx? +dy? +dz?

ds? = (dxl)2 +(dx2 )2 +(dx3)2

gijdxidxj; (i,j =l,2,3)

But dSZ
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b O =0, =03 =1and 912 =923 =913 =92 =03 =093, =0
On transformation

g.. — T[X TD(J
T R
(since gj; is covariant tensor of rank two) (wherei, j = 1,2,3).
1 1 2 2 3 3
_ ‘ITX‘ITX+ ﬂXﬂX+ x” 9x

0ij = g“ﬁﬁ gzzﬂ?ﬁ g33ﬁﬁ
sincei, j are dummy indices.
Puti=j=1

0, = 9u ﬂ)_(l p + 922§7+ + 033 WIB

. 2 i
0, glléél_o *“9122(?I 2 ‘*9]336519_2

elrg efrg elrg
Since x=rdnqcosf, y=rsnqsnf, z=rcosq
x ‘[[y Yz _
— = = =cos
T sin qcosf, =gnqgnf, r q
and 911 =9» =033 =
So,
011 = (sinqcosf )’ +(singsinf )? + cos’q
G, =1
puti=j=2

2

ae'nxl('j2 #x20 @0

9, = gll(éﬂxng + gzzi%‘_; g33§ﬂ_2 T

X & oAy ¢ o s
- + <+ k4
0., 911% gzzgﬁ p Os3 gﬂ_qg

since 0,1 =95, =033 =1

B:r(:osqcosf, ﬂ:rcosqsinf, E:-rsinq
i fia

T,, = (rcosqcosf )’ + (r cosqsinf)* + (- rsing)®

05, = r?
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Puti=j=3

2 2

X 0 9 .

Oy = g 5= + gzzi__ai + 933§_3 T
™ g X g X g

2
&AX o aaTyo aaTzo
Uss = gﬂf < gzzgﬂf g33gﬂf :

since 0y; =0y =033 =

X Ty

. . Iz
—=-rsnqgsnf,— —
and i it

=rdgnqcosf,—=0

U = (- rsingsinf)® +(rsingcosf ) +0

O3 = r?sn?q
So, we have

J,=1 §,,=r? G =r?sn?q

and 0,501370, 505705, =05, =
(i) The Metric in spherical coordinatesis

ds? = gydx'ox’; i,j =123
gll(dzl)z + 02 (d)_(z)z * gss(ﬂg)z
dr? +r%dg® +r?sn? qdf 2

ds?
ds?

(ii) The Metric tensor or first fundamental tensor is

e911 91 g13u e’l. 0 0 3
9921 022 gzsu é) r? 0 u
&0, U, Tl S) o r Slnqu

and
1 0 0
g:|§ij|:o r? 0 |[=r%dn?q
0 0 r?sn’q

39

(iii) The cofactor of g are given by B, =1 B,,=r?, B,,=r’sn’q and B, =B, =

=B = B,;=B;, =0
By

The second fundamental tensor or conjugate tensor is g' = —-
g
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1 _ cofactor of gy, ing _Bu

gt =
g g
_r*dn®q
" r*sn?q
gll:1
22_2:r25‘n2q
9 = rfsn?q
1
gzzzr_2
33_%: r’
9= r*sn’q
1
33 —
g r2sn?q

and g2=g=g%=¢g"=g%=0
Hence the fundamental tensor in matrix formis

© 0o o 1§
11 12 13~ d a
gg11 g12 gl3t: % i o l;l
gI] — é§21 522 523(j — g r2 1 H
631 =32 =33() = P
g0 T 0 0
e resn<qu
e a
EXAMPLE 3
If the metric is given by
ds? = slaxtf +3{ax2 ) + alc) - 6o + 4k

Evaluate (i) g and (i) g'l.

Solution
The metricis ds? = g;dx'dx’; (i, j =1,2,3)

gll(dxl)2 +g,,0x"dx? + g,,dx"dx® + g,,,dxdx*

ds?
+ 0, (0X?) % + g,,0x2dx® + gy, dx3dX" + g,,dx3dX® + g, (dX®)?

Since g;; is symmetric b gij = gji

i.e., G2 = 921, 923 = 035:013=03
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So, ds? = 03y (0X)° + Gy (cx®)? + gy (0°)? + 20,0 X’
+20,,0xdx® + 2g, ,dx"dx°

Now, the given metric is

ds?
Comparing (1) and (2) we have

011 = 5,0,=3 03374, 20, =-6P 0;,=-3=0y
20,3 =4P 0y3=2=03,,03=0=0y
G171 912 O3 5-30

9= |9ij|=921 O22 923|=|- 3 3 2|=4
931 Y932 a3 0 2 4

(if) Let B; bethe cofactor of gj;ing.

Then
32
B, = Cofactorof g;, = ) 4‘:8
50
B,, = Cofactor of g,, :‘ 0 4‘ =20
5-3
Bs; = Cofactorof g,, = 3 3‘:6
-3 2
B, = Cofactor of glzz-‘ 0 4‘:12:821
-3 3
B; = Cofactorof g,; = =-6=B,
02
5-3
B,, = Cofactor of g,5 = 0 o =-10=B,,
. B
Since gl =—
We have
B, 8_ 3 3
11 911_2_2’ 22 _g 933:5’ g2=g%=3 g13:g31:_§, g% =g*®

5(dx')? + 3(dx?)? + 4(dx®) % - 6dx*dx? + 4dx*dx®

Nl o

41

(1)

(2)
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Hence,

(Q_
|
@@ (D> D> D> D> D> (D> (D

3.3 LENGTH OF A CURVE

Consider a continuous curve in a Riemannian V, i.e., a curve such that the coordinate x' of any
current point on it are expressible as functions of some parameter, say t.
The equation of such curve can be expressed as

X =X ()
The length ds of the arc between the points whose coordinate sare xi and x + dx' given by
ds? = gijdxi dx’
If sbe arc length of the curve between the points P, and P, on the curve which correspond to

the two values t; and t, of the parameter t.

o o o oo 8
s=Q ‘Qﬁg” dt dt

NULL CURVE

iyl

9; %% =0 along acurve. Then s= 0. Then the points P, and P, are at zero distance, despite
of the fact that they are not coincident. Such a curve is called minimal curve or null curve.
EXAMPLE 4
A curveisin spherical coordinate X is given by
=t X :sin'lgég and x> =24t*- 1
etg

Findlengthof ascc L £t £ 2.
Solution
In spherical coordinate, the metric is given by

ds? = (dx)® +(x")*(dx®)* + (x'sin x*) *(dx*)®
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given =t xzzsin'l%, xB=24t2-1
ot =dt, == E 1O g =k ora
’ 2 & t2 2
ﬁo e 9
1- ¢+
etg
NI | S Ve R S
tt2-1 t2-1
62 2o 02
& .
st = (atf +°€ —S7 +G&inan 129 €2 a”
tf2-15 &6 tal §Viz-1
dt? 4t? 5
2 = dt2+ +
dS t2_ t2_1( )
aZ
2 = dt2
dS t2_ 1

ds= /5 : dt

Now, the length of arc, 1£t £ 2, is

(\52 ds = '\/g

O
N
—
N
1
=
o
—t
Il

3.4 ASSOCIATED TENSOR

A tensor obtained by the process of inner product of any tensor Ai-liz”'i’-s with either of the fundamental

i1z

tensor g;; or g" iscalled associated tensor of given tensor.

e.g. Consider atensor Ajc and form the following inner product

gaiAjk = A?k; gaj Ay = Aii;gakAjk = A?
All these tensors are called Associated tensor of Ay .

Associated Vector
Consider a covariant vector A . Then g'*A = A* is called associated vector of A . Consider a

contravariant vector A. Then g J-kAj = A iscalled associated vector of Al.
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3.5 MAGNITUDE OF VECTOR
The magnitude or length A of contravariant vector A. Then A is defined by

A= Jo, AAT
or AZ = g A A
Also, AZ = A AT as g;A = A
i.e., square of the magnitude is equal to scalar product of the vector and its associate.
The magnitude or length A of covariant vector A . Then A is defined by

= {9'AA
or A? = g"AA
A vector of magnitude one is called Unit vector. A vector of magnitude zero is called zero vector
or Null vector.

3.6 SCALAR PRODUCT OF TWO VECTORS
Let A and B be two vectors. Their scalar product is written as AxB and defined by

AxB = AB
Also, AxB = AB, =g;A'B’ since B =g;B’
AxB = AB'=g"AB; since B' =¢'B,
Thus
Axh = AA=g AN = A’

e, A= H:JgijA‘Aj

Angle between two vectors
Let A and B betwo vectors. Then

o
b _ AxB _ QiinBj
cosq = |,51|I§| JgiinAiJgijBiBi

since H = \’g”A‘Ai ; |I§| = \,gijB‘Bi

Thisisrequired formula for cosq.

Definition
Theinner product of two contravariant vectors A (or A') and B (or B') associated with asymmetric
tensor g;; is defined as g;; A'B’. It is denoted by

o(AB) = ;A B’
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THEOREM 33 Thenecessary and sufficient condition that thetwo vectors A and B at 0 be orthogonal
if g(AB)=0

Proof: Let q be angle between the vectors A and B then

A8 = |A|Bleosa
or AxB = ABcosq
g;AB’ = ABcosq
cosq = 9, AB’ 1
b q == (1)
If A and B are orthogonal then q =% b cosq=0 then from (1)
g;AB’ =0
p oA B) = 0since olAE) = g;A B
Conversely if @ AB’ =0 then from (1)
cosq = 0b =2
So, two vectors A & B are orthogonal. Proved.

Note: (i) If A and B beunit vectors. ThenH :|L5>|= 1. Then
cosq = AxB= g;AB’

(i) Two vectors A and B will be orthogonal if angle between them is% i.e,q :% then

N|o

cosq = cosg=—=0

3.7 ANGLE BETWEEN TWO VECTORS

THEOREM 3.4 To show that the definition of the angle between two vectors is consistent with the
requirement cos?q £ 1.

OR
To justify the definition of the angle between two vectors.

OR
To show that the angle between the contravariant vectors is real when the Riemannian Metric is
positive definition.
Proof: Let g be the angle between unit vectors A and B then

cosq = 9;AB' =AB' =AB'B =¢g'AB =AB
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To show that gisreadl i.e., |cosq| £ 1.
Consider the vector |A' +mB' when | and m are scalars. The square of the magnitude of

A +mB = g;(IA +mB') (1A +mB’)

gjl’A'A +g,ImA'B' +mig; B'A' + m’g,B'B’

|2+ 2lmcosq + m?
Since

g”AIA] = A2:1; g”BIB] :82:1.
and

g;A'B’

cosq; as A & B areunit vector i.e., H:lb A2 =1,
Since sguare of magnitude of any vector 3 Q,
So, the square of the magnitude of |A" + mB' 3 0.
or 12+ 2lmcosq+m? 2 O
(I + mcosq)? + m? - m?cos®q 3 O
(I +mcosq) 2 + m?(1- cosq) 3 O
This inequality holds for the real values of | & m.
if 1- cos?q? 0
p cos’q £1
cosq £1
Proved.
THEOREM 35 The magnitude of two associated vectors are equal.
Proof: Let A and B be magnitudes of associate vectors A' and A, respectively. Then
AZ = g A A (1)
and
B2 = g"AA )
From equation (1)

A (giin)Aj
A2 = AN (3
since g;A' = Al (Associate vector)

From equation (2)

B2 = (@"A)A,
B2 = AIA (%)
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since g'A = Al
from (3) and (4)

A? = B?
5} A=B

So, magnitude of A and A are equal.

3.8 ANGLE BETWEEN TWO COORDINATE CURVES
LetaV, referredto coordinate X, (i =1 2, ...n). For acoordinate curve of parameter x', the coordinate
x! alone varies. Thus the coordinate curve of parameter x' is defined as
X =c, "i excepti=I (1)
where C"s are constants.
Differentiating it, we get
dx' =0, "j,excepti=I and dx' 1 O
Let A and B' bethetangent vectorsto acoordinate curve of parameters xP and x9 respectively.
Then

A =dx =(0,..0, x",0..0) ..(2)
B' = dx =(0,..0,x%0..0) ..(3)
If q isrequired angle then
g;A'B’
JOiA A g;BB]

cosq =

\/gppApAp\/gququ

PRA
gqu B

~ J95p9qq A°B?

g
& ..(4)

cosq = F——
\] 9 ppgqq

which is required formulafor q.

Theangle w; between the coordinate curves of parameters x' and x! is given by

gij

COSW;; =
] —\’giigjj




48 Tensors and Their Applications

If these curves are orthogonal then
COSW;; = cos% =0
b g; =0

Hence the x' coordinate curve and x’ coordinate curve are orthogonal if g;; =0.

3.9 HYPERSURFACE
The n equations X = X (u?) represent a subspace of V.. If we eliminate the parameter u', we get
(n —1) equations in xI*swhich represent one dimensional curve.

Similarly the n equationsx'= X' (u,u?) represent two dimensional subspace of V.. If we eliminating
the parameters u', u?, we get n -2 equations in x"s which represent two dimensional curve V,. This
two dimensional curve define a subspace, denoted by V, of V,.

Then n equationsx = X (ut, U2, ... u™?) represent n— 1 dimensional subspace V,, ; of V,. If we
eliminating the parameters ul, U2, ...u™%, we get only one equation in x"s which represent n —1
dimensiona curvein V,. This particular curve is called hypersurface of V.,

Let f be a scalar function of coordinates x'. Then f(X') = constant determines a family of
hypersurface of V,,.

3.10 ANGLE BETWEEN TWO COORDINATE HYPERSURFACE
Let

f (x') = constant (1)

and y (x') = constant (2

represents two families of hypersurfaces.
Differentiating equation (1), we get

it i
—dx' =
" 0 ..(3)
This shows that il is orthogonal to dx'. Hence %T_fl isnormal to f =constant,since dx' is
X
tangential to hypersurface (1).
Similarly Ty is normal to the hypersurface (2). If wis the angle between the hypersurface (1)

Xi
and (2) then w Is also defined as the angle between their respective normals. Hence required angle w
is given by

i It Ty

) % Ix!
cosw—\/ g I Ty Ty
1-|-XI ﬂXJ ﬂXI ﬂxl

(4)
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If we take
f = xP = constant ...(5)
and Yy = x% =constant ...(6)
Theangle w between (5) and (6) is given by
TR S
cosw = X 1
% 1x Vo
g dfdf

" Jodrdr s

g pq
COSW = —— -(7)
'g ppgqq
The angle w;; between the coordinate hypersurfaces of parameters x' and x! is given by

ij

cosw;; = —— -(8)

g gji

If the coordinate hypersurfaces of parameters x' and x! are orthogonal then

p
Wij = E
b cosw;; =0

from (8), we have g" =0.

Hence the coordinate hypersurfaces of parameters x' and X are orthogonal if g'l =0.

3.11 n-PLY ORTHOGONAL SYSTEM OF HYPERSURFACES

IfinaV, therearenfamiliesof hypersurfaces such that, at every point, each hypersurface is orthogonal
tothe n- 1 hypersurface of the other families which pass through that point, they are said to form as
n-ply orthogonal system of hypersurfaces.

3.12 CONGRUENCE OF CURVES

A family of curves one of which passes through each point of V, is called a congruence of curves.

3.13 ORTHOGONAL ENNUPLE
An orthogonal ennuple in a Riemannian V,, consists of n mutually orthogonal congruence of curves.
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THEOREM 3.6 To find the fundamental tensors g;; and g in terms of the components of the unit
tangent €y (h=1 2..n) to an orthogonal ennuple.

Proof: Consider n unit tangents eih| (h=1,2..n) to conguence &y (h=1 2...n) of anorthogona ennuple

in a Riemannian V, . The subscript h followed by an upright bar simply distinguishes one congruence
from other. It does not denote tensor suffix.

The contravariant and covariant components of €, are denoted by &, and €,; respectively.
Suppose any two congruences of orthogonal ennuple are €, and €, so that

gijeri1|e»<j| = dy ..(1)
eri1|Q<|i = dy
from (1),
gij eri1| eKj| =0
and gijeri1| enj| =1
We define
. cofactorof e, in determinant e, |
" ]
Also, from the determinant property, we get
g .
a & = d (2
h=1
Multiplying by gik
2 o ik i ik
a &y g’ = djg
h=1
°n ok ik
or aA&ey =g ...(3)
h=1
Again multiplying (2) by 9i-
n
o i
a €6 %k = dgix
h=1
o
or Ok = A &k ...(4)

from (3) and (4)

gj = é_ €ii €nj ...(5)
h=1
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ij g j
g’ =a & ey
h=1

This is the required results.

51

...(6)

Corollary: To find the magnitude of any vector u is zero if the projections of u on &, are all zero.

Proof: Let
u' =

Then
u'e =
or C, =
i.e., C, =

Using (8), equation (7) becomes

Now,

a ey

h=1

é Chqi1|ex|i = é C,di =C,
h=1 h=1

u'e

projection of U' on g

n . .
é u'e,; &
h=1
&’ . ey 0
u'ui :Qa Chdm:ga Ckexli: from (7)
8h ge k %]

2 i
a G.Ceeyi
hk

a c.cd!

hk

a GG,
h

alc)y

n
o
h=1

Thisimpliesthat u= 0iff u?> =0 iff C, =0.
Hence the magnitude of a vector u is zero iff all the projections of u (i.e. of u’) on n mutualy

orthogonal directions ef1I are zero.

A7)

.(8)
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Miscellaneous Examples
1. If pand q areorthogona unit vectors, show that
(9 Gix - ghkgij)phqi quk =
Solution
Since p and q are orthogonal unit vectors. Then
0ij pa’ =0, p>=¢°=1.
Now,
(9w - 9n0;)P"a P'a" = 9n9wP"P'd'd" - gucg;P"q"d p’

= (gn P"P") (G 'q") - (GneP'a") (g’ p’)
= p2? - 0.0
=1-1
= 1(since g, p"p’ =1& Ok p"g* =0)
2. If q istheinclination of two vectors A and B show that
(9hi Qi - ghkgij)AhAj B'B*
q= Ohj gikAhAijBk

2

sn
Solution
If q be the angle between the vectors A and B then
0ij AB'
JaAA g, BB

cosq =

But sn?q=1- cos’q
i (gijBiAj) (ghkAth)
(gthhAJ)(gikBlBk)

sn?q =1

(90 Qi - On0;j )A"AB'B"
B ghjgikAhAjBin

3. If Xj; arecomponents of asymmetric covariant tensor and u, v are unit orthogonal tow and
satisfying the relations
(X - agij)ui +ogv; =0
(Xi; - bgij)Vi +dw; =0
where a 1 b prove that u and v are orthogonal and that
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Xijuivj =0
Solution

Suppose X;; is a symmetric tensor. Since u',v! areorthogonal to w then

uw =0 (D)

vw =0 ..(2)

given (X;; - ag)u' +gv; =0 (3
(Xij - bg”)v' +de =0 (4)

wherea ! b.

Multiply (3) & (4) by v!,u’ respectively and using (1) and (2), we have

(Xij - agij )uivj =0 ...(B)

(Xi - bgiv'u! =0 ...(6)
Interchanging the suffixesi & j in the equation (6) and since g;j, Xj; are symmetric, we get

(Xij - agij vl =0 . (7
Subtract (6) & (7) we get

(b- a)gyu'v! =0
Sinceb! a and b- at 0.
Hence,
gu'v' =0 ..(8)

So, u and v are orthogonal.
Using (8) in equation (5) & (6), we get

Xijuivi =0 Proved.
4. Prove the invariance of the expression Jﬁdxldxz..dx“ for the element volume.

Solution

Since gj; isasymmetric tensor of rank two. Then

W

gj = ﬁﬂijgk'
Taking determinant of both sides

L WAL

o - o] [ b

x

Since —‘:J (Jacobian)
X

|94l =9 & |§ii|=g
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SO!
g =gl
or
_ |9
=4

Now, the transformation of coordinates from x' to X', we get

L
142 n — dX dX2 d)_(n
dx dx“...dx ﬁ{
= JdX*dx2.. dX"
XmdXZ...an — _\dejdxz an

Jodx'dx®...dx"

JadxdR>.. dx"

So, the volume element dv =./gdx‘dx?... dx" isinvariant.

EXERCISES ——

1. For the Metric tensor g;; defined g and provethat it is a contravariant tensor.
2. Calculate the quantitiesgil for aV; whose fundamental form in coordinatesu, v, w, is
adu® + bav? +caw® + 2 fdvaw + 2gdwdu + 2hdudv
3. Show that for an orthogonal coordinate system
1 1 1
O11 = 9_11' 922—9_22’ 933—9_33
4. ForaV,inwhich g, =E,g,, =F,g,, =G provethat

g= EG- FZ’ gllzG/g, ng=_ F/g. g22=E/g

1
5. Provethat the number of independent components of the metric ;; cannot exceed En(n+1) .
6. If vectorsu', v aredefined byu' = g'iu;, v =g'v; show thatu; = g'iul, u'v; =u;v' andu' g;;ul =u;gly;
7. Define magnitude of a unit vector. prove that the relation of a vector and its associate vector is
reciprocal.

8. If g isthe angle between the two vectors A and B' at apoint, prove that

X (9niGik - IneG)A"ABB"
sn"g = i g A"ABIBX

9. Show that the angle between two contravariant vectorsisreal when the Riemannian metricispositive
definite.



CHAPTER -4

CHRISTOFFEL'S SYMBOLS AND COVARIANT
DIFFERENTIATION

4.1 CHRISTOFFEL'S SYMBOLS
The German Mathematician Elwin Bruno Christoffel defined symbols

. 1edg , 95 Y956
fij.k] = EgﬂTJkJrﬂ_xJ' ﬂT]E, (i,j,k=12..n) (1)

caled Christoffel 3-index symbols of the first kind.
i ki

and i..y=g"“lij,l -(2)
=9 i 1]

called Christoffel 3-index symbols of second kind, where g;; are the components of the metric Tensor

or fundamental Tensor.

There are n distinct Christoffel symbols of each kind for each independent g;;. Since g;; is

1
symmetric tensor of rank two and has En(n +1) independent components. So, the number of

independent components of Christoffel’s symbols are n x% n(n+1)= %nz (n+2).

S K
THEOREM 4.1 The Christoffel's symbols [ij , k] and i i jg are symmetric with respect to the indices i
i

and j.
Proof: By Christoffe’s symbols of first kind

190, 79« q- ﬂgijg
2&8x 9K X &

5. ] =
Interchanging i and j, we get
. 1899k Mgy 9950
[Jl’k]:_g Jik+ gk_ :(:
2 X' X Xg
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_£%+ﬂgjk ﬂgu

= 2800 T T 6smce gij =
[Ji, Kl = [ij, K]
Also, by Christoffel symbol of second kind
i k@
e 9" [i.1]
= g*'[ji,1] since [ij.1]=[ji.1]
ki 1ki

Gl =i

THEOREM 4.2 To prove that

. . p ki
= g ml
(i) ijom = 9ent, il
N 1o Tgi)
(ii) lik, j]+[ik.i]= oK
9, _ | V.
i w9
Proof: (i) By Christoffel’s symbol of second kind
| ki o 'fi
Y ij, I
et i1
Multiplying this equation by g, ., we get

e
Gemh ¥ = 00 [ii]
fi jp

= dyfij 1] as gemg*' =di,
ko .
Qo ; 1Y = [ij.m]
|
(i) By Christoffel’s symbol of first kind

R Eﬁ[gk]‘_‘_ﬂgij_ ‘ﬂgikg
[Ik!J] -2 ﬂXi ﬂXk ﬂXJB

a9, , Y95 99 ©
28X ™ W 5

and [ik.i] =

adding (1) and (2),

1a99;;  19; 0
lik, j]+[jk.i] = Z(éﬂx] ﬂXJ since gj; =

Tensors and Their Applications

gii

gii

Proved.

(1)

(2)
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1_Tg9; _Tg;
(iii) Since g"g, =d .
Differentiating it w.r.t. to x*, we get

ij 1Tgl ﬂgij
gl ﬂTkJ +g; W

Multiplying this equation by g'™, we get

=0

T’

'm&+ -~
X«

9'g o 99— =0

m ﬂ ! ij mﬂg
9"g o = - 9" =

i
xk Xk

mﬂgij ij ~Im ; ; : ﬂg = i i
d’ o = - g'g"{[Ik, j]+[ik.!]} since ﬂT:—[lkJ]Jf[Jka']-

j]ii: = - g™ g'[Ikil}- g'{ gk}

Tg'™ _ ml iU_ iyl ma
EEERS AN

Interchanging mand j, we get

o _.
x~ il ok

ﬂgij gl 10 il ] i i
B T I g =9t

fllog ({/g)

JE x/

or
Proved.

P

THEOREM 43 To show that ii

Proof: The matrix form of 9. is

€h1 Y12 - G U

e u

g, = 891 92 - Guyg
ik é l;l
e u

&nl gn2 gnn Q
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91 O - Op

o o=fa =2 % o

gnl gnZ gnn

But 99" =d,
Take I =k
99" = df =1
. G
b g% =[g,]*= —ék (Theorem 2.13, Pg 25)

where G, is cofactor of Gy in the determinant |g;|

P 9= 0,Gi (D)
Differentiating w.r.t. 9; patialy
19 . 10k
—— =G, since —/—=1
T9ik K 10ix
Now,
19 _ 9 fo.
™ Tou X’
= Gikﬂg_i!(
X’
But G, = gg'®
99 _ e o
w o 9 ix!
iﬂ_g ik ﬂgn(
199

o = 9kl K} & =ik ]+l

= g"[jk.i]+ g"fii.K]
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1 Piaiia
19 _! .y*i. .y ask isdummy indices
% 1] If\;

|
g i
1fg _,i1d
gx' g
1 %9
2g x’

T109(/9) P

! fii

I
n
o<

I
—_——

Proved.

EXAMPLE 1
If |gij| 1 0 show that

100 I gea)- ] P8 (el i)
W i k) T W ii kp
Solution
By Christoffel’s symbol of second kind

i b ba
= K,
%i kaJ g [' a]
Multiplying it by g, , we get
b
gabil kg = 9ar0™ [ik.a]

jbi
gab‘lI y = [lk a] as gabg
fikp

Differentiating it w.r.t. to x’ partialy

ﬂé i bgu ﬂ[lka]

?gabl k%u =
b bii1g,
Our ﬂjji §+1 ALLLIR N ¥Y
i kp |kp % X
since ?a,b [aj.b] + [bi, 2]

‘ﬂ |bu ‘| a, . . L
Y lb b! = —
S ik i @01+ Bal = [ik,a]
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O ﬂ | bU [|k a] Z [al b] [bj a]) Solved.

EXAMPLE 2

Show that if ;=0 for i* j then (i) i

11 0_11logg; i u_19logg; . I, bu_ 1 T9;
v)i. y=-——
Wy ()lu;v) 2 ()% ip 20
Solution
The Christoffel’s symbols of first kind
- 1279 j« '"gik_ ﬂgiig
fij. k] = 2§ w0 (1)
(@ Ifi=j=k
The equation (1) becomes
[||,|] x
(b) Ifi=j*k

The equation (1) becomes

i K] = 1e99i , 9 Yigiid
T 28 W X
Since g, =0 asj1 k (given)

i = S8 o )= 22

2 qxk 2 ¥
(c) i=k* |
A 1éﬂgjl ﬂgn ﬂgijl:I
= —A — + — - 1
[U |] Zgﬂxl TIX] ﬂXI H
1 05, o
d itjtk

[ij.

(i) asi, |, karedistincti.e, it jtk

0 ag;=0,9g;x=0,itjtk

i g= g"'[ij,l] since g"=0, k1|
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1 kU_O
foip
o ‘I/I[/] || e .
(if) iy = o [i.i]
_ i L g
=g XEﬂXi from (a)
1 fgi i1
- = Wi 9g"=
2gii ﬂXI & Jii
110 17logg;
l.. =
(7
(i) i=ktj
iia N
,- -/ — 1 I,I
}| Jg g [J ]
1. . N
= gl s g'=
i i0_ 19logag;
. . - -
il Jﬁ 2 X
(iv) j=kti
I 1d -
,. ., - 1 ,I
(jg=o [ii.i]
__ 1179,
= 2 from (b)
pig_ -179,
Piih 200
EXAMPLE 3

If ds? =dr?+r2dg?+ r2sin? qdf 2, find the values of

0 [22, 1] and [13, 3] (ii)i' 1 [']and' ¢
1 1 1 ':\2 2% '}1 3?;
Solution

The given metric is metric in spherical coordinates, X =r, x° =q, x3=f.
Clearly,
01 =1, 9, =r% gz =r’sn®qand 4;=0for i? |

61

Solved.
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1 33 _ 1
11 _ 22 — =
Also, g+ =109 7 g rZsn’q

(SeeEx. 2, Pg. 39, and ¢ =0, fori? j.)

(i) Christoffel Symbols of first kind are given by

1eM9 Mg Y950 .
—@ H + H - ! I7 ,k :1|2!3 ' 1

i K] =

Takingi=j=2 and k=1in (1)

14 N
1eY92 + 19.; ﬂgzlzg Since gy, = 0.
u

[22.1] 281¢ ¢ 1x

1690  fo 9r%d

T28¢ ¢ o

Teking i =1,j =k =3 in ()

1é79ss + gs  T9:50
281¢ ¢ U

[13,3]

~ }‘nrzsinzq , “o
= Z—ﬂr since g,; =
[13,3 = rsin?q
(ii) Christoffel symbols of the second kind are given by

i ki

iy = ol l=olids o2+ o*[i 3
Takingk=1,i=j=2.

1a

izz’zgﬂh2ﬂ+9”PZﬂ+gwh2ﬂ

1

2 2['.1 = 1[22,1] +0[22,2]+ 0[22,3] Since g**=g*=0

|’
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and

f :: 31131 + g*[13 2| + g*3[13,3
L3 g*[131 +g%[13 2]+ g*133]

= rzsilnzq[las] Since 9% =g%=0

t ;= L >¢sin2q—E
%1 3[V) r2sin?q r

4.2 TRANSFORMATION OF CHRISTOFFEL'S SYMBOLS

The fundamental tensors g; and g' are functions of coordinates X' and [ij, k] is also function of
coordinates x' . Let G;;, g™ and [ij,k] in another coordinate system X',
(i) Law of Transformation of Christoffel's Symbol for First Kind

Let [ij,k] isafunction of coordinate x' and [ij,k] in another coordinate system X'. Then

Eéﬂgik + 19i _ ﬂgijf:' (1)
ZEﬂT(i x Wkﬂ

Since @j; isacovariant tensor of rank two. Then

[ij,k] =

N S
gij = ﬁﬂxjgpq (2)

Differentiating it w.r.t. to X*, we get

ﬂgij _ aﬂxp ﬂXq 9
X< IxK § T e
TP IxTo  xP Ix? Y10

TRER WL W W R

19;; ae'nzxp xt ‘ﬂxp 7°xs 0 +ﬂxp %9 19, X'

o J T T e e )

ix X X ﬂ>_< XX 5 ™ > X X
Interchanging i, k and also interchanging p, r in the last term in equation (3)

‘H_kJ &P ﬂx” 7x% 0 ™ Ix% 19, XP
= S ‘ Yoo ¥ T
X X X ﬂ_ w5 X X! IxP 9
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and interchanging j, k and aso interchange g, r in the last term of equation (3)

19,  27°x" %

7%’ éﬂ_'ﬂ X ﬂ—wwm‘“‘

Substituting the values of equations (3), (4) and (5) in equation (1), we get

e C1PxPx?

K
Ul Rt

%P X

['J k] = Pq

W% TR
xP qxd

[ij,k] = W R 9pq

PRSI S xP X" 1x¢ 19,
T ook o) a0
[ " e
ixP x? 1x" &9rp + 9 i ﬂgpq
pq FR — q )
® % XS I I
PRLSR LSS 140, ﬂgq, ) ‘ﬂgpqg
X ® K 2§ﬂxq ®xP I g
ixP Ix? I
+ﬁﬁﬁ[m, r] ...(6)

It is law of transformation of Christoffel's symbol of the first kind. But it is not the law of
transformation of any tensor due to presence of the first term of equation (6).

So, Christoffel's symbal of first kind is not a tensor.

(i) Law of Transformation of Christoffel's Symbol of the Second Kind

i
g*'[ii, '] t); is function of coordinates x and 9 “[ij,11 = 'I Jy in another coordinate system
b
%x'. Then
— xP X RESR SRS
1] = ey o 900 H o e 1 —[pa.r] from (6)
As 0" is contravariant tensor of rank two.
=kl _ ﬂ)_(kﬂ_il st
xS
Now
k | 2yp q tva 7 P q
g 1] = XX ﬂ.—)iﬂx—| pq+‘ﬂx ‘ITX s IXP X %' [pq ]
® i~ XX X x* X x
k | a9 p ro p q
_ 11—3511—11X:q 12x O + W&WﬂX ‘ﬂX ‘ITX g% [pa,r]
™ g K 5 XK 1 S ) 5T
™ o o TP < xR X ™ Ix
= d°g® + ! - - , _ =
T[XS tg 1]_'X' gpq ﬂXSdI ﬂyl ﬂYl g [pq r] as ﬂXt ﬂil t
_ TI)_(k ﬂzxp sq ﬂ)_( ﬂX ﬂxq sr ryst — s
= o popT Ot oo [pa.r] as drg% = g
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g ®P 1°xP ™ P X% 1 s 0
g (i1 e
’ ™% XX ™ X TIY'ADQ%

Since g*'g,

s st _l s
dy and 9 [qu,f] %pqg

i_kiﬂ w1 RO s
i T e wW e W W p db

It is law of transformation of Christoffel’s symbol of the second kind. But it is not the law of
transformation of any tensor. So, Christoffel’s symbol of the second kind is not a tensor.

A7)

S

. ix
Also, multiply (7) by o we get

ﬂxlkP x® X< 28 'HX'HT(ﬂxpﬂquSg
dT(TIJb TR WK R e ) TP o)

Since — L s=
1‘|)_( S
ik 1% P s
i % WX X X 1P qp
1% TkU Iy os g

Peva kll iy & w1 ab +(8)

It is second derivative of x* with respect to X’sin the terms of Christoffel’s symbol of second
kind and first derivatives.

THEOREM 4.4 Prove that the transformation of Christoffel’s Symbolsforma group i.e., possess the
transitive property.
Proof: Let the coordinates x' be transformed to the coordinate system X' and X! betransformedto X' .

When coordinate x' be transformed to X', the law of transformation of Christoffel’s symbols of
second kind (equation (7)) is

Pk e g ﬂx %" ﬂx“t s {

|| Y= oo ey y ..(1)
1y~ I X "W W TP ap

When coordinate X' be transformed to X' . Then

r

I U
i
Tu

G ——

_k Wi ."ij ﬂir .\ .ﬂz)—(k v

'c"‘<‘C
><|
<
X
x~
=
c
]
X
<
=
x
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',SUTD—(kﬂXp‘HXqﬂXﬂYﬂ_r "X X X XX
|pq\b'ﬂx ™ ™ X X" X 117(117( PSR Tl T e

ﬂ)_(

U G S x ®
TP O R R K RO
%% X X X

L U Yol Tl ~(2)
"X
a8 = —u
> X X
Since we know that
(LS S
T -(3)

Differentiating (3) w.r.t. to X’, we get

ISR S < R S
TlivéTIY'gﬂ"“ "R ER G R

ﬂZXS W] ﬂYi +1‘[XS ﬂzii B ﬂZXS 4
ﬂ)—(iﬂfj ﬂ%V ﬂiu Wi ﬂiuﬁv - ﬂiuﬁv ( )
x®
ﬂ'ZXS ﬂij Wi ﬂir . T[Z)_(i ﬂXS ﬂir ~ ﬂZXS ﬂil’
KR KRN KRR R KR
Replace dummy index i by k in second term on L.H.S.
ﬂZXS TIXJ ﬂYi ﬂil’ . ﬂZ)—(k ﬂil’ ~ ﬂZXS ﬂir (5)
WK R e KR RS KXY
Using (5) in equation (2), we get

Mutiply (5) by

PP 1os i R 1A X
i = =t ==
v T AR R e R e +(8)
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The equation (6) is same as the equation (1). This shows that if we make direct transformation
from x to X' we get same law of transformation. This property is called that transformation of
Christoffel's symbols form a group.

4.3 COVARIANT DIFFERENTIATION OF A COVARIANT VECTOR

Let A and K‘ be the components of a covariant vector in coordinate systems x' and X' respectively.
Then

(1)

Differentiating (1) partialy w.r.t. to xi,

W T, KTA
% K " X ©

24P p q

W, I TA B
® K T X

It is not atensor due to presence of the first term on the R.H.S. of equation (2).

Now, repl ace dummy index p by sin the first term on R.H.S. of (2), we have
A 2xs xP A x4
R NP, SN L' -(3)
! !X > X X!

Since we know that from equation (8), page 65,

(2)

P _ Bk il s i
K 'n>—<k}l ip w ™ ipap
2yS
Substituting the value of '[I)‘('—‘HXJ in equation (3), we have

ﬁ_aﬂ“kﬂﬁﬁ' S U2, WA, 1
® SR 0 X W ipap; T ) KR

?_k T, P I | sy, X I A
O WP gh R W

ﬂxp x4 &lA, i s ud
, - Al
T w g e aby



68 Tensors and Their Applications

Tk X xIEA, Asi, s U0
_—- VA ..(4
w ipo ™ T T At @
Now, we introduce the comma notation
- TA ik
Ai=ga AL (5)
Using (5), the equation (4) can be expressed as
- XPxe
A,i = TlT( 1.|_J Ap,q (6)

Itislaw of transformation of a covariant tensor of rank two. Thus, A j isacovariant tensor of
rank two.

So, A,; iscaled covariant derivative of A with respect to X

4.4 COVARIANT DIFFERENTIATION OF A CONTRAVARIANT VECTOR

Let A" and A’ bethe component of contravariant vector in coordinate systems x' and X' respectively.
Then

i

Ki - %AS

T[XS N

or S = _ A
A=

Differentiating it partially w.r.t. to X!, we get

WX &, K TA

x! ' qx' > X’ @
Since from equation (8) on page 65,

LS S 7SR
XX XS ji; x 1’ 1p qb

2yS
substituting the value of ﬂg i"(_ in the equation (1), we get
TA° ko Pl s L TA"
N YA - i_J" j
WG W WP "

IA° IAY xSt kP, qxP I'|1xq| LS ﬂA'
q 601 ek bi YD T A
TAY X ™1l = p ap X
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P _
Interchanging the dummy indicesi and k in the first term on R.H.S. and put %AI = AP weget
X

ﬂASﬂﬁ_ﬂxinP LSRN S
1 % 'ﬂ_fklb W ey W W

Ix? qA° pi, s U0 'ﬂxsaq’ I P—k ‘HA'O

x ﬂXq |p QE)E x ng Ji;
N S K G- T e
—+ A v = _ Ap ..(2
"k )T e S ol @
Now, we introduce the comma notation
A L Y
Al = ..(3
v ﬂX] |k J% ( )
Using (3), the equation (2) can be expressed as
- P qx
A= g (4

Itislaw of transformation of a mixed tensor of rank two. Thus, A , j is amixed tensor of rank
two. A, | iscalled covariant derivative of A" with respect to x/.

4.5 COVARIANT DIFFERENTIATION OF TENSORS

Covariant derivative of a covariant tensor of rank two.

Let A; and 3},- be the components of a covariant tensor of rank two in coordinate system X' and X'
respectively then

— P e
Ai = _Wi _ﬂiJ qu (1)
Differentiating (1) partially w.rt. to X*
1A, _ xR e ﬂqu 1 2xP x99
e S = T = T

A 0 TAG X, X I,
& X KO ORC KRR X R R P

(2

Wog Mﬂx'
®k XX

as (since A,, componentsin x' coordinate)
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1°x" x4
pq ﬂ>—(i Wk 1]7]

°xP ‘Iqu

Tensors and Their Applications
A 1'[2X| ﬂXq
TR )

ﬂquhP‘ﬂx i1 afxP ‘I]xru
delkﬁw i rp R X

Since we know that from equation (8) on page 65.

%X 1 hP'ﬂx | I G9xP X'
WK< i kpR" 1PTRIK K-
g ¢ 1 hf o o 1 b, IR 1 X
PG T eok wo] = ¥ kyA“q_h e A r% o %) %K
KX X Kp o XOIX p ix IxX° X
% x4 1hp__|l U Mﬁﬂ_xr 3)
pq ﬂ>—(iﬂ7k WJ }I %Aﬁj ip rt; ‘I])_(i 'HT(j 'ﬂYk
= X Ixt
as Ay = Aq‘l]?( w by equation (1)
and
xP ﬂzxq D Y
M R - YRR
_ %" & h P‘ﬂx_| Iu‘ﬂxq‘ﬂxru
=% X gk R g
Il B )1 ome e pe
I I L N O o
P 1Pxt P hfo 11 GxP @ K
. VAR y———— A ...(4
M TR R e @
Substituting the value of equations (3) and (4) in equation (2) we get,
B T 1l G bl oY xP X7 X' T_hP— P h
w e ey etk SR
ﬂ_} J A LR Wk .
wikp T fi kT T e Mprp Miargg W WK
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VA 1 hi

Ai,k = ﬂ?- :] kgAh I; kk\;AhJ , then

x? x? X’
%qr ﬂ_l ﬂ_l ﬂ—k
It is law of transformation of a covariant tensor of rank three. Thus AIJ « Isacovariant tensor
of rank three.

So, Ak iscalled covariant derivative of A; w.r.t. to xk

Similarly we define the covariant derivation X< of a tensors aii and A'J by the formula

; Al | ba, ol
i = —+A + A"
A= gt AT S ARAT kﬁ
i ﬂA, Al gl
and A=

i,k__k l||k% Alljk%

In general, we define the covariant deriavative x¥ of a mixed tensor Agb'c by the formula

ij..] . i
ij..| _ﬂAabc+ Jl'll'I ip.d | + 5004
b...c k Aabc' g Aabc|pk% Aabc|pkg

i 1 1 1 pa

pbdak% Aa]pclbkg bpl’Ckg

Note: A\ isalsowrittenas A =N, A.

4.6 RICCI'S THEOREM

The covariant derivative of Kronecker delta and the fundamental tensors g;; and gl is zero
Proof: The covariant derivative x? of Kronecker deltais

: [V R I BV
o= —Ladfo gedi oy
dx X~ J:| k% I%J kt/)
Pioiia
=0+i. y-i. .V
Tikp i kp
1d, Pig_1 i
i O;dl C— i
T =0 g™ AL gl )

Also, consider first the tensor g;; and the covariant derivative of g; is

9;; m i mi
Uik = ij img U

v Ol ol
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ik = ﬂg” lik. i]- [ik.i] as gmjll kaJ =ik, ]
fo;; . o
But ﬂTkJ = ik, j]+[ jkii]
) fioi; Y9y
SO, gu,k = ﬂTkJ- ﬂTk]
ik =0

We can perform asimilar cacuationfor the tensor g

Since we know that g"“gm,- = dij . Similarly taking covariant derivative, we get
gilingmj +gimgmj K= Ijk

BUt gy = Oand d}, =0. So, g =0as|g,,|* O

EXAMPLE 4
Prove that if All is a symmetric tensor then
ﬂg K
«/_‘ﬂx' (A J_) AT J
Solution
Given that A be a symmetric tensor. Then
Al = Al (1)
We know that
W 1! VNI
o= +
Ak = e TAL AT
Put k=j, we get
. ﬂA I| ju ila
= + o (2
A= J% Al i i @)
) ﬂx-i * 'ﬂ(og[) A'g"[ii.h]
J
9 j :7_11"\/1— A", h] since Al is symmetric.
X X
: 1 1A T
RN @

_JE 7
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But

AKij K] = A'kg ."X] ."XIE - ﬂxkjg

AK[ij k] = ngJk M0 , T8 i 195 9

X x! X< 5
0.
Ajk ﬂgk| - AkJ i
ﬂxJ ﬂXk (4)
On Interchanging the dummy indicesj & k.
Ajk% = Ajk% since Al = Al
k ﬂg i k 1-[gl
b AJ ﬂXT - ] T[XJ =0as g” gji (5)
Using (5), equation (4) becomes
919,
ik Alk i
A [Ij k] ™

Put the value of AX[ij, k] in equation (3), we get

A= L _(_)ﬂ A ‘/_ Ak 2K M9k Proved
f x/ 2 I '

EXAMPLE 5

i ka 1 ko i ki i ki

Provethat {. .y -j. .y arecomponentsof atensor of rank threewhere j. .y andj. .y
iip, 1 by Qg 1 b,

are the Christoffel symbols formed from the symmetric tensors &; and ;.

Solution

Since we know that from equation (8), page 65.
2x° % ’[_kP %P Ix4i s U

"R W i 0, ® WP ab

et ki x| P ﬂxq| s 0
kKl Y = j i a4
wpi i W IR
o Pk e +ﬂxp xa | s GOk~
fio) SR W1 apac
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Using this equation, we can write

- e S SR L 6
fi T ewIw W WP apg T

Pk eqne g s U G qx*
by =65—+
HOIp = @RI ) TR TP afyafc

and

Subtracting, we obtain

ki j ki 8 sU 1 s 0UX X

.y [y =49 -1 e

fi j%a §i ]%b gP dp, iP nggﬂx ™ x
Put

si 1su

s
qu

—_—
©
Ko}
o<
QD
1
———
©
Ko}
o<
<3
11

Then above equation can written as

— s TP X X
Al =

X KX
It islaw of transformation of tensor of rank three.
i kg 1 ki
So,{. .y -i. .y arecomponentsof atensor of rank three.
i, 1 ip
EXAMPLE 6

If a specified point, the derivatives of g;; w.r.t. to X< are al zero. Prove that the components of
covariant derivatives at that point are the same as ordinary derivatives.

Solution
Given that
(o}
% = ] " iljlk at PO "'(1)
Let A be tensor.
o IA
Now, we have to prove that A, =—a P,.
B q k 0

Y ;
o= A i \/
A= g TA L, e Aa%j kk; -(2)
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—_ )
Since | g and [ij,.k| both contain terms of the type % and using equation (1) we get
(L X

i ku .

i y=0=[idanp.

Hoip
So, equation (2) becomes

W
Ak = ﬂ7 a R

4.7 GRADIENT, DIVERGENCE AND CURL
(a) Gradient
If f beascalar function of the coordinates, then the gradient of f is denoted by
§if
grad f = §
which is a covariant vector.
(b) Divergence
The divergence of the contravariant vector A’ is defined by
dv A' = K+Ak} v
S ik %
It is also written as A,

The divergence of the covariant vector A is defined by
dv A = g™“A,
EXAMPLE 7

1 1oA)

Prove that div A e I
Joo
Solution:

If A be components of contravariant vector then

o P _TA Y
i A =——+ A% Y

div A' = A ﬂx'+ }kiﬁ
Since

T8 (g Jg)-—L T

kb~ W g
SO,

dva o L LIVO

75
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Sincei is dummy index. Then put i =k, we get

k+1w’k

div Al = «/_ 0

o) o

i 1
dv A' = — ”
Jg
Proved
(c) Curl
Let A be acovariant vector then
1A ik
Aj=
= A Jﬁ
1A ‘|
and A= i
™M I?ﬁ

are covariant tensor.

So, A- A =JA ﬁ: is covariant tensor of second order, which is called curl of A .

1.1

) %
Thus
curl A = Aj- A
Note: curl Aisaskew-symmetrictensor.
Since
A]I |] (A )
EXAMPLE 8
If A; be askew-symmetric tensor of rank two. Show that
1A, IA, TA
+ Ay A = : i
A] k A< J ﬂXk ﬂXI ﬂXJ
Solution
Since we know that
ﬂ'% ila ,11la
Aj,k- AII' k{) A”:Jk[\;
ﬂA ihy il
A =
ki Akl J I% ]II ] kﬁ
A i I il

A(i,j :‘"7' |k J[V) Ak||| J[V)
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Adding these, we get

_ ‘ﬂA, ﬂAkl & '; i1 4o
Akt A AL = e Xi ﬂXJ gAJAI I(KV) ”Ik k/);a
2 11lu Ailuo aeﬂ|lu+A"|IUG
il . i
§; [ IVJ llkgﬂgll' JIVJ kll'fvm
(Y] ila_11a
Smce | kg is symmetrici.e., | g %k g etc.
ﬂA‘ 'k ﬂAkl | l;l
= " 'nxji T LA AY
[ |
':[ p(Ai‘*Al)'JI[ _y(Akl"‘Ak)
tk Jb i ip
Since Aj; isskew-symmetric. Then A; =- A P A; + Ay =0. Similarly,
A +A =0and A +A =0
So,
Akt A tAG = ﬂka + ﬂxjik + ﬂ)j;

THEOREM 4.5 A necessary and sufficient condition that the curl of a vector field vanishes is that
the vector field be gradient.

Proof: Suppose that the curl of avector A vanish so that
CUI"A = A,j - Aj,i =0 (1)

To provethat A =Nf, f isscaar.
Since from (1),

AJ ]I _0
o mow
oo
w_o"
P wx
IA 4 = Bd j
i x > = "o
ﬂ ) .
b dA = —(Aldx!
A ﬂXI( )
Integrating it we get
- O (Adx)
A = O\
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N i
— A dx’
ﬂX' O 1

ﬂf hY j
A= & where f = A dx’

or A = Kf.

Conversely suppose that a vector A is such that
A = Nf, f isscaar.

Toprovecurl A =0

Now,
qe —
= Nf =—
A P
L
wx o XX
and ﬁ = i
™ X
Ia WA
= ™ X
A WA
I = P A -_— =
SO, cur A‘T A,] 1l ﬂXJ 1-|»X|
So, curlA =0

Tensors and Their Applications

Proved.

THEOREM 46 Letf andy bescalar functionsof coordinatesx'. Let A be an arbitrary vector then

(i) div(fA) =f divA+ AXf
(i) RN(fy)=fNy +yNf
(i) N2(fy)=fN?% +yRN2y +2Nf xNy
(iv) div (y Nf) =y N?f +Nf 5Ny
Proof: (i) Since we know that

1 1/oA)
Jgo

div A" =

replace Al by fA', we get

div(fA) = iﬂ@
Jo W

(1)
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- ieé—ﬂ(JEiA )f +\/6Ai xi.a
Jog ™ §

_ ﬂ_fixAi_'_fiﬂ(«/aiA)
i Joo ax

= Nf xA' +f div Al

Thus
div(f A)
(i) By definition of gradient,

Rif xA+f div A (2)

- f
Nt y) %

f ﬂ—y +y E

x °

Thus N(fy) = fRy +y Kif ..(3)
(iii) Taking divergence of both sides in equation (3), we get

dv (Nfy) = div [fRy +yf]

N2(fy) = div (fNy)+ div (y Nf)
= Nf Ny +f div (Ny) + Ry xNf +y div (Nf)
N2(fy) = fdiv (Ny) +ydiv (Nf) +2Kf >Ny

Thus,
N2(fy) = fN%y +yN2f +2Nf Ny
(iv) Replace A by Ny in equation (3), we get
div (FNy) = Nf sy +f div (Ny)
dv (fNy) = Nf Ny +f N2y

THEOREM 4.7 Let A bea covariant vector and f a scalar function. Then
(i) curl (fA) =A" Nf +f curlA
(i) curl (y Nf)=Nf "~ Ny
Proof: (i) Let A be acovariant vector then
cul A=curlA=A;- A
Replacing A by fA , we get
curl(fA) = (A).i- fA)i
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= f,JA +fA"’j - f'i A] - fAj,i
= (Af,j- AR (A - Aj)
A" Rf +fcurl A

SO!
curl (fA)

A" Nf +fcurlA (D
(i) Replacing A by Ny in equation (1), we get
curl (FNy) = feurl (Ny) +Ry ~ Nf
Interchange of f and Y , we get
curl (y Nf) = ycurl (Nf)+Nf ~ Ry.
Since curl (Nf)=0.
So,
curl(y Nf) = Nf " Ny. Proved.

4.8 THE LAPLACIAN OPERATOR
The operator N? is called Laplacian operator read as "del square'.

THEOREM 4.8 If f isascalar function of coordinates x' then
1 e ffo

N2f = gg
Jg <& X o
Proof: Since
N?f = div gradf ..(1)
and
gradf = i ,
ﬂxr

which is covariant vector.

But we know that any contravariant vector A* associated with A (covariant vector) is
A“ = g A (Sec Art. 3.4, Pg 43)

Now, the contravariant vector A* associated with (Covariant vector) is

Xr
A Z gk T
g P
Since
1 A*
div A' = | Ja (Sec Ex. 7, Pg 75)

Joo W
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So, from (1)
x kr ﬂf 0
) 'ﬂ@\/ag —F
Rz = div &* ﬂfr 0- 1 e o ” x o Proved.
& o Jg WX
EXAMPLE 9
Show that, in the cylindrical coordinates,
. 2 2
fay - LI@Ive, 11V | 1
rfre fre r°M9° 9z
by Tensor method
Solution
The cylindrical coordinates are (r,q, z). If Visascalar function of (r,q, 2).
Now,
Nav = N>Nv
Since
NV = |ﬂ+ Jﬂ+ kﬂ
1r p|[o] {1z
Let
v 1w v
= — :_l =— 1
A fir & fiq 1z 4

Then NV =iAj + jA j +kAK, since v iscovariant tensor. The metricin cylindrical coordinates

ds? = dr? +r2dg? + dz?

here, x' =r, xX* =q, x*=z.
Since ds” =g dx'dx’

911 =1, g, =r?% ggp=1
and others are zero.

91 G G| L OO
9:|gij|:921 Uz Oo3|=[0 r* O/ =r
O3 O3 G| 00 1

2

49 =r (SeePg. 34, Example 1)
Now,

dv (RV) = div A _ 1 1h/on)

1
Jo o
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1 16/gA) | 1 1GgA) | 14/gA’)
Yo g W 'S

A 1 2 3\ ()
LE0A) | 10AY) | 10A%)

V) = (2
dv (NWV) rg fr 19 1z 2
We can write
A" = g"9A, (Associated tensor)
Ak - gklﬂ+gk2A2+gk3A3
Put k=1
Al - gllﬂ+gle2+gl3Ag
Al = gllAl as 912291320
Similarly,
A2 - 922A2
A3 — 933%
and
.1 Cofactorof g, ing _r?
g = 9 _r_2_1
g% = Cofactorof g,,ing -1
= 3 =
.3 Cofactorof g,,ing  r?
g = g =?=1 (See. Pg. 34, Ex.1)
SO,
Al = gll,/.\:L =A
1
A2 = %A, :?Az
A= gPA= A

or A=A Az:rizAz. A=A,

from (1), we get

from (2),
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So,
' 1éTa2Vo, Tee L1V, T aaVa
2y = div Al ==& — < +—¢f ——F+— ¢f —7
N3V = & fg'"_fgr o ‘ITOlgrr2 dg ‘ﬂzgr 1z )
. 1éTaxVo, TadVo, Tee VA
= —A [—++ —C——++—CI—]
WOV = T g Taer lao 28 9z o
_ 1@V 1TV, TV
réﬂrg e rig° 7 q
o 19a29Vve 17V 1oV
div (NV) = —Cr—=+—= +
VW) = T S e r’ q°  92°
. 172Ve 11V TV
N2V :_lgrﬂ;+_2ﬂ_ T[_

— EXERCISES —

1. Provethat the expressions are tensors

1A jag,  jaij
@ Al =—F-1 yA 1. yAa
U dip Y i
W taiy jalia jain 1T lga
©) A, =T|]' i %Aajk'}j %Aiak' Ik %A}ja *la %A;k
2. Provethat
;1A o) i ku

M=
ijk ; 11 kY
3. If Al |saskew-wmmetr|ctensorshowthatTW(JEA ) isatensor.
g9

4. Provethat the necessary and sufficient condition that all the Christoffel symbolsvanishat apointis
that g;; are constant.

5. Evaluate the Christoffel symbolsin cylindrical coordinates.
6. Definecovariant differentiation of atensor w.r. to thefundamental tensor g;. Show that the covariant
differentiation of sums and products of tensors obey the same result as ordinary differentiation.

7. Let contravariant and covariant components of the same vector A be A' and A; respectively then
prove that

div A = div A
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10.

11

Tensors and Their Applications

If A; isthecurl of acovariant vector. Prove that
Ajk T Ajki *Aq,; =0
To prove that u>Nu = —ucurl u if u avector of constant magnitude.

A necessary and sufficient condition that the covariant derivative vector be symmetric is that the
vector must be gradient.

Show that, in spherical coordinates

1ﬂa—:'2ﬂV0 1 ﬂéaeénqﬂ% 1 T
‘ITre ﬂrg r?sinqg Tgé

R = Tqg r2sn’q 2

by tensor method.



CHAPTER -5

RIEMANN-CHRISTOFFEL TENSOR

5.1 RIEMANN-CHRISTOFFEL TENSOR

If A is acovariant tensor then the covariant x) derivative of A, is given by

'ﬂA i | au
A= g L (1)

Differentiating covariantly the equation (1) w.r. to x* we get

_l%jav 0 1av&%1Aa_1 vabe
< g lelv) p 1| klv)gﬂx' Ta j%

TaPaeﬂA 19PA9
TI kgg‘ﬂx fi k% -
it

A i JpAa 16W11Aa 16'911Aa
x“qx’ x 1| kb x* TI kb x!

A,jk =

JEprb R 18 kA papioy

y!
TI khta jb T] kb‘ﬂx TJ ka' ab
Interchanging j and k in equation (2), we get

(2)

|au

%A _||ki§ |au11Aa |au1]Aa
ix! ‘Hx x! I| kgﬂxJ ‘I J%‘nx

A,kj
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[aprbp, 1apIa 1 apt of

]
fi JbTa kb Tk lb‘ﬂx Tk ]bTI ab -G
Subtract equation (3) from (2), we get
."1 afl ﬂl au
i i1F bl E b |
A,ik'A,ka}ay} v, - Lby, 1a51 PAb —E'II(Aa
Lo ;
fi khta ip x* fi ipfa kb x

Interchanging of a and b in thefirst and third term of above equation, we get

é . . i
etaf jpai i
ey iy . b b u
A A_éflkb‘ ti b1 Wa‘” pia ta (4)
WA= SR TRE bib b 1i ibib k%
é
A Ay = AR, ...(5)
where
L2 o
1 1
L ik }IJpleIa“lb”a”
I%jk - ix! i xX Yl ] ~(0)
T' kp1b Jb fi JbTb kb

Since A; is an arbitrary covariant tensor of rank one and difference of two tensors A; j,— A ,is

acovariant tensor of rank three. Hence it follows from quotient law that Rajk isamixed tensor of rank
four. The tensor R, is called Riemann Christoffel tensor or Curvature tensor for the metric g; jdxi dx’ .

The symbol F{“jk is called Riemann’s symbol of second kind.
Now, if the left hand side of equation (4) isto vanish i.e., if the order of covariant differentiation
isto be immaterial then
Rajk =0
Since A, is arbitrary. In generl R%, * 0, so that the order of covariant differentiation is not
immaterial, It isclear from the equation (4) that “a necessary and sufficient condition for the validity of
inversion of the order of covariant differentiation is that the tensor R’ vanishes identically.

Remark
The tensor
l 1 A VI R
W W | [takp ta 1p
Rlldz}iilj‘:,i[,] laid jai -(7)
kb Tl [ kg 10
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THEOREM 5.1 Curvature tensor Rajk isanti symmetric w.r.t. indicesj and k.
Proof: We know that from (7) curvature tensor

1 1 |1 apy ad
. ™ X %b jf, %b k%
e panl o g o
"' J% Ti Kp fiip ti kp
1 ag jaf
a_'ikii Jﬁtamb@iambﬂ
Rk = Loyl oy Loyl y
x’ ‘HX Tb ipti kp 1b kpfi jp
Interchanging j and k, we get
jaig glau
e Wiy i s agiby | agi b
ik X« x! b kt\;{l jk/) }b jk/)}l kk/)
€itafi tai
efi kp_ fi jp,i af} bP i a@ib fio
= - g ] - K | | y ol Y.
e fix fix tb va)fl k[v) ib kﬁtl jg
g
Rij :_Rajk

So, R antisymmetric w.r.t. indicesj and k.
Theorem 5.2 To prove that
Rajk + Rjaki + RI?ij =0

Proof: Since we know that

| |feauiad
T 1b ]gfb k[\;
AR
TR |t ip i kb

ooy Ty

g, < kb fi b} agibg jbpjag
A AW R PR B T
o jpti kp 11 iptb kp

(1)
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Similarly
1 ajl glau
e hiih ik ayl by | byl ay
w ix* % ib k%%l '% ! k%lb%
and
afi ja
A
. dkb tkip tafii by i b agp
Rij = X B %) trooylooy-IloylL oy
fbiptk jp Tk iptb Jp

On adding (1), (2) and (3), we get
Riv+ R+ R =0
Thisis caled cyclic property.

5.2 RICCI TENSOR

(2)

(3

The curvature tensor Rajk can be contracted in three ways with respect to theindex a and any one of
its lower indices

a
Rk Riw Ria

Now, from equation (7), art. 5.1,

R:jk

_ Plogy/g 12 log4/g

X g xqx!

1 ad_flogyg
Since%a kg—TQ/— and a and b arefreeindices Rj;, = 0.

Also for R, .

Write R; for R?

ija
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:, U:, U
R = R, = x! ‘ﬂxa"+Tb j% Tb a%;

R, = iha Jp,l agibg 1 ajl by
j X o 1b ipti ap {b apii Y
2 ﬂ}-a-u
) x1 % %2 ib jyii a% ib a%h JE
Interchanging the indices i and j we get
laig o aj
1t | A o
R =12 THilp1agib g iagiby
) a2
R - Tlooyg Thidp,ibyiayiagiby o
ik ﬂx'ﬂxJ ﬂ'xa || a%|b J% |b a%“ J%
(Since a and b are dummy indicesin third term).
Comparing (1) and (2), we get
Rj = Rji
Thus R; isasymmetric Tensor and is called Ricci Tensor.
For R :
Rix = - Ria =R
5.3 COVARIANT RIEMANN-CHRISTOFFEL TENSOR
The associated tensor
Rikw = 0 R?m (1)

is known as the covariant Riemann-Christoffel tensor or the Riemann-Christoffel tensor of the first
kind.

Expression for Rjq
R = giaR?kl
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g @Tiag Tiag,ibuia g 1 biiaio
_g.a‘%ﬂxk“ |t\g ﬂx'%] k%+}j %{b K {J k%%b I%Q ...(2
Now,
g Tiad e 1apu iail
A SN SO N Rl e
‘ﬂ[]l |] | a 019,
™ AJ %ﬂx ..(3)
Similarly,
Tiag lik.i] | aifg,

Jia ™ |J kf\; T |J kfv3 ™ -(4)
g3ytheformula udv d_uvﬂﬂ
€ dx dx dxpg

Using (3) and (4) in equation (2), we get
RIVIECI O AR VLI U B A P Sl A L A LS
Rij = NG Ygok ~ y ia | Y- Yal . gy
1] IbﬂX X TJ kb 118 i 'bTb Kp fi kptb Ip
1l ﬂ[]kv'] 1a 0719, 1 af9. rg b biia i g ! biiaj
R R Tl 9 gl Y
R = L. el 42 Snaelosl)- | il +lak]

| i b

i [bkl] -~ ylbli]

Hp g

ﬂ[]l |] ﬂ[]kl] | a
= [ ik,
Rik = K W Ij kg' a] IJ IZ‘ a] ...(5)
It is also written as
T 1 I al 1 al
Ry = | B E [+ kp 1! .(6)
likil [iLi]] |lik.a] [ila]
But we know that
[jl,l] - 13519n ﬂgu _ ﬂgjllo (7)

2%11 N O
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1279y +‘ng; _Jou 0
28X I X g
Using (7) and (8), equation (5) becomes

and [ik.i] = ..(8)

1.9 g, 95 990 17 &g , T9i  F9kd

Rijw = 29xk Sqxi qx! x P 29 g Xk ' E

i a . ia
+i  dil,al- . vik,a
%Jkg ]%Jlg ]

180, Tox To 10 8,
R = 2g‘ﬂxjﬂxk o K ‘Hxi‘nxk;

ta 1 1al
i kﬁ[”’a] i Ig['k,a] (9)

Since

, batu_ af
92°[jk,b] and i | va)-ga [i1.b]

—_—
ey
o
I

Egeﬂzgn + ﬂzgjk ) 19, ) ﬂz_gjl 9
ZSﬂxjﬂxk X x X ‘nx"nx'g

Rjkl =

+g*°[jk,b]fil,a]- g**[ji.b]fik.a] ...(10)
Thisis expression for Rjy.
The equation (9) can also be written as
lgeﬂzgn + 1ngjk . 1% G ) ﬂzgil 9
Rin = 2¢O 10T T
ia fifby iafpibi
A R AT R AR
t1kptilp 11 Ipti kp

5.4 PROPERTIES OF RIEMANN-CHRISTOFFEL TENSORS OF FIRST KIND Ry

() Rjw=-Rju
(i) Rjik =-Rju
(i) Raij = Rju

(iv) Ry * R * Ry =0
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Proof: We know that from equation (9), Pg. 91.
Ry = 189ﬂ?gn r ng g _ ﬂ?g“ 0
J ZEﬂxJﬂx wax  12x ﬂx'ﬂxka
I a .
+i il,a ik,a
| dlal | el o
(i) Interchanging of i and j in (1), we get
1&1-[ g ﬂzg.k ﬂzgjk ﬂ gl 9 l u .
P = —IX_ - - - - [ K,
RJ|k| Zgﬂx ﬂX ﬂXJﬂXI ﬂX'ﬂXI ﬂXJﬂXk KR % E[J a] I%[J a]
2 2 2 n
- 28Te  To T9) T 2.1 by |® fial
28ﬂx ™ WX X fi fi Ip
Rjikl = - Rjkl
or Rjkl = - Rjikl
(ii) Interchange| and k in equation (1) and Proceed asin (i)
(iii) Interchangei and k in (1), we get
2q2 2 .. R .
R = 1¢57°g, + 1° ;i ﬂ_gki ) 1° g]l f"‘l . _'kl,a]- :a 'ki,a]
) ZS‘HX ™ N KK K ™o i Tl
Now interchange j and |, we get
= 1E°9 , To,  To, T 91 @ i, a] 2 Ui al
! 2311x ™ T ﬂx" ] % i
For
zkja]_iap abt bp
|| b ik ip
— I b [,]gab\! au
“ho® iy
i b .
= vlli,b
Tk Jﬁ[ |
1 adr,. i adr.
T /i ||,b = RY ||,a
q ig ] }kjg[ )
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SO:

_ 18T | Tg,  fPg,  Tu, 9,1 a iy ]
2 XY XX XX 1k k,)

t\;[kl a]

Raij = Ry, from (1)

from equation (1)
R ) igﬂzg” +ﬂzgjk ] ﬂzgjk ) ﬂ g” T"’i
T2 X X XS T

a il a] %1] I%[lk a]

181°9; , Toe _ Tgy 196 01
i = +—- - -+' |
R 2gﬂx LS P PTR S "S PR e 1k Igl a] 1k g[' 2l

181°g,, ﬂzg” ~TPg,  1%g, 0 2,1
ZS‘ﬂx‘ﬂxJ ‘ﬂxi‘ﬂxk X X8 ‘ﬂxﬂx" ]

Rik = |k,a]- ;ilakg[ij,a]

On adding these equations, we get
Rja + Rigj + Rije = 0
This property of R;q iscalled cyclic property.
Theorem 5.3 Show that the number of not necessarily independent components of curvature tensor

does not exceed 1y n*- 1)

12
Or
Show that number of distinct non-vanishing components of curvature tensor does not exceed
1 2, 2
—n"(n" -1
B ( ).

Proof: The distinct non-vanishing components of Ry of three types.
(i) Symbolswith two distinctindicesi.e., R;;; . Inthiscase total number of distinct non-vanishing
1
components of Ry are En(n -1,
(if) Symbols with three distinct indices i.e., R;ix. In this case, total number of distinct non-
1
vanishing components R;y are En(n -1 (n- 2).
(iii) Symbols Rj with four distinct indices. In this case, total number of distinct non-vanishing

nz(n2 -1

components of Ry is
p Rm 12
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Hence the number of distinct non-vanishing components of the curvature tensor R; does not
1 2,2
—n"(n"-1
exceed > ( ).
Remark

When Ry isof theform R, i.e., al indices are same
In this case, R;; has no components.

5.5 BIANCHI IDENTITY
It states that
R;kl,m + Rijlmk + R}mk,l =0
and  Ryum * Ryjimk + Ryjmky =0
Proof: Introducing geodesic coordinate! in which Christoffel symbols are constant with thepole at B, .
Since we know that

T 1 piaiig
: ™" X |mkﬁ|mlﬁ
Rik'=IIUIIu+[mg!mg

kbt it Pikp il

g i
R _M_M‘[Iwmu imaiig
ik~

G ' ,mkﬁ, j|% ,jk?gI mlg

1]zl 110
jkl,m ﬂX ﬂX ﬂX ﬂX

2

Ly mg |
Sincei . yii. etc. are constant at pole.
TikpTilp P

So, their derivatives are zero.

I B B
X ™" |fa I% ta m
. . +
Rp=f BT 18 | agt ag
Ol AR B
t1ip 1) M Hll\; i m

1 Detailsof geodesic coordinategivenin chapter curvaturein curve. Geodesic.
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g
i y . : i}
_ i nlﬁwmavt'vtav
™ X" e fa mbti It
Ta bt mb fa mhti Ip
i A. j !
Riimk = k | k
X X ﬂxﬂx
and
Rijmk=
Y ﬂ‘[ iU
| i .. N S
ix Ix i b mg,j kg ib kgljmg
1 1u i 10
ﬂZ v 1'[2 v’
R = %Jkﬁ_ i
jm

™Mx X
On adding (1), (2) and (3), we get
Rijkl,m + Ri]-Imk + R}mky, =0
Multiplying Riy.m by gy i-€.,
i Riik"m = Rijkm

Then equation (4) becomes
Ryjkim + Ryjimk + Ryjmky =0

95

(2)

(3

(4)

..(5)

Since every term of equation (4) and (5) isatensor. So, equation (4) and (5) are tensor equations

and therefore hold in every coordinate system. Further, P, isan arbitrary point of V, . Thusthere hold

throughout V, . Hence equation (4) or (5) is called Bianchi identity.

5.6 EINSTEIN TENSOR

T
Theorem 5.4 To provethetensor R; - Ede is divergence free.
Proof: We know that from equation (5)
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Ruki,m + Rojimk + Rejmi) =0
Multiply it by g™g!¥, we get
ghlgijhjkl,m+ghlgijhjlm,k+gh|gijhjmk,I =0
gijjk,m + ghlgjk (- Rm‘mLk)"“ElhI gjk(' Ripmki1) = 0
Since Ryim =- Ryjm & Ryjmk =~ Rjnmk
gijjk,m - gijjm,k - ghl Rumi =0
Rm- R, - R, =0Since g"R, =R
Rm-RY, - RS =0

Rm-2R{, =0
er(nk '%R’m =0

1
Ri - 5dnRk =0 since Rm=dRk

1
Ry - Edlr(nR is divergence free.
k 1 kp_ ~k Ri—ldiR' .
The tensor an_EdmR_Gm or K 59 is known as Einstein Tensor..

5.7 RIEMANN CURVATURE OF A V,
Consider two unit vectors p' and ¢ at a point Py of V. These vectors at P, determine a pencil of
directions deferred by t' = ap' + bg'. a and b being parameters. One and only one geodesic will pass

through P, in the direction of p'. Similarly one and only one geodesic will pass through in the direction
d'. These two geodesics through P, determined by the orientation of the unit vectorsp' and . Let this
surface is denoted by S.

The Gaussian curvature of Sat P is defined to be the Riemannian Curvature of V,, at R, for the
orientation determined by p' and g

Let the coordinates y' of V., are Riemannian coordinates with origin at P,. The equation of
surfaces Sin given by

= (p'a+qb)s (D
= p'ut+q'u? ...(2)
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where as=u' andbs=u?, three parameters namely a, b, s can be reduced to two parameters
u' and u?. Here u' and u? are coordinates of any current point on S.

Let ds® = babduadub be the metric for the surface S. where

bab = glj ﬂUaF (a,b:1, 2)
1 ko 1940 : : : i a
Let | i % and { a bg be the Christoffel symbols corresponding to the coordinatesy' and u® .
| |

Let Ripg and Ryiji be curvature tensor corresponding to the metrices b,;, dudu® and gdy'dy’ .
Since the Greek letters a,b,g,d take values 1,2 and so that the number of independent non-

vanishing components of R, isl—l2 n’(n®-1) for n=2 i.e, they are %xzz (22 - 1):1. Let us

transform the coordinate system u? to u® and suppose that the corresponding value of ﬁmz are

E'ZIZ'
Then
& -R w? u® fu® qu
R212 = Mabe ué¢ ué ué ueé
_R Tu' Tu® fu? u R u? u® fu® que
TP qué U@ qué qué % qué qué qué ueé
_R Tu' fu? fu® fu® & fu? fu’ fu? fu’
T2 qué quf ué ué P qué ué qué ué
= ﬂul ﬂu2 ﬂul ﬂu2 +§1 ﬂul ﬂuz ﬂUZ ﬂul
= Rar u¢ ué ué ueé 22Lqué qué qué ué
= fu® fu' ' fu? ‘R u? b u? ut
200 e u€ U 2 qué ué Tué Tué
€q 1 .2 1 @2 €2 2 q il 32U
R, alu fu” fu” fu” fu” fu¢ ofu” fu O 4
= mg‘ﬂué e  qut qué qué Jué g'ﬂué uéy H
ut U
= ﬁ1212\]2 where J = fué  fu¢ = ﬂ_lJJ
2 qu?| Mu
S0, qué¢ qué¢

ﬁ1(12\12 = ﬁlzlz‘]2 -(3)
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Agan
u? fue
b¢ =b, ————
B = Dy Mue que
ue| |fu?
bg.| = |o, -
P |gb| " e | [ue
or bt = pJ? ..(4)

from (3) and (4), we get

% _ %: K (say) ..(5)

This shows that the quantity K is an invariant for transformation of coordinates. The invariant K
is defined to be the Guasian curvature of S. Hence K is the Riemannian Curvature of Sat R, .

Since Riemannian Coordinates y' with the origin a P, . We have as geodesic coordinates with the

poleat R, .
Therefore
i ki i gu
(. v, i g =0a R
7l Jgg ia bf\;b
Then
2 ffi.h,  1lik.n]. 6
Rhijkzé' kg+ ,—giatPO'
% W o
and

_ @ flbgal, , fbd.al,o
Row =8 T e g2 R

o e, g2,
RiZlZ = ﬂUZ ﬂul

a R ...(6)
from (5) we get

1 1[0, |, 122 1,0
K = bg ﬂuz + ﬂul B (7)

Thisis required expression for Riemannian curvature at P .

5.8 FORMULA FOR RIEMANNIAN CURVATURE IN THE TERMS OF COVARIANT
CURVATURE TENSOR OF V,
i ki 19U . . . . as b
Let { | j, and ia k,) be the Christoffel symbols of second kind relative to the metrices b,,du”du
T g 1
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and g;dy'dy’ respectively. We have
i
'ITy Ty Wi, ]

abd, = gm g (8
w ‘ﬂyJ Ty
211, = S g i K]
= o p’p'fij K, using (2)
Now,
12,4, 1K, ¢ p'p*
> qu?
B J pK ﬂ[ijvk]g M
- ﬂyh ﬂu2
e 1 K]
- i ]pkqh g
ap o
Interchanging h and k, we get
121 1 oo i
2 b~ g'gp’ p“—ﬂyk 2 .(9)
Similarly,
M22 4, o M|
[.”ul L = qq“p’ p“Tkg’ .(10)
Using (9) and (10), equation (6) becomes
bk ﬂ[ij’h]g ‘”[ik’h]gl\,J
Ry, = P P’ g Iy * Ty Hatpo
Ron = P'd'p'g Ry at Py (1)
Since
gV
bap = P
_ g '"_y’_ pipl
bll - g” ﬂu ﬂu g”p p
b, = ghjp p
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Similarly

b, = g;9'q’ =g,4'd"

b, = g;p'a’ =g;p'd =gy p"d"

% D] e b
= - 22 = M12M2
ol I '
b= phqiquk[ghigik' gijghk] ..(12)
Dividing (11) and (12), we get
§1212 — phqiquhijk

b p'd quk(gikghj - 0ij9n) +(13)

Thisisformulafor Riemannian Curvature of V, at P, determined by the orientation of Unit vectors p'
and g a P.

5.9 SCHUR’S THEOREM

If at each point, the Riemannian curvature of a space is independent of the orientation choosen then it
is constant throughout the space.

Proof: If K isthe Riemannian curvature of V. a P for the orientation determined by unit vectors p'
and g' then it is given by

: phqi quthijk 1
B (9 - gijghk)phqi p'g" )
Let K be independent of the orientation choosen. Then equation (1) becomes
_ Riiji
ik Onj = 99k
Riijk = K(9ikOn - 9ij9n) ..(2)

We have to prove that K is constant throughout the space V, .
If N =2, the orientation is the same at every point. So, consider the case of V, when n>2.
Since g;; are constants with respect to covariant differentation, therefore covariant differentation
of (2) gives
Rujk) = (9ikOnj - 9ij9n) K -(3)

where K, is the partial derivative of K.

Taking the sum of (3) and two similar equations obtained by cyclic permutation of the suffices,
j, kandl.
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(O Gik = G Gii) K H(GneTin = G 9K +(9nGij - 9r 9 DKok = Ruijer ¥ Raiwaj + Ragy,..(4)
Here n > 2 therefore three or more distinct values to indices j, k, m can be given .
Multiplying (4) by g" and using g"g, =d/, weget
(g - dihghk)k,l"‘(gndkj - gikdlj)K’j"'(dihghI - ng K, =0

or,

(n- DgyK,; +0+(1- nN)g; K, =0for dij =0t j

giK, - 9Ky =0
Multiplying by g'™* and using

g"dy = n.g,g" =dj,

we get
nK, - dK,, =0or (n- DK, =0
or K, =0as (n- DK, =0
1K
or @ =0.

integrating it, we get K = congtant. This provesthat the partia derivatives of K w.r.t. to Xsareal zero.
Consequently K is constant at P. But P is an arbitrary point of V,, . Hence K is constant throughout V,, .

5.10 MEAN CURVATURE

The sum of mean curvatures of a V,, for amutually orthogonal directions at a point, isindependent of
the ennuple choosen. Obtain the value of this sum.
Or

Prove that the mean curvature (or Riccian Curvature) in the direction e at apoint of a V, isthe
sum of n — 1 Riemmanian curvatures along the direction pairs consisting of the directionand n — 1
other directions forming with this directions an orthogonal frame.
Proof: Let eL| be the components of unit vector in agiven direction at apointP of aV, . Let eL| bethe
components of unit vector forming an orthogonal ennuple.

Let the Riemannian curvature at P of V, for the orientation determined by I} and e, (h * k) be
denoted by K, and given by

pars

ehplegleLlelfl(g pr qqs -9 psgqr )

PO TS
ehlekll kII R

K =

Pad ol oS
€m€k1€rei Rpgrs

= (fjer g or) (€€ 9as) - (e 9ps) (€€1Tqr) (1)
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Since unit vectors e, 1 |, are orthogonal. Therefore
ehp|etr1|g pr = 1

and er?leﬁ]g ps = 0 etc.
Using these in equation (1), then equation (1) becomes

Padal S
_ Sn8CriqRears

Kk . .
1"1-0°0
— ePelel @S
K = €118 €€k Rpars (2
o 0
Pedgal @S
a Kn a eh|ek|eh|ek|quFS
k=1 k=1
n
3 Ky =M
Put a Ku =My Then
k=1
3
— ePef @S
Mh - eh|eh|a ek|ek|qurs
k=1
— ePel g9
= €€y 9 "Rpgrs
— _ ePal g%
= - &y €nJ Ryprs
M, = - efefR 3
h — h|=h| " pr -(3)

This shows that M, isindependent of (n — 1) orthogonal direction choosen to complete an orthogonal

ennuple. Here M, is defined as mean curvature or Riccian curvature of V, for the direction el .
Summing the equation (1) from h =1 to h =n, we get

n
[«
haz.th =" ehp|e:1|Rpr
= - gerpr
=R
Y
or ha:'th =- g”"R, ==-R

This proves that the sum of mean curvatures for n mutual orthogonal directions is independent of the
directions chosen to complete an orthogonal ennuple and has the value - R
5.11 RICCI'S PRINCIPAL DIRECTIONS

Let e‘hl is not a unit vector and the mean curvature M, isgiven by

ial
_ R €h(Ch

| o
9ij €n |
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[} (R +thi,—)eL|erf| =0
Differentiating it w.r. to €|, we get

™ i .
Telj1|hgjk eh]|erl:| + Z(Rj + Mg ij)erJ1| =0 (1)
For maximum and minimum value of M, .

™M,

ﬂe|h| -
Then eguation (1) becomes
(R; + Mgij)eri1| =0
These are called Ricci's Principal direction of the space as they are principa directions of Ricci
tensor R;.

5.12 EINSTEIN SPACE

A space, which is homogeneous relative to the Ricci tensor R; is called Einstein space.
If space is homogeneous then we have

Ri = | gij (1)
Inner multiplication by g, we get

R=Insince R;g” =R and g"g; =n

1
b | = ER
from (1)
R
R; = ngj

R
Hence a space is an Einstein space if R; =ngj at every point of the space.

Theorem 5.5 To show that a space of constant Curvature is an Einstein space.
Proof: Let the Riemannian curvature K at P of V. for the orientation determined by p' and ¢, is
given by
p"q' quthijk
B phql p]qk(gikghj - 0ij9n)

Since K is constant and independent of the orientaion.

K
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Riijk
K= 77 A7 _~ A )
(99 - 95 9ri)
Rujk = K(Qikn - 9ij9nk)
Multiplying by g™
thk(gikghj - 0ijOn) = ghthijk
K(dihghj - ngij) =R
Since g™g,, =df; g™g, =n ad g™ Ry =R,
K(gj - ng;) = R;
K- n)gij = R;
Multiplying by g, we get

Kn- n) =Ras g"R; =R
from (1) & (2)

R
X

n(l- n)

|
—~

e

>
=
(=]

Rj_
p R =

Tensors and Their Applications

(1)
(2

1
=—Rg;
n

This is necessary and sufficient condition for the space V, to be Einstein space.

5.13 WEYL TENSOR OR PROJECTIVE CURVATURE TENSOR

Weyl Tensor denoted as Wi« and defined by

1
Whik = Ruijk +ﬁ(gkia1j - On0;j)

Theorem 5.6 A necessary and sufficient condition for a Riemannian V_(n> 3) to be of constant

curvature to that the Weyl tensor vanishes identically throughout V, .

Proof: Necessary Condition:

Let K be Riemannian Curvature of V, . Let K= constant.

We have to prove that W =0
Since we know that

p"q' quthijk

K= P i
(9hi9ik - 9ij9nk) phq quk

= constant
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Since K be independent of the orientation determined by the vector p' and q' .
Then
Ry
Kz —— 2 (1)
O Gik = 99k

Multiplying by g™, we get

ghthijk = gth(ghjgik - 0ij9n)

Rj = K(d?gik - ngjj)

Rj = K- n)g; ..(2)
Multiplying by g" again, we get

gile = K(- n)gijgij

R= K(- n)n (3)

Putting the value of K from (3) in (2), we get
R
R; = ngj ..(4)

The eguation (3) shows that R is constant since K is constant.
Now, the Wtensor is given by

Whijk = Ry + [gIthj 9 9;;]

from (5), we get

Whijk = Ruijk +ﬁ§gik%ghj - ghkFRgijg
= Rijjk + nd.- )[glkghj Or ;]
= R + R "RL by. egn. (1)
n(L- n)
Whije = Ry + K Rh”k, by equation (3)
Whijk = 2Ruijk

Since K is constant. The equation (5) shows that W, =0.
This proves necessary condition.
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Sufficient Condition
Let W, = 0. Then we have to prove that K is constant.
1
p unk +ﬁ[githj - ghkR,’] =0
Multiplying by g™, we get
1
Ri +ﬁ[ghkgithj - ghkghkRj] =0
1
R+ o ald Ry - Ri1 =0
Ri
. +——(1-n) =
Rit ;- =0
b 2RIJ =0
p Rj =0
Since R; =0p g™Ryj =0.
b ghk:00r Rhijkzo
If Rijx =0, then clearly K= 0. So, K is constant.
If g"™ =0 then
_ Rhijkphqi quk
(9n9ik - 0g;)) phql quk
K = Rhijkphqi quk _ Rhijkphqi qu
(0" P’y (d'a“gy) p’ g’

k

K= Ryp"d p'q" since p? =1,g? =
K= constant as R; =0
This proves sufficient condition.
EXAMPLE 1

For a V, referred to an orthogonal system of parametric curves (g,, = 0) show that
R2 =0, Ri95 =950, = Ry

g”R- - 2Ri201
' 0u0x

R

Consequently

1
Rj = ERgij'
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Solution

Given that 9;, =0 so that g*?=0.
Also,

|
? |
T
«Q

gl =
The metric of V, isgiven by

g;ax'dx’; (i,j=1,2)

ds?

ds? = g,,(dx")? +g,,(dx?)? Since g,, =0.
We know that g{"Ry = R;.

O11 Oi2
O21 92

O11
0 g,

|gij| =

and g =01192

(i) Toprove R,=0

9™ Ry = gthh|2| as Ry, =0
9%'Ry1z 8 Ry =0

R, =0
(i) Toprove R;0,, = R0 = R

Ri = ™Ry = 9% Rouy

Ro

22 R2112
= 07 Ry =—=
Ru 2112 s
SO,
R
R, = —2 (1)
02
and R, = ghthm = glkRmzk
= 9"'Ryn = Rz
11
SO, R22 = @ (2)
O11
from (1) and (2)
R11025 = Rio;=Ro0011 . (3)
(iii) To prove
_ 2R
011922

R= ginj = gilRl"'gisz
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= 911R11+922R22 for 912 =0

- Ru_ Ry
011 O

_ Rizo1 + Rizo1 [ by eqn. (3)]

020011 91192

2
R= Ri2o1
01192
. 1
(iv) Toprove R; =3 Rg;
2R
R= 1221
011922
2R
R= —22 a0 =01,02
g
1
R = ERg
The egn (3) expressed as
1
R10x = ERg =Ry0y;.
it becomes
_ Rg _Rgu9,» _ Rou
Ry = o=l -
205, 292, 2
R _ R81102 _ RO
R =5 2 2
O11 011
So,
1 1
R, = ERgn & Ry :Egzz

1
I:212 = Eglz as R12 :0:912
This prove that R; =%RJ.
EXAMPLE 2
The metric of the V,, formed by the surface of a sphere of radiusr is ds? = r 2dg? +r2sin? qdf 2

1
in spherical polar coordinates. Show that the surface of a sphereisasurface of constant curvature pe

Solution
Given that
ds® = r2dg? +r?sin? qdf 2
Sincer is radius of curvature then r is constant.
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0, =1%, Op=r?sdn®q, 9,=0, g=0,0,=r"sn’q
We can prove
Ry = r?sin®q
Now, the Riemannian curvature K of V, is given by
__p'dpld’ _

phqI p]qk(ghjgik - O Gij)
At any point of V, there exists only two independent vectors.
Consider two vectors whose components are (1, 0) and (O, 1) respectively in V, . Then

K=

R1212 - R1212

K=
011922 g
- ﬂ:i = constant.
r‘sn?q r?

— EXERCISES ——

1. Show that

LA Ak.i]

afl
Rijw = e ™ y[" a]- i y[lk aj

Hp filp

2. Show that

1€eﬂzgn + ﬂzgjk i 1 i i ﬂzgu 9
2B WK I XK
3. Using the formulaof the problem 2. Show that

Rk = - Rjik =- Rjik = Raij and Riju + Rj +Rijjx=0

Rjk = + g ([ jk,b]fil ,a] - [jl,b[ik,a])-

4. Show that the curvature tensor of afour dimensional Riemannian space has at the most 20 distinct
non-vanishing components.

5. (a) If provethat the process of contraction applied to the tensor R?k generatesonly one new tensor

R; whichissymmetricini and .

1 o
()  If dS° =g, (oK) +g,,(dx°) +gyy(ax’). Provethat R "o Rini» (h, i, j being unequal).
hh

6. Showt hat when i n aV; the coordinates can be chosen so that the components of atensor g;; arezero
wheni, j, k are unequal then

. 1
(i) Ry :g_iiRhiij
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10.

11

13.
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. 1 1
(i) R, =—R,in+—R,;
h i iih g” jjh
Provethat if
. 11R
— A& ¥ =
Ra - g RJ then Ra,a Zﬂxi
and hence deduce that whenn > 2 then scalar curvature of an Einstein spaceis constant.

If the Riemannian curvatureK of V, at every point of aneighbourhoodU of V, isindependent of the
direction chosen, show that K is constant throughout the neighbourhood U. Provided n > 2.

Show that a space of constant curvature K is an Einstein space and that R = Kyn(1 —n).

Show that the necessary and sufficient condition that V,, belocally flat in the neighbourhood of Ois
that Riemannian Christoffel tensor is zero.

Show that every V, is an Einstein space.

For two dimensional manifold prove that

Show that if Riemann-Christoffel curvature tensor vanishesthen order of covariant differentiationis
commutative.



CHAPTER -6

THE e-SYSTEMS AND THE GENERALIZED
KRONECKER DELTAS

The concept of symmetry and skew-symmetry with respect to pairs of indices can be extended to
cover to pairs of indices can be extended to cover the sets of quantities that are symmetric or skew-
symmetric with respect to more than two indices. Now, consider the sets of quantities ai--ix or

A, ..i, depending onk indices written as subscripts or superscripts, although the quantities A may not
represent tensor.

6.1 COMPLETELY SYMMETRIC

The system of quantities A~ (or A__;, ) depending on k indices, is said to be completely symmetric
if the value of the symbol A is unchanged by any permutation of the indices.

6.2 COMPLETELY SKEW-SYMMETRIC
The systems ali-i or (A, ;, ) depending on k indices, is said to be completely skew-symmetric if the
value of the symbol A is unchanged by any even permutation of the indices and A merely changes the
sign after an odd permutation of the indices.

Any permutation of n distinct objects say a permutation of n distinct integers, can be accomplished
by a finite number of interchanges of pairs of these objects and that the number of interchanges
required to bring about a given permutation form a perscribed order is aways even or always odd.

In any skew-symmetric system, the term containing two like indices is necessarily zero. Thus if
one has a skew-symmetric system of quantities Aj wherei, j, k assume value 1, 2, 3. Then

Ay = A=0
Az = - Pugr Ayp = Ay €lC.

In general, the components A of a skew-symmetric system satisfy the relations.
Ajk = - Ay =- Ak

Ak = Ak = A4
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6.3 eSYSTEM
Consider a skew-symmetric system of quantities §_; (org ;) inwhichtheindices i,... i, assume
values 1,2,...n. The system &, i, (ore'n) issaid to be the e-system if
= +1 wheniy, iy, ..., i
an evenpermutatian of numberl, 2, ..., n
g, i (ore") 1, wheniy, iy,....i,

i
:
;
i
l_
.I. -

|

i an oddpermutation of numberl, 2, ..., n
|
f=0 indlothercases

EXAMPLE 1
Find the components of system g; when i, j takes the value 1,2.

Solution
The components of system g; are
€1r €2 €y, €5
By definition of e-system, we have
e, =0, indices are same
e, =1, sincei j has even permutation of 12

e, =-¢,=-1 sincei j has odd permutation of 12

e, =0, indices are same

EXAMPLE 2

Find the components of the system & .

Solution
By the definition of e-system,
€3 = €y =63 =1
€13 = €3 =6 =-1
8« = 0if any two indices are same.

6.4 GENERALISED KRONECKER DELTA

A symbol dijll':likjk depending on k superscripts and k subscripts each of which take values from 1 ton,

is called a generalised Kronecker delta provided that
(@) itiscompletely skew-symmetric in superscripts and subscripts
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(b) if the superscripts are distinct from each other and the subscripts are the same set of
numbers as the superscripts.

The value of symbol

é=1; anevennumber of transpositionis required toarrangethe
superscriptsin the sameorder as subscripts
dijll':.ikjk g: - 1; whereodd number of transpositions arrange the superscripts
6 in the sameorder as subscripts
&0, indl other casesthevaueof thesymbolis zero

D D

EXAMPLE 3

Find the values of di.
Solution

By definition of generdised Kronecker Delta, d‘kiI =0 ifi =jork =1 orif the set. ij isnot the set kl.
. 11 _ 422 _ o
ie, dpq = dpg = dZ =»x=0
dil = 1if ki is an even permutation of ij
42 = A= ¢ =l =02 = o
and d}} =-1 if kl isan odd permutation of ij.

; 12 — 431 _ 413 _ 21 _
I.€., d21_d13‘d31‘ 2‘>°°<='l

Theorem 6.1 To prove that the direct product eiliz"'i”ejljz__ j, of two systems e"-h and €, is the

generalized Krénecker delta.
Proof: By definition of generalized Kronecker delta, the product 6'1'2""”ej1j2__ j, hasthefollowing values.
(i) Zeroif two or more subscripts or superscripts are same.

(if) +1, if the difference in the number of transpositions of i,i,,...,i
1,2,...nis an even number.

(iii) -1, if the differencein the number of transpositions of iy, i,,...,i,, andjy, j,, ...j,from 1, 2,..n
an odd number.

Thus we can write

,and ji,j,,...,J, from

igig.in _ Aiia-in
e €iinein ™ Jiiipein

THEOREM 6.2 To prove that

. N . :di_li_Z'"ir!
(I) el1'2"' [ J1lo1p

(i) €, =dizh

jqioe n
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Proof: By Definition of e-system, giiiz-in (Or eiliz---in) has the following values.
(i) +1;if i,,i,,...,i, isan even permutation of numbers 1,2,...n.

(i) -1;if i,,i,,...,i,, isan odd permutation of numbers 1,2,...n
(iii) 0; in al other cases
Hence by Definition of generalized krénecker delta, we can write

(1) ghio-in = ilz-in

12.n

and
- 2.n
(2 elliz...in T iy

6.5 CONTRACTION OF &

Let us contract dzs, onk and 9. For n= 3, the result is

ddng = daee +dab, + iz = iy
This expression vanishes if i and j are equal or if a and b are equal.

Ifi=1,andj= 2 weget ds.

Hence
é+ 1 if abisan even permutation of 12
é
q2 = & 1; if abisanodd permutation of 12
ab — @
@ 0; if abis not permutation of 12

Similarly results hold for al valuesof a and b selected from the set of numbers 1, 2, 3.

Hence

é+ 1, if ijisaneven permutation of ab

(¢

& 1; if ijisan odd permutation of ab
0; if twoof thesubscriptsor superscriptsareequal or when the

subscriptsand superscriptsarenot formedfrom thesamenumbers.

y ; 1
If we contract d,. To contract d.,, first contract it and the multiply the result by > Weobtain

a system depending on two indices

g, = 5 =2 +db+ 6

a
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_ 1
Iti=1in d, thenwe get d; =§(d§22 +di3)

Thisvanishes unless 3 =1 and if a = 1 then d} =1.

Similar result can be obtained by settingi = 2 or i = 3. Thus d; has the values.

(i) 0ifita,(a,i=123)
(i) Llifi=a.
By counting the number of terms appearing in the sums. In general we have

i _Ldii ij =
d, =5 1%,i and dij =n(n- 1) (1)
We can aso deduce that
o (n- K)! i i g iy
A T TR ~@
and
oo iy _ _ . - __n
dis- = n(n-21 (n- 2)»xn r+1)—n_ " ..(3)
or
gitiz-in e,,.;. =n .(4)
and from (2) we deduce the relation
e g iy = 1 )

EXERCISE

Expandforn=3
(@) did 0) dxx  (© )y (@) d
Expand forn= 2

@ eaa; (b ay () daa =eld

Show that dili =31 ifi,j, k=1,2,3.

If aset of quantities A, ; isskew-symmetricin the subscripts (K in number) then

i

ik — W A
djl.-]k Al---ik = K AL

Prove that e,]-kJE is a covariant tensor of rank three where where e is the usual permutation
symbol.



CHAPTER -7

GEOMETRY

7.1 LENGTH OF ARC

Consider the n-dimensional space R be covered by a coordinate system X and a curve C so that
C:x = X' (@), (i=12..,n) (D)

which is one-dimensional subspace of R. Where t is a read parameter varying continuoudly in the

interval t; £t £1,. The one dimensional manifold C is called arc of a curve.

&, , ,ddd® d&x"0 _ o _
Let F §X X X F— be a continuous function in the interval t, £t£t,. We

assume that FQX %‘>0 unless ever o d that f iti ber k
e y 22 —pan or every positive number
) o ng
SR S ,k S kP& x n O X0
dt ot = ot d Tt
The integral
t2_ge dxo
= F X,—+dt
s Q1 g &t o ..(2)

is called the length of C and the space R is said to be metrized by equation (2).

Different choices of functions F¢X, 3—?9 lead to different metric geometrices.

e
If one chooses to define the length of arc by the formula

dx® dx?
Qw/gpq() et (A= 1,2, 1) -3

P q p

d dx
where 9pq( ) T d_); is a positive definite quadratic form in the variable ——. then the resulting

geometry isthe Riemannian geometry and space R metrized in thisway isthe Riemannian n-dimensiona
spaceR,.
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Consider the coordinate transformation T: X' = X'(x!,...,x") such that the square of the element
of arc ds,

ds?2 = gpqdx"ax? (%)
can be reduced to the form

ds? = ox'dx ..(5)
Then the Riemannian manifold R, is said to reduce to an n-dimensional Euclidean manifold E .

The Y-coordinate system in which the element of arc of Cin E, is given by the equation (5) is
called an orthogonal cartesian coordinate system. Obviously, E, is a generdization of the Euclidean

plane determined by the totality of pairs of rea vaues (x*, x?). If these values (X*,X?) are associated

with the points of the plane referred to a pair of orthogonal Cartesian axes then the square of the
element of arc ds assumes the familiar form

ds? = (dxY)? + (dx?)?.
, 35;(%9 o L a%(k%Q:kFa;"(QQ
THEOREM 7.1 A function F g ,dtbsatlsfymg the condition F g AP 8 ot o for every
k> 0. This condition is both necessary and sufficient to ensure independence of the value of the
2o e dxo o
integral S= 0] F gX,E; dt of a particular mode of parametrization of C. Thusiftin C:x' = x (t)
is replaced by some function t = f(s) and we denote x[f(s)] by x'(1). sothat X (t) x'(s) we have
equality
2 _ae dx§

Q1 F gx,agdt = (‘f F (x,x9 ds
. ds'

where x¢ = e At =f(s) and t, = (s,).
Proof: Suppose that k is an arbitary positive number and put t = ks so that t;=ks; and t,=ks,. Then

C:x = X (t) becomes

C:x'(ks) = x'(t)
dx' (ks) _ K dx' (ks)
ds dt

and x¢(s) =
Substituting these values in Q g ot o dt we get
= Qsj F %((ks),—dx(ks)gkds
dt
or s= () F [x(9)x¢9)ds

dx o _ dxo L _
—-== kF ¢X—= Conversely, if thisrelation istrue

&
: =F CX%k
We must have the relation F (x,x§ = F ¢x K== kF ¢
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for every line element of C and each k> 0 then the equality of integralsis assumed for every choice of
parameter t=f (9),f'(s) >0, £s£s, with and t, =f (s,).

) . - d . Lo
Note: (i) Heretakethose curvesfor which ')y and il are continuousfunctionsin ty £ t£1,.
X (1) dt

a dx o ax o & dx¢ 0

F xk T=kF x —=
dt » ~ satisfying the condition g g dt o - for everyk > Oiscalled

F x
(i) A function Q &t »

i
positively homogeneous of degree 1inthe %

EXAMPLE 1

What is meant, consider a sphere S of radius a, immersed in a three-dimensional Euclidean
manifold E,, with centre at the origin (0, 0, O) of the set of orthogonal cartesian axes 0. x!x2x3.

Solution
Let T be a plane tangent to Sat (0, 0,—a) and the points of this plane be referred to a set of orthogonal
cartesian axes O¢-Y1Y? as shown in figure. If we draw from O (0,0,0) aradia line OP, interesting

thesphere Sat P(x',x?,x*) and plane T a Q(X*,X?,-a) then the points P on the lower half of the
sphere Sare in one-to-one correspondence with points (x*,%?) of the tangent plane T.

Fig. 7.1

If P(xt, x%,x%) isany point on the radial line OP, then symmetric equations of thislineis

X-0 x2-0_x3—0_I
-0 X?-0 -a-0

or

X=X, K =%, xP=-la ..(6)
Since the images Q of points P lying on S, the variables x' satisfy the equation of S

(Xl)Z +(X2)2 +(X3)2 - a2

o VERfRS s 2
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Solving for | and substituting in egquation (6), we get
ax* ) ax?
Xl = , X° =
V&7 + (7 +° YR+ (2) + (%%)?

- a2
X3 = =1\ 2 =2\2 =332
V)2 + (32 + (%)
These are the equations giving the analytical one-to-one correspondence of the pointsQon T and
points P on the portion of Sunder consideration.

Let P(x',x2,x%) and P,(x* +dx!,x? +dx?,x3 + dx?) betwo close points on some curve Clying
on S. The Euclidean distance RP, aong C, is given by the formula

A7)

and

ds? = dx'dx', (i=1,23) ..(8)
Since
K %
= —pr, =
dx P (P=1,2

Thus equation (8) becomes
ds? = ﬁﬁdx"’dxq
ixP x4
0o (XXX, (p.g= 1, 2)
X X
xP x4
If theimage K of C on T is given by the equations
bt = gt
LELIL

where gpq(X) are functionsof x' and 9,4 =

fx?=x%(t), L £t£t,

then the length of C can be computed from the integral
Wb / dxP dx“
= ——dt
57 Q% Tq
A straight forward calculation gives
(dXY)2 +(d%D)? + = (RdX2- R2dRY?
a

ds’ = §L+ a—lz{(>‘<l)2 + (iz)z}a2 ()

and
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K édtg at azé dt dt 5
sS=
Q 1+ { (=) +(x2?)
a

dt

So, the resulting formulas refer to atwo-dimensional manifold determined by the variables (X*,%X?) in
the cartesian plane T and that the geometry of the surface of the sphere imbeded in a three-dimensiona
Euclidean manifold can be visuaized on atwo-dimensiond manifold R, with metric given by equation (9).

1
If the radius of Sisvery large then in equation (9) thetermsinvolving ? can be neglected. Then
equation (9) becomes
ds? = (dxh)? + (dx?)?. ...(10)
Thus for large values of a, metric properties of the sphere S are indistinguishable from those of
the Euclidean plane.
The chief point of this example isto indicate that the geometry of sphere imbedded in a Euclidean
3-space, with the element of arc in the form equation (8), is indistinguishable from the Riemannian
geometry of a two-dimensional manifold R, with metric (9). the latter manifold, although referred to

a cartesian coordinate systemY, is not Euclidean since egquation (9) cannot be reduced by an admissible
transformation to equation (10).

7.2 CURVILINEAR COORDINATES IN E,

Let P(X) bethe point, in an Euclidean 3-space E,, referred to a set of orthogonal Cartesian coordinates Y.
Consider a coordinate transformation
T:xX = XX, %,x%, (=123

_|TX
Such that J = }ﬁ‘ * 0 in some region R of E,. The inverse coordinate transformation

T1:%x =X (%3, x%), (=123
will be single values and the transformations T and T™" establish one-to-one correspondence
between the sets of values (x!, x2,x%) and (X*,%X*,X°).
The triplets of numbers (x!,x?,x3) iscalled curvilinear coordinates of the points P in R.
If one of the coordinates x*,x°,x” is held fixed and the other two allowed to vary then the point
P traces out a surface, called coordinate surface.

If we set x' =constant in T then

xH(x, %2, %%) = constant ..(2)
defines a surface. If constant is alowed to assume different values, we get a one-parameter family of
surfaces. Similarly, x*(X*,X2,%3) = constant and x3(X*,%2,%%) = constant define two families of
surfaces.
The surfaces



Geometry 121

X =0 X =g, =g .. )
3 3
Y
7
X
/ /’*‘
/
2
P \xl

Fig. 7.2

intersect in one and only one point. The surfaces defined by equation (2) the coordinate surfaces
and intersection of coordinate surface pair-by pair are the coordinate lines. Thusthe line of intersection

of x' =¢ and x* =c, isthe x* - coordinate line because along thisthe line the variable x3 isthe only
one that is changing.

EXAMPLE 2
Consider a coordinate system defined by the transformation

»Y 2
Fig. 7.3
x' = xtsnx?cosx® ..(3)
%2 = x*dnx?sn x® ..(4)

X
1

xt cosx? ...(5)
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The surfaces x* =constant are spheres, x? =constant are circluar cones and x3 = constant are
planes passing through the Y3-axis (Fig. 7.3).
The squaring and adding equations (3), (4) and (5) we get,
3)2 3)2 + (Xl COSXZ)Z

(X1)? + (x%)? + (x%)% = (x*sinx?cosx®)? + (x'sin x?sin x

On solving

()—(1)2 +()—(2)2 +(i3)2 - (Xl)Z

Xl

J&2 + (%22 + () .(6)
Now, squaring and adding equations (3) and (4), we get
(X)? +(x%)? = (X*gnx2dn x®)? + (x*sn x? sin x*)?

(X2 +(x*)* = (X')*(sinx*)?

xsn x2 = /(%)% +(%?)? -(7)

Divide (7) and (5), we get
) (y(l)Z +()—(2)2

tanx® =
X
23124 (3220
G (X°)“+(X°)° =
or x? = tan g e ; ...(8)
Divide (3) and (4), we get
-2
X— = 'tar’IX3
T
19X%0
b 3= tant 7= ..(9)
a

So, the inverse transformation is given by the equations (6), (8) and (9).
If x*>0,0<x?<p,0£ x® <2p. Thisisthe familiar spherical coordinate system.

7.3 RECIPROCAL BASE SYSTEMS
Covariant and Contravariant Vectors
L et a cartesian coordinate system be determined by aset of orthogonal base vectors b, b,,b, thenthe
position vector 7 of any point P(x*,%2,x%) can be expressed as
F=bx (i=123) (D)
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Since the base vectors Eii areindependent of the position of the point P(x*,x?,%*). Thenfrom (1),

dr = hox' ..(2)

If P(xt,%2,%x%) and Q(x*+dxt, %2 +d X2 %% +dx®) be two closed point. The square of the
element of arc ds between two pointsis

ds? = dr xdr
from equation (2),
ds? = hdx' b, dx’
= b »b;dXdx’

ds? = d;dxdx’; since b b, =d;

Fig. 7.4.

(b, b, b, areorthogonal basevector i.e. b ¥ =1& b >b, =0).
62 = oo as g =li=j

S™ = dxdx; =0t |
afamiliar expression for the square of element of arc in orthogonal cartesian coordinates.
Consider the coordinate transformation

x = X (X,X%%%), (i= 1,2 3)
define a curvilinear coordinate system X. The position vector 7 is afunction of coordinates X .
i.e.,

=
|

=7r(x), (=12 3)
Then

dx’ ..(3)

2
1
3 |=
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and
ds® = dr >dF
RS PN
ix' %!
ds? = g dx'dx’
where
_ A A
. _ _ , .
The vector @ is a base vector directed tangentially to X'- coordinate curve.
Put
r _ .
— = a ...(5
w2 )
Then from (3) and (4)
dr = ddx and g; =3 >q, ...(6)
Now, from equations (2) and (6), we get
adx’ = padx
I
ajdX' - hﬁdx
I B¢ ,- .
5) a; = b —, asdx arearbitrary
ix!

So, the base vectors &; transform according to the law for transformation of components of
covariant vectors.

The components of base vectors &, when referred to X-coordinate system, are

é]_ : (81,0,0), 52 : (0,a2,0), 53 (0,0,ag) (7)
and they are not necessarily unit vectors.
In general,
O = &4 11 0, 88" L 0p=8G" 1 ..(8)

If the curvilinear coordinate system X is orthogonal. Then
0 = &8, =[a|[a cosq; =0, if i+ j. (9)

Any vector A are can be written in the form A =kdr where k isascaar.
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. r, .
Since d7' = %d* we have

i = K'"F (ko)

A =3A
where A = kdx - The numbers ai are the contravariant components of the vector A
Consider three non-coplanar vectors

52, 53 =2 _ 53 éjI_ _ ’

<1 = a’= a’=

al=rmr===1 =z =] == = ...(10
|a1a2a3 8383 1383 (10

where &, &,, etc. denote the vector product of &, and &, an

prduct &,>&, " &,.
Now,
3, 86 _laaa| ,
a8 = Tzzaz S
aaa] laaal
L. & 33 X3, :lazézaalzo_
a4, = [515253] [alqzqs]
Since [azaza‘s]: 0.
Similarly,
alxa, = 8%>x@, =»0=0
a’a, =1, a°xg, =1
Then we can write
a'xa; = d

EXAMPLE 3
To show that [3,8,3,]=./g and 515253]:i where g = |9u|-
_ Jo

Solution

The components of base vectors a; are
a,:(2,00), d,:(0,a,,0) and &,:(0,0,a;)

Then
3 00

[a8,a8,] =10 & O|=aaas
0 0 a

(1)
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and
911 912 O3
g:|gij| =921 922 925
931 932 Ys3
from equations (8) and (9), we have
9, = a8 P a =g,

Smilarly
a; = Oz aj = g,
and
9, = ax,=0, g,=8 xa,=0 etc.
Sol
& 0 0
g= 0 o 0|=atalal
0 0 a
J9 = aaa, ..(12)
from egn. (11) and (12), we have
[aa,8] = o
Since the triple products [&'a%a°] = % Moreover,
g
a2’a® _ _ a¥a a’ a’

= , 8, = , @, =
7 laaa] 2 [aaal] ° [aaa]
The system of vectors 3 32 5° is called the reciprocal base system.

Hence if the vectors *,42,a° are unit vectors associated with an orthogonal cartesian coordinates

then the reciprocal system of vector defines the same system of coordinates. Solved.

The differential of avector ' in the reciprocal base system is di = &'dx.

where dxare the components of dr. Then

ds? = drxdr
= (@dx)xa'dx;)
=a xéjdxidxj
ds? = g”dx,-dx,-

where gl =axa =g ...(13)
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The system of base vectors determined by equation (10) can be used to represent an arbitrary
vector Aintheform A=&'A, where A are the covariant components of A

Taking scalar product of vector Aa' with the base vector &;, we get

Ad &, = Ad, = A, asd g =d,.
7.4 ON THE MEANING OF COVARIANT DERIVATIVES

THEOREM 7.2 If A isavector along the curvein E,. Prove that %: A,

i
Also, prove that A'J :K. Where A are component of A

!
Proof: A vector A can be expressed in the terms of base vectors & as

A= Aa
I

where §; =— and A are components of A
The partia dﬂe);ivative of A with respectto xi is
%%:%%@+N%} (1)
Since g;; =&, *a;.
Differentiating partidly it w.r.t. x* we have
T9i _ T8 o 14,

Similarly,
Tou _ T8 T8
— = — +—=Xa.
ﬂXl ﬂX' xak T[XI an
and Mo _ Mo g T g

WJ_WR@ I’
Since A can be written as

A=aA =dA
Taking scalar product with &;, we have
a A =a aA

dijA =A

= g, A
As d a, =g;,a @ =d; and d|A = Al

We see that the vector obtained by lowering theindex in A is precisely the covariant vector A.
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The two sets of quantities A’ and A arerepresent the same vector A referred to two different
base systems.
EXAMPLE 4
Show that g_g” =dJ.
Solution
Since we know that
Oia = &8, and gP =3l xa®

Then
0,97 = (3 >8,)(@ a?)
= (& >a')(d, @)
=d/ d? as & >a’ =d)
09" = d' asdj =1
But
LT
al - ﬂXi
fa _ 1 _ v T8
™ T o Ixx] g
So,
fa _fa&
ﬂxj - TIXi
Now,

1adigy , 795 9 0

i = — ~+ T i ’
[ij, K] 2§‘nx1 " IS Christoffel’s symbol
Substituting the value of 19 ,ﬂgj_k and ﬂgikj , we get
ix x
1 %

[ij,k] = ?Qwﬂk

L

[k = o,

ﬂél . =k 1 -k
— k —=
w0 - Lhklah as 5o

or

Hence

Ya;

- xa? = [ij,k]ak xa?
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= [ij,k]g'*, Since g* =3 x3®
4 jag . jag
T ga =20 as liiklg®=1"y
™ il jg Tl Jg
5 12,
T _j ya e
™ 1t p
Substituting the values of % in equation (1), we get
X
ﬂ_A = &g] +: a_UAiaa
® X Tl J{\;
1w Tad,._
= _ + 7 A
e % "
A &A* Tal u
ﬂ_A = eﬂé—, +i. yA @,
% e flp g
1A L. . _TJA* Taag,
o A&, since A] = xj +li ng

Thus, the covariant derivative A,? of the vector A? is a vector whose components are the

A
components of :TL—J referred to the base system &,.

a :
If the Christoffel symbols vanish identically i.e., l'i jz=o the 11% =0, from (2).
1 X

Substituting this value in equation (1), we get

TA A

W

R 7 AV

L= —— vA
o A= o o)

S N S

=5 b gp

Proved.

THEOREM 7.3 If A isavector alongthecurvein E;. Prove that Aj,kéj where A; are components
of A.
Proof: If A can be expressed in the form

A= Agd
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where A are components of A
The partial derivative of A with respect to x* is

ﬂA _TA
X~ ‘ﬂxk

Since 3! xa, = dij , we have,

A— (1)

Differentiating it partially w.r. to X<, we get

a' &,
_>a +a><_ 0
Xk Xk
Eﬁl =-a ﬂali
X X
_-axaah kl\gl Since ﬂXk ’I‘j kga

ﬂXk I a’:‘Jk%

7@ . 1w

- =-q.

ﬂXk ] Tjkg
EY T 1
= _—-i ya, —=a
x~ %kaV) % 3
ai

substituting the value of W in equation (1), we get

gl
o - A k;v)

ﬂA =i | i U

= —a’ -

™" ] kk',
ﬂ _ eﬂA | iou, U
x* eﬂx IJ k%u
ﬂA — 3] ; A :ﬁ- i’ u
W = Aja’, Since Mk - IJ k%

Proved.
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7.5 INTRINSIC DIFFERENTIATION
Let avector field A(x) and
C:x = X(t), {L,EtEL,

be a curve in some region of E,. The vector A(x) depend on the parameter t and if A(X) is a
differentiable vector then

dA  JA dx!
—_— X
dt ~ x! dt
A _ g X
dt J dt

Since we know

% a2 fa fil

_— = =9_'+.|.. . L,'aa
o i Sﬂxj i b (See Pg. 127, Theo. 7.2)
So,
A &A% Ta i U0 dx
% — g-[ _ +|_ _,Allﬁa_
dt  gfx 1 J% g at
dA éda® 1a i, dxitjdéa
—— =& —+i. yA—
dt  gdt i jg dt o
a i j
Theformula a0, dx

+:'_ vA —— iscalledtheabsolute or Intrinsic derivative of A? with respect
t  qi jg dt
a

to parameter t and denoted by

1
dAa_dAa+‘|,ai,in£_ _ _ _ dA _dA
So, a ot }i jg ot IScontravariant vector. If Alisascalar then, obvioudly, T o

Some Results
(i) If A be covariant vector

I L SR VY-S

M "o & la S TR P el

(iii) ﬂ:d_AIJ+:f i [,]Agd_xb_‘[a l’JA'jd_Xb
d dt ja ng dt i bﬁ "
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dA, dAL i X 0, dx° | a U, dx®
i Ik — 7k 4t A2 - /
W 5 & la bp el j b%A"‘k a1k b;V) e

EXAMPLE 5

ij —

dg;
If g;; be components of metric tensor, show that e =0.

Solution

Theintrinsic derivative of g;; is

dg; dg; |au dx® | aig  dx°
@ T a jibhid qb )t o

L ﬁ “dt ib JIV) dt
To; b 1ay o lay o
D dt fibpY At b jp e dt

g T al | a ug U g
- e TI bi; ib J% Ty

Cgi' i ﬂgl
i |—‘- lib, j]- [bj, I]I\; o
jad ba
as i pvG = b e | Yo =il
L % ib ip
9;. . o
But 117; = [ib, j1+[ jb,i].
CkJij
S0, @ 0
EXAMPLE 6
Prove that
d(g. A Al dA
M = ZQHAI%
dt ot
Solution

Since g;Aa’ isscaar.
Then
d(g;A'A))  d(g;A'A))
dt at
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d(A' Al

= g ( ), since gj; isindependent of t.
AT Sdalu

= G edAé_ A +A ﬁL'l

Interchange i and j in first term, we get

d(g;A'A)) é dAl . dall

= gjeA ——+A——las g i ic.
" ngA p pm Has gij issymmetric
d(g,A'A') LAl
dt = 29, A dt
Proved.
EXAMPLE 7
Prove that if A isthe magnitude of A then
1 Al
qu = AJ
A
Solution

Given that A is magnitude of A . Then
Since

gikAiAk = AA
gikAiAk = A
Taking covariant derivative w.r. to x!, we get
gikA,ii A+ gy A Akj = 2AA,
Interchange the dummy index in first term, we get
gkiA,kj A +gikAiAkj = 2AA;
29ikAiA,kj = 2AA;

gikAi Akj

AA |
Ai(gikA,kj) = AA;

AA

AA; since gikA,kj =A;

g A
A] = AJ
' A

Proved.
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7.6 PARALLEL VECTOR FIELDS
Consider a curve

C:x =X(t), t,EtEt,, (i=1,23)
in some region of E, and avector A locaized at point P of C. If we construct at every point of Ca
vector equal to A in magnitude and parallel toit in direction, we obtain aparalel field of vector along the
curve C.

3
Y)

if A isapardld fidd aongC then the vector A do not change along the curve and we can write

% =0. It follows that the components A of A satisfy a set of simultaneous differential equations

E=O or
qt

Thisis required condition for the vector field A’ isparald.

7.7 GEOMETRY OF SPACE CURVES
L et the parametric equations of the curve Cin E; be

C:x =x(), t,EtEL, (i=1,23).
The sguare of the length of an element of C is given by
ds? = g;dx dx’ (1)
and the length of arc s of C is defined by the integral

e ’ dx' dx!
- 7 dt
S Q glldtdt (2)

=1 (3)

from (1), we have
dx' dx
OQi———
ds ds
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ax' .
Put — =I". Then equation (3) becomes
gijl =1 ...(4)
The vector [, with components | ', is a unit vector. Moreover, | is tangent to C, since its
i
components |, when the curve Cisreferred to arectangular Cartesian coordinate Y, becomes | ' = (jjl
s

These are precisely the direction cosines of the tangent vector to the curve C.
Consider apair of unit vectors | and i (with components | ' and M respectively) at any point
Pof C. Let [ istangentto Cat P Fig. (7.6).

Fig. 7.6

The cosine of the angle g between [ and m is given by the formula
cosq = gyl 'l -(5)
and if | and ™ are orthogonal, then equation (5) becomes
g;;l 'm =0 ...(6)

Any vector m satisfying equation (6) is said to be normal to C at P.
Now, differentiating intrinsically, with respect to the are parameter s, equation (4), we get
d' ;. d’

gIJEIJ'FgIJEII :0 (7)

as g is constant with respect to s
Interchange indicesi and j in second term of equation (7) we get

d’

T +g —11 =
Since gj; is symmetric. Then
i
Zgijl — =0

ds
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| d’
P I g =0

d’ . ) ) . .
we see that the vector s either vanishes or isnormal to C and if does not vanish

. N odl! . :
we denote the unit vector co-directional with = by m' and write

1dl K_mj
= ?E1 ds ...(8)

where K > 0is so chosen asto make m¥ a unit vector.
The vector m iscalled the Principal normal vector to the curve C at the point P and K is the
curvature of C.

The plane determined by the tangent vector | and the principal norma vector m is called the
osculating plane to the curve C at P.

Since M is unit vector

Also, differentiating intrinsically with respect to sto equation (6), we get
di . cdl
—m +0..| L =
Oij & 9j; i 0
or
; dm d' |
= =- g —
9i ds 9 dst
= M Since S = K
= - Kg;mm Since el
dm o
g;l IE = - K, since g;mm =1.
; dm/
A'—+K =0
9i ds
idmj i i
g;! E+gijl 'K =0 as g;l'l' =1

arIm’ 0
gi'lI +K|]i:0
. (éds p

: dm j . .
This shows that the vector e +KI'! jsorthogonal to | i
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Now, we define a unit vector v, with components v/ by the formula

1 aadm 0
v = —&——+KI'Z ...(10)
t& ds &

where t :Z—m +KI' the vector y will be orthogonal to both | and m.

s
To choose the sign of t in such away that

Joed'mve =1 (1)
so that the triad of unit vectors |, mand i forms aright handed system of axes.

2

x!

obsolute tensor and hence |eft hand side of equation (11) isan invariant v¥ in equation (11) is determined
by the formula

Since g is a relative tensor of weight -1 and 9 = it follows that € :Jaqjk is an

v = é*\m (12)

. 1
where | ; and m; arethe associated vectors g, | * and 9, and €’ =—=¢€"* isan absolute tensor.

g
The number t appearing in equation (10) is called the torsion of C at P and the vector v isthe
binormal.
We have already proved that in Theorem 7.2, Pg. 127.

1A
™ \i 8y
if the vector field A isdefined along C, we can write
A X ®
. ..(13
™ Ts " Ts % (13)
Using definition of intrinsic derivative,
da® a X
ds ~ A ds
Then equation (13) becomes
d_A - da® A XXX ﬂ_Ad_XI :d_A 14
ds - ds = @ % ds ds +(14)
Let I be the position vector of the point P on C then the tangent vector | is determined by
g —liga —1
ds ~ 1'g =
from equation (14), we get
d_2F d_d?

b ol ...(15)
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where ¢ isavector perpendicular to I .
With each point P of C we can associate a constant K , such that (:/K =mis aunit vector.

Since

c

E =m

~ 1d?

m= e a,, from (15)
from equation (8), we get

=nta,, since nf = Ld”
K ds

7.8 SERRET-FRENET FORMULA
The serret-frenet formulas are given by

i i ) i
a)ns:iﬂ—mﬁL:Kmx>omH«=%§

K ds ds
v@m 0 an
(i) n _§ +KI ﬂor— tni —Kl1 wheret = E"'K'

Lodn®
— =—tnf
(iii) .
First two formulas have aready been derived in article (7.7), equation (8) and (10).

Proof of (iii)
From equation (12), article (7.7), we have

eijkl imj = nk
where |, nk are mutually orthogonal.
Taking intrinsic derivative with respect to s, we get

i 9 _ dn
ds ! 'ds ds
From formulas (i) and (ii), we get

k
”kam +éd i(tnj =Kl ) = dgs
ijk dn” : ijk
e’ i(tnj —Ki J) = o Since €' mm =0
dn*

e”kl injt - Ke”kl jI i s
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Since ek il j=0
k
ijk _dn
e’linit=—
YT ds
Since €4 in; =nt, but gk are skew-symmetric.
Then
eijkl inj = —I’T'I(
So,
k
_ dn
—nft = &
k
or d% = —trﬂ‘
dn' -
— = —tni
P ds

This is the proof of third Serret-Frenet Formula
Expanded form of Serret-Frenet Formula.

; il+1 i uﬂﬁ
M &7 k) s
odnd 1 ot
M “as ] jky ds
av' 1iudx®
v

O A

EXAMPLE 8

. d’X 10 ddx! dx* .
Kt o "4 "1j kpds o = KM

= tn' =Kl

Consider a curve defined in cylindrical coordinates by equation

Ixt=a
|
i x> =q(s)

}XSZO

This curve is acircle of radius a.
The sguare of the element of arc in cylindrical coordinates is

ds? = (dx)® +(x")(dx®)? + (dx°)?

sothat g =1, 0y = (Xl)z’ 0= 1, gj = 0, i*]

It is easy to verify that the non-vanishing Christoffel symbols are (see Example 3, Page 61)

11y 124 120 1
t22 = % j12) = a1y T T

139
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. d
The components of the tangent vector | tothecircle Care |1 = % sothat |1 =0, |2 = d_g
[ 3=0
Sincel isaunit vector, g;| 'l )= 1 at all points of C and this requires that
( aedqo zaedqo
=1
&dsg =~ &dsg
wad 1
So, Qd—qg == and by Serret-Frenet first formula (expanded form), we get
edsg a

dit llu dx”

| 1
_ /1] -yl ==z-=
Kml_ds jkk/) ds_%zz ds =~ a
d? 020, d" 120,d
-+ o= s [222 _
KrT?_ds %jk% s_%z s_o
d® 1 3¢ ;"

Knt = Jg %jk}?@z

o 1
Since p is unit vector, g;mMm’ =1 and it follows that K = 3 m=-1,nf =0, =0
Similarly we can shows that t = 0 and nt :O,n2 :O,n3 =1.

7.9 EQUATIONS OF A STRAIGHT LINE

Let Al beavector field defined along acurve Cin Ej such that

C:x = X(s). s EsEs, (i=1,223).
s being the arc parameter.
If the vector field Al is parallel then from article 7.6 we have
aal
ds

dA 10 U, dx®
or Aa—:o

ds ,a b% ds (1)

We shall make use of equation (1) to obtain the equations of a straight line in genera curvilinear
coordinates. The characteristic property of straight lines is the tangent vector | to a straight line is
directed along the straight line. So that the totality of the tangent vectors | formsa parallel vector field.
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i_d . .
Thus the field of tangent vector | :d_xs must satisfy equation (1), we have

di d i idd i
= +| _ =
ds  ds® fabhds ds

o d% L0 udx® dx” . . _ . o
The equation e %a b% ds ds = 0 isthe differential equation of the straight line.

EXERCISE
d(gAB!) oA dB
. — ‘-qg. —B!+g A—
1. Show that a Jij p 9 ™
iAW

2. Show that A j — Ay = ™

3 If A :gijAj show that A, =g, A,

d( A B | .

4. show that 2GAED) _ 5 i g A

5. Show that

i

% = z—EM—K(tn'—KI')
AL 2, 2y OK
A _ & (k22— XKy
d2 ~ ds ( ) ds
d%n N
— = t(KI' =tV") =—nml
ds? ( ) ds

6. Find the curvature and tension at any point of the circular helix C whose equations in cylindrical
coordinates are
C:xt=a x2:q, x3:q

Show that the tangent vector | at every point of C makes aconstant angle with the direction of y 3-

axis. Consider C also in the formy! = a cosq, y2 = a sing, y3 = q. Where the coordinates y' are
rectangular Cartesion.



CHAPTER -8

ANALYTICAL MECHANICS

8.1 INTRODUCTION

Analytical mechanicsis concerned with amathematical description of motion of material bodies subjected
to the action of forces. A material body is assumed to consist of alarge number of minute bits of matter
connected in some way with one another. The attention is first focused on a single particle, which is
assumed to be free of constraints and its behaviour is analyzed when it is subjected to the action of
external forces. The resulting body of knowledge constitutes the mechanics of a particle. To pass from
mechanics of a single particle to mechanics of aggregates of particles composing a material body, one
introduces the principle of superposition of effects and makes specific assumptions concerning the
nature of constraining forces, depending on whether the body under consideration is rigid, elastic,
plastic, fluid and so on.

8.2 NEWTONIAN LAWS

1. Every body continuesin its state of rest or of uniform motion in a straight line, except in so
far asit is compelled by impressed forces to change that state.

2. The change of mation is proportional to the impressed motive force and takes place in the
direction of the straight line in which that force is impressed.

3. Toevery action there is always an equal and contrary reaction; or the mutual actions of two
bodies are always and oppositely directed along the same straight line.

Thefirst law depends for its meaning upon the dynamical concept of force and on the kinematical
idea of uniform rectilinear motion.

The second law of mation intorduces the kinematical concept of motion and the dynamical idea
of force. To understand its meaning it should be noted that Newton uses the term motion in the sense
of momentum, i.e., the product of mass by velocity, this, "change of motion" means the time of change
of momentum.

In vector notation, the second law can be stated as

_ _ d(mv)
= =g ()
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If we postulate the invariance of mass then equation (1) can be written as
F=ma - (2
: R d(mv)
from (1) if E =0then - 0.
So that
mv = constant.
hence y is constant vector.

Thus the first law is a consequence of the second.

The third law of motion states that accelerations always occur in pairs. In term of force we may
say that if aforce acts on agiven body, the body itself exerts an equal and oppositely directed force on
some other body. Newton called the two aspects of the force of action and reaction.

8.3 EQUATIONS OF MOTION OF A FARTICLE

THEOREM 8.1 The work done in displacing a particle along its trajectory is equal to the changein
the kinetic energy of particle.
Proof: Let the equation of path C of the particle in E; be
C:x = X(t) (D)
and the curve C the trajectory of the particle. Let at time t, particleisat P {x' (t)}.
If v be the component of velocity of moving particle then

ooax
v = i ... (2
and if & be the component of acceleration of moving particle then
o v 100 dxE
al - —_—+| . vV —
dt dt {jkp dt
e R
&= T2 {jky dt dt - (3

v [
where Y is the intrinsic derivative and the | j kﬁ are the Christoffel symbols calculated from the
[

metric tensor g;;
If m be the mass of particle. Then by Newton’s second law of motion

i '
F'= ma—ma .. (@

We define the element of work done by theforce g in producing a displacement dr by invariant
dW= F o . _ _
Since the components of £ and df are F' and dx respectively.
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Then
dw= g; Fi'dxj _ ... (5)
= Fj dx where FJ- = O F'
The work done in displacing a particle along the trgjectory C, joining a pair of pointsP, and P, is
line integra

\P2 i
w= Q X ... (6)
using equation (4) then equation (6) becomes

— ‘szg iidxl
Qg
Rdv
= A —vidt
W= Q) Mg,V . (7)
Sinceg;; V' vl isan invariant then
i\ .
SCTARRRNERVIV
dt dt
d i av
—(g.v'v)) = !
or dt(g.J ) = 2 g rad
—V' = ——(g.:VV
p g” dt \ 2dt (g|] )
using this result in equation (7), we get
_md i
W= Qg @V v)d

Mry Vivilk
W= E[gijvv ]H

Let T, and T, is kinetic energy at P, and P, respectively.
W=T,-T,
2

m_ oo mv. _
WhereT:?gi,-VV = is kinetic energy of particle.

We have the result that the work done by force F; in displacing the particle from the point P, to

1
the point P, is equal to the difference of the values of the quantity T = 5 mv? at the end and the

beginning of the displacement.

8.4 CONSERVATIVE FORCE FIELD

\P [
The force field F, is such that the integral W= QzFi dx' jsindependent of the path.

Therefore the integrand F, dx' is an exact differential
dw=F, dx ... (8)
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of the work function W. The negative of the work function W is called the force potential or
potential energy.

We conclude from equation (8) that

mw
Fi = —§ ... (9
where potential energy V isafunction of coordinatesx . Hence, thefields of force are called conservative

THEOREM 82 A necessary and sufficient condition that a force field F, defined in a simply
connected region, be conservativeisthat F; ; = F; ;.

Proof: Suppose that F; conservative. Then F; = — ﬂ.
Now,
IF ki
TT i
& Vo
é IxX g_lki
= : F
Fi T 5 J% k
1 1k
S AR .
WK {iip ¢ W)
and
T, ik
- —L-j yF
FiT Wi ¢
Similarly,
v ki
= . (2

F.=—————-1.vyF
TR i ¢
From equation (1) and (2), we get

Fii=Fii
conversely, suppose that Fi’j =F ji
Then
ki i1k
T o T e
x/ lek', fix TJ'%
b
W ki
o - X }i jg due to symmetry.
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TekeF; = - F
Then
= 1%
™ xix
_ (K2
TOXx
_TeivVe
‘ITX'g x' g
W
U
So, we can take F = - ﬂl
Ix

Hence, F, is conservative.

8.5 LAGRANGEAN EQUATIONS OF MOTION
Consider a particle moving on the curve
C:x = X (t)
Attimet, let particle is at point P (x).

1
Thekinetic energy T = 5 mv2 can be written as

T= Emg..>‘<i X!
2 Y
Since X' = V',
1 i ok
or T= EmgijX .. (D)
Differentiating it with respect to X', we get

m 1 X L KO
- - =m -g—‘x +x! —=
ﬂxl 2 g]k ﬂXl ﬂXI Q

%mgjk(dij K+ dikxj)

1 i 1 i
> mgd/ xK +E mgjkd:‘x’

%m(gikxk + gjixj)

1 i i
= Em(gijxl +g;X') & g;=0;



Analytical Mechanics

LI
ﬂ)'(i - mgijx
_I _ Kk
or ﬂXI - mgikX

Differentiating equation (2) with respect to t, we get

d odlT o d
agﬂTE = (glk )

éd . ok U
= Ma— Qi X" + Qi X"
gt ™ “

é u
=m ﬂgljk X+ 03 X
ax’ a
d
—E = mﬂg'k XX +mg,, X
dt %’ 1S
. 1 o ik
Since T = Emgjkx X
Differentiating it with respect to X, we get
TIT 1 1Tg]k
—_— = — X X
! 2 !

Now,

dafTo T _ 1o,

dt gﬂTﬂ x ﬂx

i 1
= s XK +mgkx-5m

mg;, X~ + 2 m i g g +£mgik>'<j>'<k - —m—x
2 X 2

147

(2

. (3

. (%)

ﬂg“‘ I xK

1 1ngk X]Xk

2 X

= mg, X + 3 Gk iy 4 1mﬂgJIJ gxi - L ATy xIxK
2 % 2 X« 2 X

- mg, X += me‘”gllk ﬂgikj - ﬂgj.k ijx"
2 ax' 91X ™ G

mg, X< +m[jk,i]x/ X

mg, X +mg"g, [ jk,i]xIx*

mg, X +mg" g, [ jk,i]x!x*
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= mg, [ +g"[jki]x/
é, 1la. ..u R N
:mgiléxl*‘%. L'I'Jxkl], mgl[lki']zi'k’
& 1ikp g kg
defITo T | . IR BV VR
—C¢ —+ — =mg,a, Sinced =X *j .  yX'X
dtéK g X Ji Tik
where a' is component of acceleration
dadmo T _
or A& g
dadTo T
—C— - — = F. (5)
dtéK g ™

where F; = m &, component of force field. The equation (5) is Lagrangean equation of Motion.

\
For a conservative system, F, = —%- Then equation (5) becomes
deio T _ W
dtéi g X T 1K
dadTo 1T-V)
at eg_ﬂxi o w 0 .. (6)

Since the potential V is a function of the coordinates X alone. If we introduce the Lagrangean

or

function

L=T-V
Then eguation (6) becomes
A 5 - (7)

EXAMPLE 1

with

Show that the covariant components of the acceleration vector in a spherical coordinate system
dSZ = (dxl)Z +(X1dx2)2 + (Xl)ZS'nZ X2(dx3)2 are
a; = - X (x%)?- X (x3sn x?)?

d , . .
a,= a[(xl)zxz]- (1) 2sn x? cosx?(x3)?

d . .
and a; = E[(xlsm x2)2x3]
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Solution
In spherical coordinate system, the metric is given by

dSZ - (Xm)Z +(dex2)2 + (Xl)ZS'nZ XZ(dX3)2
If v is velocity of the paiticle then

2 1 .2 > 2
sy  @RIX'O a&ix> 0

V2= G—= = = +(x})? — +(xtsn Xz)zaaﬁgz
Sdp Sats Car s Car s

V2 = (5(1)2 +(X1)2()~(2)2 +(Xls'nx2)2 ()-(3)2
If T be kinetic energy then

1 -
= —Mv
T=3

T= %m (X1)2 + (Xl)Z (X2)2 + (Xls'n X2)2 (XS)Z
By Lagrangean equation of motion
dadTo T

i e = Fjandma =F;
dtéfx g X
where F; and &, are covariant component of force field and acceleration vector respectively.
SO,
dedio IT
diém g K O
Takei =
_d@io 9T
Ma = GEndy w
from (1), we get
1 d o1y M1 22 1cin v2)2(¢3)2
= =M—(2X7) - —|2x7(X°)" + 2x°(In x°)“(X
may = 2ME(2X) - T[20(¢)2 + 2 (a0 X))
ol
a, = di_ [Xl()-(Z)Z + XL (dnx2)2(5°)?
dt
a; = - x(x?)? - xH(x¥dn x?)?
Takei =
dedflT o T

ma, = dtgﬂTQ w2

ma, = Em—[(x )22x] lm2(x )2 sin x? cosx? (x%)?

3= [(x )2X 2] (x})?sin x? cosx?(x%)?

149

. (D)

)
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Takei =3
e Ao AT
BT HETCy 1C
1 d o3 1 2\2
= —=m—|2(x°)(x 9n X -0
ma, = 3 26¢) (s’
dl. .
a,= E[x3(x1)2(smx2)2]
EXAMPLE 2

Use Lagrangean equations to show that, if a particle is not subjected to the action of forces then
its trgjectory is given by y' = a't + b' where @ and b' are constants and the y' are orthogonal cartesian
coordinates.

Solution
If v isthe velocity of particle. Then we know that,

V2= Jij yiyj
where y' are orthogonal cartesian coordinates.
Since
g;=0,1"]
g;=1i=]
SO!
V2= (y)?
But,
1 > o
T= Em\/ v Tiskinetic energy.
1 iv2
T= Zm(y)
The Lagrangean equation of motion is
d@ro g _
dtegfy 5 Ty
Since particle is not subjected to the action of forces.
So, F,=0
Th 92 2y =0
o a2 g 07
m% =0
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dy'
or ot =0
b y =at+b

where @ and b' are constant.

EXAMPLE 3

Prove that if a particle moves so that its velocity is constant in magnitude then its acceleration
vector is either orthogonal to the velocity or it is zero.

Solution
If v be the component of velocity of moving particle then
vi= L or vi= i
dt X

given |v| = constant.
Since
g;VVv' =|v[ = constant
Taking intrinsic derivative with respect to t, we get

d i
E(gijv v) =0
&V . . dv0
gingJ o rE=0
[
o] d_vivj +g Viﬁ =0
U dt I odt T
" j v - - .
9;; EV +tg,Vv * - 0, (Interchange dummy index i and j in second term)
av'
Zgiijl =0 as g; =9;
v
9ig ¥ =0
This shows that acceleration vector — is either orthogonal to Vi or zero i.e., — =0.

dt dt
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8.6 APPLICATIONS OF LAGRANGEAN EQUATIONS

(i) Free-Moving Particle
If aparticle is not subjected to the action of forces, the right hand side of equation (5), 148, vanishes.
Then we have

6

o 9T
X g X

5 =0 ()

=

%

ga

e
. i 1 i

If X' be rectangular coordinate system, then T = > myy.

Hence, the equation (1) becomesm §' = 0. Integrating it we get y = &'t + b, which represents
astraight line.
(ii) Simple Pendulum
Let a pendulum bob of mass m be supported by an extensible string. In spherical coordinates, the
metric is given by

d$ = dr?2 +r2df2 +r2sn?f dqg?
If T be the kinetic energy, then

T= rrwzzém(r2+r2f'2+rzsin2fq2) .. (D

N[

YZ

from Lagrangean equation of motion
dadTo T

dtg@;ﬂTZFi =123

So, take xt=r
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damo T _
dtgé?{a r =mgcosf-R
from (1), we have
. . R
r'-rfz-rsinzfqzzgcosf'a .. (2
Takex? = f, we have
rf +2rf - rsinfcosfg? =—gsin f .. (3
and take x® = g, we have
9 r2qant) = g (@)
pm

If the motion is in one plane, we obtain from equations (2), (3), and (4), by taking g =0.
R
b L£2 — f-=
i -rf g cos m
rf +2¢f =—gsinf

a0

If r =0, we get, f :-9—; sinf which is equation of simple pendulum supported by an

. _ . erg _ . . I
inextensible string. For small angles of oscillation the vibration is simple harmonic. For large vibration
the solution is given in the term of eliptic functions.

8.7 HAMILTON’S PRINCIPLE

If aparticle is at the point P, at the time t; and at the point P, at the time t,, then the motion of the
particle takes place in such a away that

dz(dT FFdd)dt = g

where X = X (t) are the coordinates of the particle along the trajectory and X + gxi are the coordinates
along a varied path beginning at P, at time t; and ending at P, at time t,,.
Proof: Consider a particle moving on the curve

C:x = X (), t,EtEL,
Attimet, let particleis at P(X). If T is kinetic energy. Then

Ling X %
T=73 9jj

or T=T (x,x) i.e Tisafunction of X and x . Let C" be another curve, joining t, and t, close
tobeCis

C :X'(gt) = X (t)+ o' (t)
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Att, and t,
= X =x +edx
p dx'(t) = 0and dx (t,) =0
BuuT=T (x,x).
If dT besmal variationin T. Then
AL AL
dT = —IdX +ﬂx dX
Now,
L i el T i 0
q {(dT+E)dx}dt = 01 gﬂ7d>< +ﬂ)‘(i dx' + F,dx fadt
\ZﬂT TlT i
= Qlﬂ7dxdt+o —dxdt+Q Fdx dt

T
Integrating second term by taking F as 1st term
{2 T eﬂT Wb

L d
- () —dXdt+ —
Ql ﬂX ei ut Q dt

1

géT 9dxdt+(‘52Fi o dit
tefX o 1

Since dx' (t,) =0,dx' (t,) =0.

AT Io
then ¢—rdx'~ =0.
elx @,
Sol
b i L T daHT o, i
dT +Fadx Jdt = § —d 'dt- )’ —f——z0x dt
Qb -Fala - g roda- 0 5]
+§ﬁwm
2 ; L é d O U
ol +Fax)ar = e~ LLIBREE< LR AN
1 1 eﬂX dteﬂX ﬂ u
since particle satisfies the Lagrangean equation of motion. Then
dedTo T _
dETK g X '
N odeTy
w dtéK e
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SO:

dz(dT+Fidx‘)dt: (‘52[- F +F]dXdt
t .
Q (@M +Fax)dt = o Proved.

8.8 INTEGRAL OF ENERGY

THEOREM 8.3 The motion of a particle in a conservative field of force is such that the sum of its
kinetic and potential energies is a constant.
Proof: Consider a particle moving on the curve

C:x = x(t), t,EtEL,
Attimet, let particleis at P (X). If T is kinetic energy. Then

Lg% x
T= E gij

or T= Emgijvv

As T isinvariant. Then
Taking intrinsic derivative with respect to t, we get

ar _dar
dt — dt
= iaelmg vivi =
ag
1 @V, a0
S Myjjg——V VJ_L
2 I ot at

1 & ' dv! .0
SM&G——V +0ij——V
2 (g‘ dt a 5

> gu ot gt E,Snce|andjaredummy|nd|ceﬁ

— 1 2 d‘/i j —
—Em gijEV as g;; =9
a e
a - M9
dT av!

or o - MYV
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i e
mg;a'v as—-=a

dr o .
o Sma Vv, sinceg; & = g
d_T_F i

a ~ Ve

Since F; = m g is a covariant component of force field.

But given F; is conservative, then

Fi=- % where V is potentia energy.

Sol
dar :
- =- ﬂv'
dt ﬂx'
S
ix dt
dar  dv
dt = gt
dar  dv d
—+— =0b —(T+V)=0
da dt 0 dt(T )
p T+ V= h, where his constant.
Proved.
8.9 PRINCIPLE OF LEAST ACTION
Let us consider the integral
P
A= Ql mv.ds (1)

evaluated over the path

C:x = X(t), tEtEL,
where Cis the trajectory of the particle of mass m moving in a conservative field of force.
In the three dimensional space with curvilinear coordinates, the integral (1) can be written as
i

P dx ]

_ ‘t(PZ)mg d_de_det
“Qm " dt
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SnceT= Im dx' dx’ "
nceT= > 9i; " , we have

t(Ry)
= 2Tdt
A Q(FD
This integral has a physical meaning only when evaluated over the trgjectory C, but its value can
be computed along any varied path joining the points P, and P.,.
Let us consider a particular set of admissible paths C' along which the function T + V, for each

value of parameter t, has the same constant value h. Theintegral A is called the action integral.

The principle of least action stated as “of al curves C' passing through P, and P, in the
neighbourhood of the tragjectory C, which are traversed at a rate such that, for each C', for every value
of t, T+ V = h, that one for which the action integral A is stationary is the trgjectory of the particle.”

8.10 GENERALIZED COORDINATES

In the solution of most of the mechanical problems it is more convenient to use some other set of
coordinates instead of cartesian coordinates. For example, in the case of a particle moving on the
surface of a sphere, the correct coordinates are spherical coordinates r, g,f where q and f areonly
two variable quantities.

L et there be a particle or system of n particles moving under possible constraints. For example, a
point mass of the ssmple pendulum or arigid body moving aong an inclined plane. Then there will be
aminimum number of independent coordinates required to specify the motion of particle or system of
particles. The set of independent coordinates sufficient in number to specify unambiguously the system
configuration is called generalized coordinates and are denoted by ', g2,...q" where n is the total
number of generalized coordinates or degree of freedom.

L et there be N particles composing a system and let x(ia) ,(1=1293),(a =12,..N) bethepositiond
coordinates of these particles referred to some convenient reference framein E;. The system of Nfree
particles is described by 3N parameters. If the particles are constrained in some way, there will be

certain relations among the coordinates x(ia) and suppose that there are r such independent relations,

£ (X X X X2y Xz X - X X Xy) = 0. (1= 1,2, 1) - (D)
By using these r equations of constraints (1), we can solve for somer coordinatesin terms of the
remaining 3N — r coordinates and regard the latter as the independent generalized coordinates d'. It is

more convenient to assume that each of the 3N coordinates is expressed intermsof 3N — r = n
independent variables ' and write 3N equations.
X(ia) = X(Ia) (qliqzy---yqnit) (2)

where we introduced the time parameter t which may enter in the problem explicitly if one deals with
moving constraints. If t does not enter explicitly in equation (2), the dynamical system is called a
natural system.

The velacity of the particles are given by differentiating equations (2) with respect to time. Thus

_ W) o, Xa)
o )

Xa) = 19
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The time derivatives ¢’ of generalized coordinates g' the generalized velocities.

For symmetry reasons, it is desirable to introduced a number of superfluous coordinates ' and
describe the system with the aid of k > n coordinates gt, ¢f%,..., g In this event there will exist certain
relations of the form

fi(qt...g%t) =0 e (4)
Differentiating it we get

LR i

i +—

i q it 0 ... (5)

It is clear that they are integrable, so that one can deduce from them equations (4) and use them
to eliminate the superfluous coordinates .
In some problems, functional relations of the type
Fl(oh9%,...0%¢,...01) =0,(j=1,2,3, .., m ... (6)
arise which are non-integrable. If non-integrable relations (6) occurs in the problems we shall say that
the given system has k — m degrees of freedom, where mis the number or independent non-integrable
relations (6) and k is the number of independent coordinates. The dynamical systems involving non-

integrable relations (6) are called non-holonomic to distinguish them from holonomic systemsin which
the number of degrees of freedom is equal to the number of independent generalized coordinates.

In other words, a holonomic system is one in which there are no non-integrable relationsinvolving
the generalized velocities.

8.11 LAGRANGEAN EQUATIONS IN GENERALIZED COORDINATES

Let there be a system of particle which requires n independent generalized coordinates or degree of
freedom to specify the states of its particle.

The position vectors X' are expressed as the function of generalized coordinates ¢', (i =1,2,...,n)
and thetimeti.e,

W =x (@,9%...q"t);  (r=123)
The velocity x' of any point of the body is given by
X’ E+ﬂxr
T qq’ dt Tt
ﬂiq] + ﬂX ,
o’ qt

(i=1,2 ...

where ¢’ are the generalized velocities.
Consider the relation, with n degree of freedom,

X =x (0.9%..0") .. (1)
involve n independent parameters . The velocities y in this case are given by
ﬂXr < .
X' a9, (r=1,2,3 j=1,2,..,n ..(2
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where ¢! transform under any admissible transformation,

g“ =g d,...a", (k=1,2,..,n) .. (3
in accordance with the contravariant law.
The kinetic energy of the system is given by the expression of the form

l o S
= ESmgrs XX, (r,s=1,2,3) .. (4)

where mis the mass of the particle located at the point X'. The g, are the components of the metric
tensor.

Substituting the value of ' from equation (2), then eguation (4) becomes

1 R S
T= 5SMe o7
1
T= 3534 q’ ... (5
ix" qr®
where a; = Smgrsﬂ_qu' (r,s=1,2,3),(@(,j=1,..n)

SinceT= %aﬂ 44’ isaninvariant and the quantities &; are symmetric, we conclude that the §;
are components of acovariant tensor of rank two with respect to the transformations (3) of generalized
coordinates.

Since the kinetic energy T is a positive definite form in the velocities ¢' | g; [>0. Then we
construct the reciprocal tensor i .

Now, from art. 8.5, Pg. 146, by using the expression for the kinetic energy in the form (5), we
obtain the formula,

de&ro 9T e 110, .,0
e o=k i ya g 6
afta s 19 -6 it (6)
ila
where the Christoffel symbol | jkg are constructed from the tensor a.
i

Put

. Uik |
q-+i. yad'd =
Tikp Q
s0, the equation (6), becomes

dg@me g

H — = a |
aEa s 1q

= Q@(=12..n) .. (7
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f h eal K_ﬂi ﬂi_ ﬂz 5] d ﬂxr da]xro
Now, from the realtions W1 g g a9 g a5

< and using equations

(2) and (4).
Then by straightforward calculation, left hand member of equation (7) becomes
d ai'ﬂT 0 T o ﬂxr
g -ama
dt 9% Td (e}

inwhicha; = g; al is acceleration of the point P.
Also, Newton's second law gives
ma, = F, .. (9
where F S are the components of force F acting on the particle located at the point P.
From the equation (9), we have

.. (8)

x _ 2 F ﬂi:
1q' fig
and equation (8) can be written as

am

daeﬂTO m_s e X

= Fr_i ... (10
dtgfq' 5 1o a Tq 4o
comparing (7) with (8), we conclude that
) X
- g F —
Q| a ﬂql
where vector Q; is called generalized force.
The equations
TO 9T
iaeﬂ‘i :. ﬂ_ -0 .. (11)
dtgfg' g T

are known as Lagrangean equations in generalized coordinates.
They give asystem of n second order ordinary differentia equations for the generaized coordinates ¢
The solutions of these equations in the form
C:q =d (v
Represent the dynamical tragjectory of the system.
If there exists afunctions v (q',q?,...,q") such that the system is said to be conservative and for
such systems, equation (11) assume the form

defd L
dt&q' 5 o
where L = T — V is the kinetic potential.

=0 .. (12)
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Since L (g, q) isafunction of both the generalized coordinates and vel ocities.

g, Ty,
& C T g .. (13)
L deef o
from (12), wehave & = —&_ =
(12) 9 dtg9q' &
Then equation (13), becomes
dL L daEL o
P Liq +_66ﬂ-i 9
dt 19 dtg7q' &
d &L ,iQ
T dtgTqg’ a 7 .. (19
since L = T -V but the potential energy V is not a function of the ¢
L i 9T
——q = ¢ =2T
g fig'
. 1 .
since = Eaﬂq q’.

Thus, the equation (14) can be written in the form
d(L-21) d(r+V):0
at - dt

which impliesthat T + V = h (constant).
Thus, along the dynamical trgjectory, the sum of the kinetic and potentia energies is a constant.

8.12 DIVERGENCE THEOREM, GREEN'S THEOREM, LAPLACIAN OPERATOR AND
STOKE'S THEOREM IN TENSOR NOTATION

(i) Divergence Theorem
Let E be avector point function in a closed region V bounded by the regular surface S. Then

c‘}iivlE _ (‘jEXﬁds (D)
\Y S

where f isoutward unit normal to S.
Briefly the theorem states that the integral with subscript V is evaluated over the volume V while
the integral in the right hand side of (1) measures the flux of the vector quantity g over the surface S.
In orthogonal cartesian coordinates, the divergence of g isgiven by the formula

ﬂFl . ﬂFZ N 1'“:3
~< X K

div E = . (2)
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~ If the components of F relative to an arbitrary curvilinear coordinate system X are denoted by
F' then the covariant derivative of F' is

The invariant Fyij in cartesian coordinates represents the divergence of the vector field g .
Also,

Fxi = g;F'n’ =F'n since g;n’ =n,
Hence we can rewrite equation (1) in the form

Vd:,idV - gnds . (3

S
(ii) Symmetrical form of Green's Theorem

Let f (&, x%,x°) andy (x*,x2,x%) betwo scalar functionin V. Let f, and y; bethe gradients of f
and Y respectively, so that

- qif - Ty
= fi =— =Yi=—
Nf P and Ny =Y 0
Put F, = fy, and from the divergence of we get
F,ij = gijFi,j = gij(fij +yif))
Substituting this in equation (3), we get
Oy, +y f)av _ gynds @
b A
Since Ny =y, then
gy, = N2y .. (5)
Also, the inner product gy, f ; can be written as
g'yf; = Nf Ry
where N denote the gradient and {2 denote the Laplacian operator.
Hence the formula (4) can be written in the form
o'ty +g'y, £ av _ iy ds
\% S
Of N2y +Rf <Ry )dv _ ¢ iy ds
\% S
X )2 N A ™ ‘o
Vd'\'de=dn>Ny-(j\lf><l\lde .. (6)
S \%

where AXly =y n =
in
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Interchanging f and Y in equation (5), we get

O N AV _ oy i - gty »if av
v s
Subtracting equation (5) from equation (6), we get
Oy -y ey | R It 845
v - s€ fin ng

Thisresult is called a symmetric form of Green's theorem.
(iii) Expansion form of the Laplacian Operator
The Laplacian of Y isgiven by

N2y = g”yi,j from (5)

163

. (7

.. (8)

when written in the terms of the christoffel symbols associated with the curvilinear coordinates

X covering Es,
@7y ikufy o

N2y = g'6—=—-i " o
y WX b 5
and the divergence of the vector F' is
Fi - F! +| [ uFJ
U ¢ ‘]I%
iia IogJ—
But we know that AJ'% = I

The equation (10) becomes

-
i = log+/g F'
Fi ™ 9‘”] 0g+/9

I (1)
or F,i = JE ﬂXi

If putting F' = ”l-:g”yj in equation (11), we get

X!
L %g
gvyii-= @ ™
But from equation (5), we know that
N2y = gijyj,i

.. (9)

...(10)

. (11)

.. (12)
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Hence equation (12) becomes
x i o]
Ny =gy =F=—"5"
Joo
It is expansion form of Laplacian operator.

(iv) Stoke's Theorem

Let aportion of regular surface She bounded by aclosed regular curve C and let E be any vector point
function defined on Sand on C. The theorem of Stokes states that

Cp-curlFds = ¢ ds ... (13)
S C

where | isthe unit tangent vector to C and curl E is the vector whose components in orthogonal
cartesian coordinates are determined from

& & &
R

cul £ = | qx2 x| = N F ... (14)
Fl p2 p3

where g being the unit base vectors in a cartesian frame.
We consider the covariant derivative F; ; of the vector F; and form a contravariant vector
G =—€e"F;, ... (15)
we define the vector G to be the curl of E .
i

Since . curl E =nG' =-€"F,,n and the components of the unit tangent vector | and —— .

ds
Then eguation (13) may be written as
N jjk dXI
- O Funds _ op & o
o CG & ... (16)

Theintegral C\fl dx’ is called the circulation of E along the contour C.
Cc

8.13 GAUSS'S THEOREM

The integral of the normal component of the gravitational flux computed over a regular surface S
containing gravitating masses within it is equal to 4pm where mis the total mass enclosed by S.

Proof: According to Newton's Law of gravitation, a particle P of mass m exerts on aparticle Q of unit

m
mass located at a distancer r from P. Then aforce of magnitude F :r—z-

Consider a closed regular surface Sdrawn around the point P and let g be the angle between the

unit outward normal to A to S and the axis of a cone with its vertex at P. This cone subtends an
element of surface dS.
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The flux of the gravitational field produced by mis

2
\F A <mcosq r “dw
.nds _ o e
g - o r? cosq
2
where dS= cosq and dw is the solid angle subtended by dS.
Thus, we have,

¢y AdS _ ¢yndw=4pm )
S S

Fig. 8.2.

If there are n discrete particles of masses m located within S, then

¢ m cosq
FA=a 2
i=1 i
and total flux is
O Ads = 4pd m (2

s i=1
The result (2) can be easily generalized to continuous distributions of matter whenever such
distribution no where melt the surface S.
The contribution to the flux integration from the mass element ' dV contained within V, is

- .cosqr dV
d:ndS =0 r2 ds
s S

and the contribution from all masses contained easily within Sis
) \ & cosqr dv 0

N A e — ~dS
d:.nds—QSVOirz - .. (3

a
S
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where O denotes the volume integral over all bodiesinterior to S. Since all masses are assumed to be

interior to Sr never vanishes. So that the integrand in equation (3) is continuous and one can interchange
to order of integration to obtain

« 88.00sqdS o

NE A e = =V
Fhas =080 =5 .. (8)
S
<cosqdS . . . -
But OT =4p. Since it represents the flux due to a unit mass contained within S
Hence
NI 4pcy dV =4pm
Ads = “PO ...(5
< ( (5)
where m denotes the total mass contained within S Proved.

Gauss's theorem may be extended to cases where the regular surface Scuts the masses, provided
that the density Sis piecewise continuous.

Let Scut some masses. Let S andS' betwo nearby surfaces, the first of which lieswholly within
Sand the other envelopes S. Now apply Gauss's theorem to calculate the total flux over S' produced by
the distribution of masses enclosed by Ssince S' does not intersect them.

We have
(§F-A) dS = 4pm
S

where the subscript i on E xiy refers to the flux due to the masses located inside S and mis the total
mass within S. On the other hand, the net flux over S due to the masses outside S, by Gauss's theorem
is

dlf x),ds =0
s

where the subscript o on F xi refers to the flux due to the masses located outside S.
Now if we S and S' approach S, we obtain the same formula (5) because the contribution to the

total flux from the integral (‘jlE x), dS is zero.
S

8.14 POISSON'S EQUATION
By divergence theorem, we have

¢y Aids = (yiv Fav
S \
and by Gauss's Theorem,

\a.ﬁdS = 4p6 av

s \Y

from these, we have
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Cydiv F - 4pr )dv =0

\
Since this relation is true for an arbitrary V and the integrand is piecewise continuous, then

div F = 4pr
By the definition of potential function V, we have
F =-Rv
and dvRVv = 2y
So,
div g = 4pr
div (-Nv ) = 4pr
N2V = - 4pr

which is equation of poisson.

If the point P is not occupied by the mass, then I' = 0. Hence at al points of space free of matter
the potential function V satisfies Laplace's equation

Nav =0

8.15 SOLUTION OF POISSON'S EQUATION

We find the solution of Poisson’s Equation by using Green’'s symmetrical formula. We know that
Green's symmetrical formula
& if 6
N 12 <2 AT Yy 9%s
diy-ny)dV—Pg n y.ﬂng )
\%
where V isvolume enclosed by Sand f and Y are scalar point functions.

1
Put f = where r is the distance between the points P (x',x?,x°) and Q (y*,y?,y°) and V is

the gravitational potential.
n

A

Fig. 8.3.



168 Tensors and Their Applications

1 . A
Since T has a discontinuity at x' =y', delete the point P(x) from region of integration by
surrounding it with a sphere of radius e and volume V'. Apply Green's symmetrical formula to the

1
region V — V' within which T and V possess the desired properties of continuity.
N 2l
ion V- V,N*% =N2==0.
Inregion p
Then equation (1) becomes

AN N2 6 Ay %;
OFN ydv _ Og? ﬂn o‘g‘— 'nn ‘ﬂn ds ... (2
YAy, s a
where i isthe unit outward normal to the surface S+ S boundlng V —V'. S being the surface of the
9
sphere of radius e and - ﬂn ﬂr :
Now
19 2 1
aelﬂ—y-yﬂ :dS:(‘)é-lﬂl- 3
fn Ing s rqr Irg
&elly yo.
_ - - =Ircdw
= 0% rir r’g
S
el 0
_ - F—+y -dw
- 93 1 2}
Ay e aye =
—-y—L7_-¢e + dw- 4
N 5= Ogﬁgr:e Py .. (3

where ¥ isthe mean value of V over the sphere S and w denote the solid angle.

Let Y (X" x*,x®) =y (P)as r ® O thenas e® 0 from (3), we have

Ay 7206
r%-y ﬂ == '4W(P)

Then eguation (2) becomes

N L0
Nde_ —-y :dS dpy (P)
Gy - Oy

Since e® 0 then c‘i—Nzy dv =0.
v
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11Ty o 1 Sy 12
I — Yy —ds
y (P) qN fyav - qﬂn "9 T (4

This gives the solution of Poisson's equation at the origin.
If Y isregular at infinity, i.e., for sufficiently large value of r, ¥ issuch that

fiy
£ — —£ —
(y ) and ﬂr r 2 (5)
where mis constant.
If integration in equation (4) is extended over all space, sothat r ® ¥ . Then, using equation (5),

equation (4) becomes

y(P) =" —()—dV ... (8)

But Y isapotential function satisfying the Poisson's equationi.e. N2y =- 4pr .
Hence, from (6), we get
L av
y(P) = ¥0 "

This solution is Unique.

— EXERCISES —

1. Find, with aid of Lagrangian equations, thetrajectory of aparticle moving in auniform gravitational
field.

2. A particleisconstrained to move under gravity along theliney' =c's(i = 1, 2, 3). Discussthe motion.
3. Deduce from Newtonian equations the equation of energy T +V = h, where his constant.
4. Provethat

Qyin'ds _ % dv
S \

Ty

wherey; =—.
1

XI

5. Provethat the curl of agradient vector vanishesidentically.



CHAPTER -9

CURVATURE OF CURVE, GEODESIC

9.1 CURVATURE OF CURVE: PRINCIPAL NORMAL

Let C beacurveinagiven V, and let the coordinates xi of the current point on the curve expressed
as functions of the arc length s. Then the unit tangent t to the curve the contravariant components

X
th = 0s (D)

The intrinsic derivative (or desired vector) of i aong the curve C is called the first curvature

vector of curve C relativeto V,, and is denoted by p. The magnitude of curvature vector P is called
first curvature of C relative V, and is denoted by K:

SO!
K= —\/ 9jj pi pj
where pi are contravariant components of p so that

i =t ]ﬁ
P "l ds
S el 1 G0
= G—— i Y —
éﬂxl 7a ngds
W a0l
! ds ds%a j?;/,

di’ o dx 1 i U
= —t——  y
ds ds dsja jg
d’  dx) dx1 i U _ .
= 42 ds ds%k ifv)' Replacing dummy index a by k
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A el iU i iy
P~ 42 " ds dsij kp ik ik ip
If A4 isaunit vector in the direction of p, then we have
p=kn
The vector ; is called the Unit principal normal.

9.2 GEODESICS

Geodesics on a surface in Euclidean three dimensional space may be defined as the curve along which
lies the shortest distance measured along the surface between any two points in its plane.

But when the problem of find the shortest distance between any two given points on a surface is
treated properly, it becomes very complicated and therefore we define the geodesics in V, asfollows:

(i) Geodesicinasurface isdefined asthe curve of stationary length on a surface between any
two pointsin its plane.

(if) In V; geodesic is also defined as the curve whose curvature relative to the surface is
everywhere zero.

By generalising these definitions we can define geodesic in Riemannian V, as

(i) Geodesic in a Riemannian V, is defined as the curve of minimum (or maximum) length
joining two points on it.
(if) Geodesic isthe curve whose first curvature relative to V,, is zero at all points.

9.3 EULER'S CONDITION
THEOREM 9.1 The Euler condition for the integral
t . .
(‘jf(x',sd)dt

to be staionary are

T deelf 9
B dETH o
dx'
where = d_)f[ i=1,23,..

Proof: Let CbheacurveinaV, andA, B two fixed pointson it. The coordinates yx' of the current point
P on C are functions of asingle parametert. Let t, and t, be the values of the parameter for the points
A and B respectively.

To find the condition for the integral

C‘if(xi,%)dt 0

to be stationary.

Let the curve suffer an infinitesimal deformation to C¢ the points A and B remaining fixed while
the current points P(X) is displaced to P' (X + h') such that h' = 0 at A and B both.
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Fig. 9.1

In this case the value of integral (1) becomes | ¢

Sol
6= Q) F 4%+ ot
0
By Taylor's theorem
0
F(x+hy+k) = f(x Y)+§%ﬂf KL 2 4 o0
Ix Vg
Then
i€ i iy aF i TF L6, U
= aF (X', X') +¢=——h' + —Nn' T+ x0¢, dt
o= Q.8 O G T T
gl F .i0
- ) F(X, %) dt+ ¢ h' + —h' Zdt
l¢= Q (X', x) Q%" "7 5
(Neglecting higher order termsin small quantities h')
N adTF Mt .0
=1+ +—~h' =dt
Qg T
\tlﬁ-": T”:
di Qer_ﬂX. ﬂx‘ ..(2)
i ‘ﬂzi "
h h' =——x
where ry
Now,
t
\ufF efF ot _~udadFg,
2 Ridt = h'y, —O—¢=—-n'dt
o X! dt_gﬂxl HO q t &X' o
RPN il N
= qodt eg'_ﬂxi{a ..(3)
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€. _efF i i u
gsmce»—h (t) —O, h'(t) =h'(t,) =00
g ol f
Then eguation (2) becomes
JiefF d ofF QU
& — = hidt
Q eﬂ— ot g x'% ...(4)
Theintegra | is stationary if dl =0.

t16'|1F daaIFou i
h'dt -
i.e., |fQ &ix dtgﬂx% 0

Since h' are arbitrary and hence the integrand of the last integral vanishes, so that

I ddFg_ 5

™, dtgﬂ_x (i= )] ... (5
Hence the necessary and sufficient condition for the integral (1) to be stationary are

w dtédk'g (=12 ..

These are called Euler's conditions for the integral | to be stationary.

9.4 DIFFERENTIAL EQUATIONS OF GEODESICS
To obtain the differential equations of ageodesicinaV,, using the property that it isapath of minimum
(or maximum) length joining two points A and B on it.

Proof: Consider acurve CinV, joining two fixed pointsA and B on it and x' (t) be the coordinates of

point P on it.
B[ dxdx!
= 0% g q -
E_hﬁﬁ
d ~ V™ dt dt

ds dx' dx/
1 %o o

or S:,\/gij)'()'(J =F

Then eguation (1) becomes

The length of curve Cis

Put

=F (say) ..(2)

s= OABF dt .(3)



174 Tensors and Their Applications

Since curve C is geodesic, then the integral (3) should be stationary, we have from Euler's
condition

— - —c——==0 (4)
Differentiating equation (2) with respect to yk and yk we get,

F _ 179 o5

ﬂxk Zsﬂx
T g x2=2g,%
and ﬂXk ggglk p Sglk
daa‘ITFo l.. . 1ﬂgik.j4i 1 i
—C——+ = - —5S0j X +t———X' X +—0jX
dt eﬂXkﬂ SZ Jik s ﬂX] S.g|k

Putting these values in equation (4), we get

11]9_”;55@' -

el é i ﬂg|k
25 qxK g <2

ig
Sgikx K + glkx u=20
$ x/ u

+ Z9ik 1195 6 xx

gﬂxJ 21]x =0

gikxi - igik
§

g% - %gikxi +kij]¥xi = o

multiplying it by g™, we get

m i S m o m i
9 g, X' - ggk g.% + 9" [k,ij]x %) = o

kmly, _i ml‘:.l
But gkmgik =d" and 9 [k’”]_%i J%
.. P omig
xm . Sym +} PX'XJ: 0
St
d’x™  sdx™ 1 mudx! dx aReplacing dummy
et Y =0 3 ..(5)
a2 s dt 1] kpdt dt index i by k 5

Thisisthe differential equation for the geodesic in parameter t.
Taking s=t, $=1,5=0. Then equation (5) becomes
d?™ i m ddx dx*

—+ ) e —
a2 1k ds ds - 9 +(®
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which may also written as

o g
ds&ds g = 0

Then the intrinsic derivative (or derived vector) of the unit tangent to a geodesic in the direction of the
curve is everywhere zero. In otherwords, a geodesic of V,, is aline whose first curvature relative to
V, isidentically zero.

THEOREM 9.2 To prove that one and only one geodesic passes through two specified pointslying in
a neighbourhood of a point O of a V,,.

OR
To prove that one and only one geodesic passes through a specified point O of V, in a prescribed
direction.

Proof: The differential equations of a geodesic curveinaV, are

d2x™ Lim tdx! dx*

ds? 1] kpds ds
These equations are n differential equations of the second order. Their complete integral involves 2h
arbitrary constants. These may be determined by the n coordinates of a point P on the curve and then
components of the unit vector in the direction of the curve at P. Thus, in general, one and only one
geodesic passes through a given point in a given direction.

9.5 GEODESIC COORDINATES

A cartesian coordinate system is one relative to which the coefficients of the fundamental form are
constants. Coordinates of this nature do not exists for an arbitrary Riemannian V,,.. It is, however,
possible to choose a coordinate system relative to which the quantities g; are locally constant in the
neighbourhood of an arbitrary point P, of V,,. Such a cartesian coordinate system is known asgeodesic
coordinate system with the pole at P,

The quantities g;; are said to be locally constants in the neighbourhood of a point B if

ﬂgij _
ﬂ7 =0 a P
ﬂgij
and — 1 0 elsewhere
X

: . 1k
This shows that [IJ,k]:O,li J.g:OaI R .
|
Since the covariant derivative of A; with respect to XK is written as

SO T A (" SR SR
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The covariant derivative of A; at B, with respect to yk reduces to the corresponding ordinary

derivatives. Hence

Lo
X
THEOREM 9.3 The necessary and sufficient condition that a system of coordintes be geodesic with
pole at P, are that their second covariant derivatives with respect to the metric of the space all vanish
at Py,

Proof: We know that (equation 8, Pg. 65)

Ajx = a R

L ‘I kU xP x%1 s @

xR J[\; X ‘ﬂ‘“pqg

q axso xSl kU P Ix91 s U
'ﬂ“é'ﬂ_I+ X« ||J% ™ 'ﬂ_“qu,) + (1)

Interchanging the coordinate system yi and xi in equation (1), we get

or

Taxo_ Xiki fX°&ID S G
WEW 5 WTiip W TP ap

WP X SU g @0 Rk

- — : .
W Wipah~ WS 5 X1 ]

-1 (i-s)- xs: : l.'Jsince =X} at P
UL T X< e
ik
= (X)) since I %—Oaipo
Thus,
I i LS
%= 'HTA p o ~(2)

Necessary Condition
Let xs be a geodesic coordinate system with the pole at P, so that

Sufficient Condition

Conversely suppose that Xj; =0 at P, .
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Then equation (2) becomes

I SO IR
| i e =
qu;V)ﬂX' -0
i Sy P a
p iy :OatPO,asﬂ_Liloandﬂ_LWOatPO
|DQKV) i x!

So, x°is a geodesic coordinate system with the pole at P,

9.6 RIEMANNIAN COORDINATES

A particular type of geodesic coordinates introduced by Riemann and known as Riemannian coordinates.
Let C be any geodesic through agiven point P, , sthe length of the curve measured from B, and x' the
guantities defined by
@ o
b= et (1
X' = §asy M

the subscript zero indicating as usual that the function is to be evaluated at P,. The quantities x’
represents that only one geodesic will pass through Py in the direction of X in V.. Let y be the
coordinates of a point P on the geodesic C such that

y = ..(2)
where s is the arc length of the curve from P, to P . The coordinates y' are called Riemannian
coordinates.

The differential equation of geodesic C in terms of coordinates y' relativeto V, isgiven by

d’y i i ady dy!
a2 1] k% ds ds 0 -(3)
iiu .
where [ . vy isachristoffel symbol relative to the coordinates y'.
1

i kb’

The differential equation (3) will be satisfied by (2), we have,
R TI i _

O+ ) YXIXl =0 since dl:x'

i kb ds
1 [ Uxixj _
or %j kl\il) = ...(4)
using equation (2), equation (4) becomes
i i Uiﬁ y' i
%j kIV) s s -9 as =X
i

i o
or ij yy'y! = ...(5)
|
The equation (5) hold throughout the Riemannian V,, .
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Since y'1 0,y/ 1 0, from (5) we get
[
i. . y=0ah
T kb °
Hence the Riemannian coordinates are geodesic coordinate with the pole at R, .
THEOREM 9.4 The necessary and sufficient condition that the coordinates y' be Riemannian coordinates
[V
isthat | kgyl y’ =0 hold throughout the Riemannian V,, .
|
L . . RN NN .
Proof: If y' are Riemannian coordinates then the cond|t|on% j k)t/)y Y" =0 (from equation 5) throughout
the Riemannian V,, .

R S d_zy+}lpﬂld_yj_ - o
Conversely if Iy kgv)yy =0 hold then “;g2 i k% ds ds =0 aesatsfied by y' =sx'.

Hence y are Riemannian coordinates.

9.7 GEODESIC FORM OF A LINE ELEMENT
Let f beascalar invariant whose gradiant is not zero. Let the hypersurfacef =0 betaken as coordinates
hypersurface 4! =g and the geodesics which cut this hypersurface orthogonally as the coordinate
lines of parameter ! this parameter measuring the length of arc along ageodesic from the hypersurface
x'=0-

Since gx! isthe length of the vector m is given by

u?=gju
e, (@x) = guoxtae
b O =1 (1)

Now, if V' is the tangent vector to the hypersurface x* = 0 then we have
v = (0,dx?,dxC,..., dx™)
since the vectors u' and V' are orthogonal vectors.

Then,
g;u'v’ =0
b gyuv! =0, [u'=0,i=23 ...,n]
D gle] =0, aSull 0
b 05 =0, for j=2,3,...,n. (2

Again the coordinate curves of parameter x' are geodesics. Then s= xL.
If t is unit tangent vector to a geodesic at any point then
tl=1land t' =0,fori=2 3, ..., n.
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Now,
ds dxt
=} d—Xl:land £=0fori11
dx* dx*
and % = 2;£ =0 fori=1,2,..,n
Also, the differential equation of geodesic is
41T o a
ds? 1 khds ds "0
using above results, we have
jigdxt dxt
{12Y7ds “ds ~
iia
b %'11?) =0
b g'[1j] =0
p il =0 as o]0
%ae% 1115(—1,-12 =0, since 9, =1 P %:0
So,
E(lj =0 for jt1 (3)
from equations (1), (2), and (3), we have
91 =1 94=0;(j=2,3, ..., n), ?&j =0,(j=23,...,n)
The line element is given by
ds? = g dx'dx’
ds? = gyydx"dx' + g, dx) dx”
ds? = (dx)?+g,dxidx; (j=2,3,..,n, k=2,3,..,n ..(4)

The line element (4) is called geodesic form of the line element.
Notel  We note that the coordinate curves with parameter x! are orthogonal to the coordinate curve

xi=cl(i=1,2,..,n) at al points and hence to the hypersurfacesx! = at each point.
The existence of geodesic form of theline element provesthat the hypersurfacesf = xt = constantforma
system of parallelsi.e, the hypersurfacesf = x1= constant aregeodesically parallel hypersurfaces.

Note 2:
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THEOREM 9.5 The necessary and sufficient condition that the hypersurfaces f = constant form a

system of parallel is that (Nf )2 = 1.
Proof: Necessary Condition

Suppose that hypersurface f = constant form a system of parallels then prove that (Nf 2) = 1.

Let us take the hypersurface f = 0 as the coordinate hypersurface x! = 0. Let the geodesics
cutting this hypersurface orthogonally, be taken as coordinate lines of parameter x. Then the parameters
x! measures are length along these geodesics from the hypersurface x! = 0. Thisimplies the existence

of geodesic form of the line element namely
ds? = (dx")?+ g dx dx’
wherei, j = 2, 3,..., n.
From (1), we have

O, =1, dy =0 forit 1

from these values, it follows that

gt=1 g¢g"=0 foritl

Now,
(Rif )2 = Nf xNf = g
X Ix/
) (Nf)2= gt =1
(Nf)2=1

Sufficient Condition

Suppose that (Nf )2 = 1 then prove that the hypersurface f = constant from a system of parallels.

UL
%' dx!

g'dd,

(1)

Let us taken f = x* and orthogonal trajectories of the hypersurfaces f = x' constant as the

coordinate lines of parameter x1. Then the hypersurfaces
x! = constant

X = constant (i ¢ 1) are orthogonal to each other. The condition for thisg = Ofor it 1.

Now, given that (Nf)? =1

TPRILIS
? WO
b L L
™% x’
= g"did =1

b g11:1
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Thus

g'=1and ¢g"=0 foritil.
Consequently

911 =1, g, =0, fori® 1.
Therefore, the line element

ds? gijdxidxj
is given by
ds® = (dx*)? +gikdxika; (k=23 ...,n)

which is geodesic form of the line element. It means that the hypersurfacesf = x! = constant
form a system of parallels.

9.8 GEODESICS IN EUCLIDEAN SPACE

Consider an Euclidean space S, for n-dimensions. Let y' be the Euclidean coordinates. The differential
equation of geodesics in Euclidean space is given by

Y )i o
Y kg ds ds O (1)

In case of Euclidean coordinates the fundamental tensor g;; is denoted by &; and

. 4 1L ifi=
=2 =d =g fia |

To; _ &y _
™ XK
This implies that }_k_uzo,[ij,k] =( relativeto S,.
ii
Then equation (1) becomes

d2 i
ds
Integrating it, we get
dy’ . - . .
o a', where @' is constant of integration.

Again Integrating, we get
y' =a's+ b, where b' is constant of integration ..(2)
The equation (2) is of the form y=mx+c
Hence equation (2) represents a straight line. Since equation (2) is a solution of equation (1) and
therefore the geodesic relative to S, are given by equation (2). Hence geodesic curves in Euclidean
space S, are straight lines.
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THEOREM 9.6 Prove that the distance | between two points P (y') and Q (y') in S, is given by
g (i i\
1= Ja e )
i=1
Proof: We know that geodesicsin S, are straight line. Then equation of straight linein S, may be
taken as
y=as+b (1)
Let P(y') and Q(y") lie on equation (1). Then

y =as+ b, yé=ast+p

yb-y =al(st ) (2
Then equation (2) becomes
yé-y = all
178 @)° = § (v¢-y')’
i=1 i=1

But 5/ isthe unit tangent vector to the geodesics. Then

a@)?’ =1
so, )
2= a ey
d ) )
| = a(y¢' yl)2
\Iiﬂ
EXAMPLE 1

Prove that Pythagoras theorem holdsin S, .
Solution

Consider atriangle ABC right angled at A i.e., pBAC = 90°-

C Y
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Then the lines AB and AC are orthogonal to each other. So,
ABxAC =0

or aj(ys- Vi) (¥s- v1) =0

or é (Ya- %) (Y5-¥1) =0

i=1

By distance formula, we have
Cr’] i i\2
(AB)? = a (Y2 - Y1)
i=1
Cr’] i i\2
(AC)? = a yz- )
i=1
Cr’] i i\2
(BC? = A (Y3- Y5)
i=1
Now, equation (4) can be written as

(8o = A [ - W)+ (v - V)P
i=1

= AL WP+ Y2205 YD (- YY)

(Y5~ Y12+ 8 (V- Yo)?+2° 0,[from (1)]

i=1

1
'QJO:

I
S

(V- 2+ (- %)

1 i=1

Qs

(BO)? = (AC)* +(AB)?
Hence Pythagoras theorem holdsin S, .

EXAMPLE 2

183

(1)

(2)

(3)

(4)

Prove that if qisany solution of the differential equation (Na)? = f (q) then the hypersurfacesq =

constant constitute a system of parallels.

Solution
Given that
(Ng)? =1 (a)

(1)
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Then prove that the hypersurfaces g = constant form a system of parallel.

Suppose
. dq dq
f = O F7—— Then,df = ——
Ot 7@

or d—q:m

Nf = — = ——— = N
Now, % 1 '_f(q) q

& 1 62

Nf)2 = & Ng~

N =T s
= L (o)? = —— () from (1
TV = g @ from ()

(Nf)2=1

This proves that the hypersurfaces f = constant form a system of parallels and therefore the
hypersurfaces q = constant.

EXAMPLE 3

Show that it is always possible to choose a geodesic coordinates system for any V, with an
arbitrary pole P,
Solution

Let P, bean arbitrary poleina V, . Let us consider general coordinate system x' . suppose the
valueof x' and P, are denoted by x|. Now consider a new coordinate system X I defined by the
equation.

_j — aj(xm_ m)+la1\|, h U(Xi- I)(Xm_ m) 1
The coefficients a,'ﬂ being constants and as such that their determinant do not vanish.

Now we shall prove that this new system of coordinated xi defined by equation (1) isageodesic
coordinate system with pole at R, i.e., second covariant derivative of xi vanishesat P.

Differentiating equation (1) with respect to x™, we get

i 1 9 h o .
ﬂ“;im = ah+3all m§2(x'- %) N
X! 0 _
g_ﬂxmgb = ar]n a PR, -(3)

Now, the Jacobian determinant
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%’

"%
and therefore the transformation given by equation (1) is permissible in the neighbourhood of R, .
Differentiating equation (2) with respect to x!, we get

_lailz
o+ 0

ae'nsz 9 ji, h U
ﬂxjﬂxm% = a ':‘| m ) (4)
But we know that
%ﬂZXJ 0 | h 4 6‘1]7]9
(le)o ﬂx"ﬂxm -’I‘| m (é he
% | 0 fix %
dho iha
=ali, y -i vya\. (from(3)and (4))
il mgo i'mt\;
(X'Ijm)o =0

Hence equation (1) is a geodesic coordinate system with pole at P, .

EXAMPLE 4
If the coordinates X of points on a geodesic are functions of arc lengths s and f is any scalar

function of the x's show that

dPf dX dx' ___dx
— = Y Y XHRA—— (1)
dsP -1 ds ds ds

Solution
Since the coordinates x' lie on a geodesic. Then

d?x 1 0 Udx! dx®

——+] y ———— =

ds? 1 k[V) ds ds 0 -(2)
Here the number of sufficesi j...l isp.

We shall prove the theorem by mathematical induction method.
Since xts are functions of sand f is a scalar function of x¢s, we have

o fF odX df _dx’

= — — =f,i—

ds T ds O ds ds ()
d’  ff; dx! d?x
— = L= 4t

d¢ qx} ds ' ds?

oo ad 1 fad ad

=l ds ds ’i'TI'j kbgg’ from (2)
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oo ad M faxd axt
T X ds ds 'm%j k{) ds ds
T dx' dx! 1 midx dx!
= —ﬁ___f . ;AN U . . .
i ds ds ™ii if; ds ds (adjusting the dummy index.)

&, - f ! mqu_x'%
= W 'm%i jgg ds ds --(4)
Equations (3) and (4) imply that the equation (1) holdsforp= 1andp= 2.
Suppose that the equation (1) holds for p indices ry,r,...f, o that

dPf _ dx* dx™ _ dx”
ds” ~ s s ds )
Differentiating the equation (5) with respect to s, we get
dPt M, dxdx axe | dx® dx? X
dsPt? ﬂxrpﬂ ds ds ds 2 Tp ds? ds ds
n 2.p
B ed X" .(6)

M. Tp dS dsz
2,1

substituting value of e etc. from (2) in (6) and adjusting dummy indices, we have

R L L L
- = (;T LN | y syl i
dsP 1 e ﬂx Tr]_rp+1b Trprpﬂ'bﬂ

dx® dx2  dx'P*
XXX

ds ds ds
dx™ dx2 __ dx**
= XXX
- ds  ds ds

This shows that the equation (1) holds for next values of p. But equation (1) holdsfor p= 1, 2,
... Hence equation (1) holds for all values of p.

EXERCISES

1. Provethat at the pole of ageodesic coordinate system, the components of first covariant derivatives
are ordinary derivatives.

2. If X' are geodesic coordinates in the neighbourhood of a point if they are subjected to the
transformation

K =X +%Cijkl g x* %
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where C¢ are constants then show that i are geodesic coordinates in the neighbourhood of O.
3. Show that the principal normal vector vanishesidentically when the given curve is geodesic.
4. Show that the coordinate system i defined by
X = X+ ll Ikzxj X
is geodesic coordinate system with the pole at theorigin.
5. Obtain the equations of geodesics for the metric

ds? = €2 (d¢ +dy? + dZ) +dt?
6. Obtain the differential equations of geodesics for the metric

1
— f(XdX® +dy? +dZ + dt?
42 = FOIa +ay? 1
€ 4% 1d X 1 d?y __d?z_ _d% d(logf)dxdt YU
éAns: — - =— = __o =0—2=0— - ~Z2 "
& ds? 2dx(g)3ds 2f (g) d2  dd ds dx dsds

7. Findthe differential equationsfor the geodesicsin acylindrical and spherical coordinates.
8. Findtherate of divergence of agiven curve Cfrom the geodesic which touchesit at agiven point.



CHAPTER - 10

PARALLELISM OF VECTORS

10.1 PARALLELISM OF A VECTOR OF CONSTANT MAGNITUDE (LEVI-CIVITA’'S
CONCEPT)

Consider a vector field whose direction at any point is that of the Unit Vector t'. In ordinary space, the

field is said to be paralld if the derivative of t' vanishes for all directions u' (say) and at every point of

thefieldi.e.,

—ul =9
ix!
Similarly in a Riemannian V,, the field is said to be parallel if the derived vector of t' vanishes at
each point for every direction u' at each point of V... i.e.,
t,ij = Uj =0
It can be shown that it is not possible for an arbitrary V. Consequently we define parallelism of
vectors with respect to agiven curve Cina V.
A vector U of constant magnitude is parallel with respect to V,, aong the curve C if its derived
vector in the direction of the curveis zero at al pointsof Ci.e,
% =0 (1)
i
where sis arc-length of curve C.
The equation (1) can be written in expansion form as

efu' |yt | 0dx]
e | . — =
&xl - imipgds ~°
i gy Vi )
ﬂu. dx +um% I_l,de
x! ds ijfvj ds
du' 10 Gdx!
+um Ly

ds o imjphds =0 )
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This concept of paralelism is due to Levi-Civita. The vector u' is satisfying the equation (1) is

said to a parallel displacement along the curve
Now, multiplying equation (1) by g;, we get
&, dx! 0

QugUj——==0
é ds 5
i de

(gilu,j)E =0
!

(gilu),jE =0
dx’

Mg =0
dx

or ui’jE =0
éy 1 milax

ax by ds 0
du, i mi dx!

—-u - _
d  "ijhds ~O
The equation (2) and (3) can be also written as

1iua, .
du = - u™i .y dx
) imj
u i,mudxi

. (3

. (4

.. (5)

The equation (4) and (5) give the increment in the components u' and u; respectively due to

displacement dx along C.

THEOREM 10.1f two vectors of constant magnitudes undergo parallel displacements along a given

curve then they are inclined at a constant angle.

Proof: Let the vectors u' and v' be of constant magnitudes and undergo parallel displacement along a

curve C, we have (from equation (1), Pg. 188.)

) i U
Ij d_X = 01
o ds ,
'. d_XJ = 0_|
') ds b

at each point of C.
Multiplying (1) by g;;, we get

o ax!
(gll ,]) ds 0

(D



190 Tensors and Their Applications

dx!
U|’J- E = 0
o 2
or i ds = .. ()
Similarly,
d_xj - 0 3
i ds - .- ( )
Let f be the angle between u' and v' then
ul.v, = uv cos g
Differentiating it with respect to arc length s, we get
d d(u'y)
£(uv cosq) = T
i dx!
=uv). ——
(Ui, ds
_uvs'nq% _ui dijv +uiv K 4
ds ~ ) ds | " ds - @
Using equation (1) and (3), then equation (4) becomes
. dq
-uwsng— =0
ds
= s _o  as utovto
ds - Y 1
S dg
p Either sng=0 or EZO
b Eitherq=0 or g = constant.

P q isconstant. Since 0 is also a constant.
THEOREM 10.2 A geodesic is an auto-parallel curve.
Proof: The differential equation of the geodesic is given by (See Pg. 174, egn. 6)
d2™ imigdx! ox®
o2 IV e =0
ds il kfv) ds ds

d &x™0 | mijdx’ dx

dsgdsg }jkgds ds ~ 0
q a&ix™ O0dx! 1 midx’ dx®
— & i —ti., y—— =0
X' &g ds gds Tjk%ds ds
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€ @®x™0 1 mudx“Udx’ _
g’ & ds 5 {jk% ds g ds

RIX"0 dx! ax
i <=0 o tT—=0
§ds 7, ds s

m

ds
confirms that geodesic is an auto-parallel curve. Proved.

This shows that the unit tangent vector suffer aparallel displacement along ageodesic curve. This

10.2 PARALLELISM OF A VECTOR OF VARIABLE MAGNITUDE

Two vectors at a point are said to be paralel or to have the same direction if their corresponding
components are proportional. Consequently the vector V' will be parallel to u' at each point of curve C
provided

vi=fu . (1)
where f isafunction of arc length s.
If u' is parallel with respect to Riemannian V,, along the curve C. Then,
X!
'j E
The equation (1) shows that v' is of variable constant and parallel with respect to RiemannianV,,
so that

u =0 .. (2

- dx! ~dx
v, — = (fu) =
I ds (Fu); ds
i iy dx!
= (f']u +fu'])E
de i i de
= J—U fu,i_
S ds
dx! | . dx!
=f —U i u.=—=-=0
i s Since i ds
_ At dd
"~ x) ds
Cdx) o df
=2y
Vi ds ds
_dfv
= ds f from (1)
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_  ddlogf)

ds
v O i f here f (9 =091 3
Shwns =v'f(s where f (9= s ... (8)

Hence a vector V' of variable magnitude will be parallel with respect to V,, if equation (3) is satisfied.
Conversely suppose that a vector v of variable magnitude such that

- dx!
— ——Vf S
| Vi T (s)
to show that V' is parallel, with respect to V,, .
Take
u=vy (s ... (5)
Then
dX] i
ul — = (Vy), —
i gs ( y)J 5
- dX —YVy y d_in
=V ds '] ds
i fy dx
=V f(s +—.—v
(s)y o0 G
. dx ié dy u
2 oV Ay T (s)+——,
g ACha . (6)

d
Select Y such that yf(S)+d—i:0-

Then eguation (6) becomes

TR
1 ds
This equation shows that the vector u' is of constant magnitude and suffers aparallel displacement
along curve C. The equation (5) shows that V' is paralld aong C.

Hence necessary and sufficient condition that a vector v' of variable magnitude suffers a parallel
displacement along a curve C is that
]
|

Vdi_i
i =V,

EXAMPLE 1 ‘
Show that the vector V' of variable magnitude suffers a parallel displacement along a curve C if
and only if
- v S0 =12
k W =0 1=L2,..n

Solution
From equation (4), we have

i de )

V,, —— =/
s =V (D)
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Multiplying by v', we get

VIVi. dij — VIVi f (S)
') ds
Interchange the indices | and i, we get
vt & ViV (9 2
S
Subtract (1) and (2), we get
k
(v U,ik - ViV',k)O(Ijis = 0 by interchanging dummy indices j and k.

10.3 SUBSPACES OF A RIEMANNIAN MANIFOLD

Let V,, be Riemannian space of n dimensions referred to coordinates X' and having the metric
ds® = 9 dx' dx. Let V,, be Riemannian space of m dimensions referred to coordinates y? and having

the metric ds?= a,,, dy? dy*: wherem>n. Let Greek |ettersa , b, g takethevalues 1, 2, ..., mand Latin
indicesi, j, k ... takethevalues 1, 2, ... n.

If the n independent variables X' are such that the coordinates ( y? ) of pointsin V,, are expressed

as afunction of X then V,,isimmersed in V,,i.e. V, isasubspace of V... Also V. is caled enveloping
space of V..

Since the length ds of the element of arc connecting the two pointsis the same with respect toV,,
or V. it follows that

9;j dX dX = a,paydy”

RTRR \alk \AI
Ty Ty°
P i = %ap X Tx (D

Asdx and d¥ are arbitrary.
This gives relation between g;; and a,,.

THEOREM 10.3 To show that the angle between any two vectorsis the same whether it is calculated
with respect to V,,, or V..
Proof: Consider two vectors dx' and dx/ defined at any point of V,, and suppose that the same vectors
inV,, are represented by dy® and dy® respectively. If q isthe angle between dx and gy then
g;;dx' ax!
Jgijdx‘ dx Jgijdx‘ dx
If f isthe angle between the vectors dy? and dy? then
aab dyadyb
Ay dy® /v dy?

cosq=

. (D)

cosf =
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a, fy” dx“”—yt.)dxj
- I )
\/aab qgl: dxi%‘?dxi\/aab %d)& %dxj.
_ a, %%dx‘ dx
\v/aﬁ1b Kj %dx‘dxj \/aab HTyT ﬂﬂy—):dx‘dxj.
g dx' dx!

cosf = —— ——
Jgijdx' dx! Jgijdx' dx!

. (2

Ty 1y”
™ X!

Since gij =aab
from (1) & (2)

(from equation (1), art. 10.3)

cosq=cosf b g=f. Proved.

THEOREM 104 If U2 and U denote the components of the same vector in Riemannian V., and V,
respectively then to show that
a
U a = ui ﬂy
fix!
Proof: Let the given vector be unit vector at any point P of V. Let the component of the same vector
Xsand y's be a' and A? respectively. Let C be curve passing through s in the direction of the given

vector then

a a dXi a
pe = v _y :ﬂyi al e
s X ds 9x
But the components of avector of magnitude a are a times the corresponding components of the
Unit vector in the same direction. Then

Ua :aAa’ ui:aai (2)
Multiplying (1) by a, we get

Y 2 i
= —(aa
aAa ﬂXI ( )
= - Ui , i i
Or TE ™ using (2) Proved

THEOREM 10.5 To show that thereare m-n linearly vector fields normal to a surface V, immersedin
aRiemannian V

Proof: SinceV,isimmersedinV, the coordinates y* of pointsin V  are expressible as functions of
coordinates X in V.
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Now,
dya ﬂya dxi
- = (D)
ds x' ds
for the curve X = s, we have
dy* _ y*
s o ..(2)
X
Lyt . . : . y°
Since is avector tangential to the curvein V. Then from equation (2) it follows that —=

ds
inV,, is tangential to the coordinate curve of transmeter x' in V,. Let the Unit vectors N in V,, be
normal to each of the above vector fields of V,, then

2

a,,—N" =0
b x
- Lo b eyt =0 -
b NaﬂLi:O, i=1,2,...,n& a =1,2,...,m
X
aaly* 9
The equation (3) are n equationsin munknowns N& (m > n). The coefficient matrix msis

of order m x nand the rank of this matrix isn.

It means that there will be only m—n linearly independent solution of N, . This shows that there
are m—n linearly independent normalsto V, to V.

EXAMPLE 2
Show that
B WL, Ty
™o I K
where [ab, g and [i j,k] arethe Christoffel’s symbols of first kind relative to metrics a,, dy*dy” and

[ij, kK] = [ab,g]

g;ax'dx’.
Solution
Since relation between a,, and g;; is given by
Ty Ty°
ab ﬂXi ﬂXj
Differentiating it with respect to X<, we get
T, _ Ty B W, Y B BT
T[Xk ﬂxg ﬂX' ﬂX] ﬂXk ab ﬂX'ﬂXk ﬂXJ ab ﬂXi ﬂX]ﬂXk

gij

. (D)
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Similarly
T T8 1y 1y 1y 7y v, WY
T T DO BE RO I - @)
and
96 _ P h B W, YL WY -
X 0O X Ix Ix¢ POk X 2P Xk X x v
But we know that
.. 1ﬁgjk ﬂgki _ ﬂgug
[Ij,k] Zg ﬂX ﬂXj ﬂXk B . (4)
~ 1&gy, N 19e  79a, 0
and, [abgd =7 R VR W ... (5)
Substituting the value of (1), (2), (3) in equation (4) and using (5) we get,
2.4 b
ik = labg LI o Ty Iy

X' x) gk IXOx) ¢
10.4 PARALLELISM IN A SUBSPACE

THEOREM 106 Let T2 and t' be the components of the same vector t relative to V,, and V,
respectively. Let the vector t be defined along acurve CinV,. If p'and ¢ are derived vectors of t
along C relative to V,, and V,,, respectively. Then

v
qa ﬂXI - pi
Proof: Since from equation (1), theorem, (10.4), Pg. 194 we have
i Ty®
a = t —_— . 1
T ™ oy
dT? dt' fy* . TPy? dx!
AW e Ty o (2
ds ds qx' X' x! ds
Now,
[— ti d_X] 3
P =t &)
dyb
a = Ta—
9 ® ds
a 0
AT +T) |au dy

:éxb |g)_dS
e dy® Tlaudyb
Tpe ds  fobp ds
dTa |audyID

q® = %Qb?:/) ds ... (4
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a

dT
& and 19 from (2) and (1) in equation (4), we get

dt' fy* ot 72y® dx! “t (Y dy*iad

Putting the value of

q* = ds X Ix'qx! ds dx' ds Ig%
_ it fy? dx’ ot 2y dx! t (Y9 dyPiad
T X ds xfx] ds X ds ,go{)
S VA SRR S A SIPTR Vilh | A S
T X IX ds x'x! ds ™ qx' ds .g%
. it ﬂyadxj i ®2y? ﬂy 'ﬂyglauo
T~ ax ds éﬂxﬂx' ix X gbkl)g
But we know that
y Ty* Ty° Iy 7y 1y
= b, _— - -
[|J,k] [a g] ﬂ'xl ﬂ'xl ﬂxk aag ﬂXIﬂXJ T[Xk
g 2
[J|k]_[gd]ﬂy Ty® ‘ITy +a, y? ‘ﬂy

N R S
Lau Ty ra 7y 1y
- |b€% Y I MO N NS

ﬂy @agfy” v, 1Py* 0
ﬂx %bgfv)‘ﬂxJ % ‘ﬂx“ﬂx'?Zj

d
Multiplying (5) by aadﬂﬂ::—k, we get, using (6),

oy . 1oy '"yd +t d
2 gr e ) - ij,k
ﬂyd B dx! &T[t' 0 ‘Hy ﬂy
or qu ol é—g.k ij\ggpk_, since 9 = & ) X
dx! 2eft! tal b 9
= ds éﬂx' A %aiﬁg'ké
=g dit'

ik dS

197

.. (5)

.. (6)
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= (gut'),; %
or qa% =Py ..(7

Proved.

Properties of V,,
(i) If acurve Cliesin asubspace V, of V, and avector field in V, is parallel along the curve C
with regard to V,,, then to show that it is also a parallel with regard to V..

Proof: If avector field t isaparalel along C with respect to V,,, then its derived vector ¢?
vanishesi.e.,

=0, a=12..m
Hence equation (7) becomesp, =0, k=1, 2, ..., n. This shows that the vector field tisalso
pardlel along C with respect to V|
(i) Toshow that if acurve CisageodesicinaV, itisageodesic in any subspace V,, of V.
Ya _
ﬂXi - pi
Let t be unit tangent vector to the curve C them ta isunit tangent vector to C relativetoV,,,
and t; is unit tangent vector to C relativeto V,,.

Proff : Science, q*

Now, p=0 b curveCisageodesicinV,
q* = P curveCisageodesicinV,,
Also, g, =0,"a P p=0"i

This shows that if acurve CinV, isa geodesic relative to V, then the same curve is aso a geodesic
relativeto V.

(iii) A necessary and sufficient condition that a vector of constant magnitude be parallel with
respect to V,, dong C in that subspace, is that its derived vector relative to V,, for the
direction of the curve be normal to V,,
Proof: Lett be avector of constant magnitude. This vector t is pardlel aong C relative to Vn iff p, =
0,"i

: iy®
ff — =0
iff da ™
v _
But 0, o™ Oimpliesthat q, isnormal to V.
For ‘Hyi =Yy lyingin V,, istangential to a coordinate curve of parameter X inV,..

x
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These statements prove that a necessary and sufficient condition that a vector of constant
magnitude be parallel dong C relativeto V,, isthat its derived vector i.e., g, aong Crelative
to V,, be normal to V..

(iv) A necessary and sufficient condition that a curve be a geodesic in V,, is that its principal
subnormal relative to V,,, the enveloping space be normal to V,, at all points of the curve.
Proof: In particular let the vector t be unit tangent vector to the curve C. Inthiscase q, is

called principal normal the curve C. Also p; = 0, " i implies that the curve C is a geodesic
relativeto V..
Using result (iii), we get at once the result (iv).

(v) To prove that the tendency of a vector is the same whether it is calculated with respect to

V.
Proof: Since, we have
fy?
an =B
e
dqxi ds ' ds
dy® dx’
9% = P s
dy® dy* ) dx! dx’
abgs ds ~ " ds ds

i.e, tendency of T, dong C = tendency of t; along C.
i.e, tendency of t along C relative to V,,, = tendency of t along C relativeto V..

10.5 THE FUNDAMENTAL THEOREM OF RIEMANNIAN GEOMETRY
STATEMENT

With a given Riemannian metric (or fundamental tensor) of a Riemannian manifold there is associated
a symmetric affine connection with the property that parallel displacement (or transport) preserves
scalar product.

Proof: LetCbeacurveinV,. Let p' and d be two unit vectors defined along C. Suppose that the unit
vectors p' and q' suffer parallel displacement along the curve CinV,, then we have

o !

S = e
i de

and q”E =0 ... (2

Let g;; be the given fundamental tensor of a Riemannian manifold. Hence, the scalar product of
vectorsp' and g' isgy; p' ¢
Now,

k

iy O
(g;p'a)y E:O
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dx“ 9 | dx"OEE 0
g.,épk q’ g.,pé‘qk o gg.,k F’qJ .. 3
Using equation (1) and (2), the equation (3) becom&e,
@&  dx*0 ]
égljk ds _pq =0
glj,k:0
k
(Since p' and g’ are unit vectors and El 0)
Mo ima i mi
ﬂXk ng||kg glmljkt\; 0
‘ﬂgI
—- ik, jI- [ik,i] =
B0 =tk i+ 1k @
T[Xk - ’J J 1
Now, using equation (4), we have
ﬂgjk ﬂgk ﬂglj
=+ 2K =
o KT = [it K]+ [Ki, jT+[kj,i] + (0], K] = ([ik, 1] +[jk,i])
since [ij, k] =[ ji,K].
So,
19, - Yg;
gJik +ﬂgk| _ ng - 2[|J,k]
[ S 'O P
. 1&g . J9¢ f9; ¢
[ij,K] = s 1T S . (5)
2& X ﬂxJ ™ &
TKO_ s
But we know that | jg-g [ij,1]
|
from (5), we have
i ku 1 |ka§Tng ﬂgn fig; 0
i : Proved.

b~ ® X K
EXAMPLE 3

If t' and T? are contravariant components in X's and y's respectively, of n vector field in V,
immersed in V. Show that

9 = yit + vt
Solution
Since we know that

ot
T ﬂXi
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e =Y
Taking covariant differentiation of both sides, we get
T9 = 'y,
= t,ijy,ail +ti(y?),j

TP = tyj+tyy;
EXAMPLE 4
"o
Show that gijgg remains constant along a geodesic.

Solution
i

;X
Let t =——. Then

ds
g d_XIKJ — t'tJ _t2
iTgs ds C It T
Since we know that geodesics are autoparallel curves. Then
o dx]
t — =
') ds 0
or tt' =0
Now,
dt? d iy do
— = —(g.t'th) =—(tt'
ds ds(g” ) ds(' )
oo
= (i) — =t ) t!
o - (t tHt' + ('t =0, from (1)
Integrating it we get
t2 = constant.
50, 63 2 %X ferins constnt along a geodkes
» Ui Y35 gs "emains constant along a geodesic.
EXAMPLE 5

201

. (D)

If t' are the contravariant components of the unit tangent vector to a congruence of geodesics.

Show that
t'(t,; +t;;) =0
and also show that |t;; +t;; |=0.
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Solution
Let t' denote unit tangent vector to a congruence of geodesic so that

tt' =0 . (D)
Since geodesics are auto-parallel curves. Then to prove that
(i) t (ti; +t;;)=0
(i) |t +t; =0

Since
t't =t2=1
t't, =1
Taking covariant derivative of both sides, we get
(t),; =0
or tt +t't,; =0
Sincet is afree index. Then we have
tit'+,t' =0
20t =0
b tt' =0 )
from (1)
gikt,ijtj =0
or t;t' =0
= t;t'=0 b tt'=0 b 't =0
Thus t't,; =0 .. (3
Adding (2) and (3), we get
t'(t,; +t;;) =0

Also, sincet't 0, " i.
Taking determinants of both sides we get
|ti t,;+t)1 =0
p |t +t;; =0
Solved.

EXAMPLE 6
When the coordinates of a V, are chosen so that the fundamental forms is

(dx) +2g,,dx"dx? + (dx?)?, prove that the tangent to either family of coordinate curves suffers a
paralel displacement along a curve of the other family.
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Solution
The metric is given by
ds? = gydxdx! ij =12
Comparing it with

ds? = (dx')? +2g,,dx'dx* + (dx*)? (1)
We have,
gn=1 gp=1
In this case, we have coordinate curves of parameters x! and x? respectively. The coordinate x*
curve is defined by

X=dc, "i, except i=1. (2)
and the coordinate x* curve is defined by
xX'=d, "i, except i=2 (3)

where ¢ and d' are constants.

Let p' and g' be the components of tangents vectors to the curves (2) and (3) respectively. Then
we have

p=dd=0 "i, except i=1
and q=d¥=0,"i excepti =2
So,
p'=(dx,0) and ¢ = (0,dx)
Let t be the unit tangent vector to the curve (2).

Hence
dx’ i pi .
= -t ==—=(0 = dx
& 0 @0) where p=dx
So, we have
W
Vi ds -

Hence the tangent to the family of coordinates curves (2) suffers a parallel displacement along a
curve of the family of curves (3).

EXERCISES ———

1. ExplainLevi-Civita'sconcept of parallelism of vectorsand prove that any vector which undergoesa
parallel displacement along ageodesicisinclined at a constant angle to the curve.

2. Show that the geodesics is a Riemannian space are given by
d2™ i midx dx®
> +i =0
ds® {i kg ds ds

Hence prove that geodesics are auto-parallel curves.
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Establish the equivalence of the following definitions of ageodesic.

(i) Itisanauto—parallel curve.

(ii) Itisalinewhosefirst curvaturerelativetoV, identically zero.

(iii) It isthe path extremum length between two points on it.

If uand v are orthogonal vector fieldsinaV,, prove that the projection onu of the desired vector of
uinitsown direction isequal to minus the tendency of v in the direction of u.

If the derived vector of avector u' iszero then to show that vector u' hasaconstant magnitude along
curve.

Prove that any vector which undergoes a parallel displacement along a geodesic isinclined at a
constant angle to the curve.

Prove that there are m— n linearly independent vector fields normal to a surface V,, immersed in a
Riemannian V,,, and they may be chosen in amultiply infinite number of ways. But thereisonly one
vector field normal to the hyperface.

Show that the principal normal vector vanishesidentically when the given curve in geodesic.
Show that if acurveisageodesic of aspaceit isageodesic of any subspacein whichit lies.
Define parallelism in a subspace of Riemannian manifold. If acurveC liesin asubspaceV,, of V,and
avector field in V,, is parallel along C with respect to V,,,. Then show that it is also parallel with
respect toV,,.



CHAPTER -11

RICCI'S COEFFICIENTS OF ROTATION AND
CONGRUENCE

11.1 RICCI'S COEFFICIENTS OF ROTATION
Let eih| (h=1, 2, ...n) be the unit tangents to the n congruences &, of an orthogonal ennuple in a

Riemannian V,,,. The desired vector of g in the direction of € has components &, jeli| and the
projection of this vector on eih| isascalar invariant, denoted by g, so that
Ok = €, ey ..(1)
The invariants g, are Ricci's Coefficients of Rotation.
Since i being a dummy index, has freedom of movement. Then equation (1) may be written as
Ok = Qj,j%u% (2

Theindices |, h and k are not tensor indices. But these indicesin g,, are arranged in proper way,
the first index | indicates the congruence whose unit tangent is considered, the second h indicates the
direction of projection and the third k is used for differentiation.

THEOREM 11.1 To prove thast the Riccie's coefficients of motation are skew-symmetric in the first
two indicesi.e,,
Ok = Ok

Proof: If eih| (h =1, 2, ..., n) benunit tangents ton congruences €y, of an orthgonal ennupleina,,

then
enig) =0
convariant differentiation with respect to ¥, we get
enjel.j = 0

&y, j6) +d) ey =0
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multiplying by eijl and summing for j, we get

&, 66k *+ €, ey =0

Gkt G =0
or Ghik = Gk (D)
Note: Put | =hinequation (1), weget
Gk = —Gk
or 20y =
or gk=0
THEOREM 11.2 To prove that
o
g i — j
ah. Ik = & &

Proof: since we know that

_ i
Ghk = G, i

Multiplying by &, and summing for h.
o [o] P
A Ynk&im = A )i EnEChm
h h
o [
= q|ivJ'eli|a. (éh|eﬂm)
h
id since € »
= qj,j&dm since A &&m =d.,
h
= (&, ;dm) €y
o .
ah, IrkChm = Qm.; &)
Replacing mby i, we get
o]
ah Ihk8im = e €l

11.2 REASON FOR THE NAME "COEFFICIENTS OF ROTATION"
Let C,, be adefinite curve of the congruence whose unit tangent is e,'n| and P, afidxed point on it. Let

u' be a unit vector which coincides with the vector e|i| at Pyand undergoes a parallel displayment along
the curve C,
Thus

u' = ¢ a P, (D

and u,g =0 .. (2
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If qis the angle between the vectors u' and eih| , we have
cos g = U &
Differentiating it with respect to arc length s, dong C,, we get

dqg
_and = (Uehp) Jem

= (uiehli,j +ui,jeni)eri1|
. dq i
—ana =u'e, e} +u' eJ ..(3)
_ E
at the point Py,q = - , we have
L R Y
dsyy — - i im
= u'ey, jon
= eli|eh|i, j erjnl; from (1)
= ey, j6lieh
_dq.
Cdsy, - Shim
dq
b a =~ Gim ... (4
_dg

In Eucliden space of three dimensions isthe arc-rate of rotation of the vector eih| about the

" dsy,
curve C,,. Hence the quantities g, are called coefficients of rotation of the ennuple. Since it was
discovered by Ricci and hence it is called Ricci's coefficient of rotation.

11.3 CURVATURE OF CONGRUENCE
The first curvature vector p, of curve of the congruence is the derived vector of eih| in its own
direction. Where e'h| (h=1,2,...,n) beunit tangentston congruence g, of an orthogonal ennuplein
aVv,.
If pﬂﬂ be the contravariant component of first curvature vector p,. Then by definition, we have
Py = ;8
from theorem (11.2), we have

phl a ghlheh e
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The magnitude of pihI is called curvature of the curve of congruence e and denoted by K.
Now,

Khz| gij pri1| prj1|

%o 0 & i 0
9ij (éa Gnin€i = éa 9 hmn€m =
I (4] m %]

Gij qi|erin|ghlhghmh

1
— Qo

Ki = A @)’
m
Thisis the required formulafor K.

11.4 GEODESIC CONGRUENCE

If all the curves of a congruence are geodesics then the congruence is called a geodesic congruence.

THEOREM 11.3 A necessary and sufficient condition that congruence C of an orthogonal ennuple

be a geodesic congruence is that the tendencies of all the other congruences of the ennuple in the
direction of C vanish indentically.

Or

To obtain necessary and sufficient conditions that a congruence be a geodesic congruence.
Proof: From equation (1), Pg. 207, we have

i o -
Phi = @ Ghin€l)
|

Since qi| 10, " h andhence pﬂ,| =0iffg,,=0," h. But p|i| = 0iff the congruence Cisgeodesic
congruence.

Hence C is a geodesic congruence iff g,,,= 0, " h.

But

Ghih = ~ 9nn

So, Cis ageodesic congruence iff —g,,, =0, - h.

or Cis ageodesic congruence iff g, = 0.

Hence g,,, = 0 are the necessary and sufficient conditions that congruence with unit tangents eri1I
be geodesic congruence. Again g, is the tendency of the vector qi| in the direction vector eih| .
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Thus a congruence C of an orthogonal ennuple is a geodesic congruence iff the tendency of al
other congruences in the direction of C vanish identicaly.

11.5NORMAL CONGRUENCE
A normal congruence is one which intersects orthogonally a family of hypersurfaces.

THEOREM 11.4 Necessary and sufficient conditions that the congruence &, of an orthogonal ennuple
be normal is that
hap = Shng
Proof: Consider a congruence C of curvesina V,. Let f(x',x?v4,x") = constant be a family of
hypersurfaces. To determines a normal congruence whose tangent vector isgrad f or N f.
Let t; be the convariant components of unit tangent vector to C. The congruence C is a normal

congruence to afamily of hypersurface f (x!,x?,%,x") = constant if

fa f fon_
-1 1/4— Yy (say) (D)
6] to th

In order that (n—1) differential equations given by eguation (1) admit a solution which is not
constant, these must constitute a complete system.

From (1)
f,
? =y or f, =y
§if
b Yt = §
Differentiating it with respect to xI, we get
t; 2
ﬂy tl Yy T I. = ﬂ - .. (2)
x/ > xx
Interchanging indicesi and j, we get
Tt %
Wy vyl 1 e

% f yﬂx‘ T xIx

Subtracting (2) and (3) we get

ey, 9 aeﬂy by 0,
gd' ' ﬂ 9 de(Zi 0

gl ﬂt 0 Ty ﬂy 6_

U e L) % o
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Multiplying by t,,

et 1T o Iy .. Ty
it = it =
K &dx! 'ﬂx K 5 dx’ 0 “)

By cyclic permutation of i, j, k in (4), we get

yti _-__-#+tjt|_k_ikti_' =0 (5)

and
At T @_,_ 1% Ty
C— ———~+1t i ——tti—— =0 ... (6
& gﬂx' < o <) ™K ©)
On adding (4) , (5) and (6) we get
é 1t ﬁltk 1t Ou
é —_——.
yé g § xk ‘ﬂxJ Je X! ;a 0
or Lt =t +6tc—t) +ti(tk,i _ti,k) =0 - (7)

as yt 0,wherei,j,k=1,2,...,n
These are the necessary and sufficient conditions that the given congruence be anormal congruence.
Now suppose that the congruence is one of an orthogonal ennuple in V.. Let e,; be the unit

tangents of given congruence C so that t; = &,

Then equation (7) becomes
Stk &y = &) i (B — &y ki) t &y (B — &yjigd = 0 . (8)

Now, multiplying equation (8) by eip|e§|, we get

i &y, —Eniji )eip|e§| + € (€ k - i )eipl ez;( + 6y (G _enli,k)eiplegl
where p and g are two new indices chosen from 1, 2, ..., n—1.i.e., p,q and n are unequal.

But en|k‘5‘§| :dﬂ =0,9qtn
el = =0, pi
S0, we have
€nj (Gnki —Enyj.k) eip| e(;<| =0
i k ik —

€nyj (Enik.i€a€pl — Enjj.kEpi€q) = 0

€njj (Ghgp = Ghpg) = 0

Since €k € € = G
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P Gop~ Ghpg =0 &yt O
p Gng = Shopr ... (9
Conversely if equation (9) in true then we get equation (8). Which implies that equation (7) are
satisfied bty e,; Hence e, is anormal congruence.
Thus necessary and sufficient conditions that the congruence e, of an orthogonal ennuple be a
normal congruence are that
Op= S%pg (P0=1,2,....,n—1suchthatp?* q)
THEOREM 11.5 Necessary and sufficient conditions that all the congruences of an orthogonal ennuple
be normal.
Proof: If al the congruences of a orthogonal ennuple are normal. Then
Ghgp = Ghpg (P, 4=1,2, ..., n—=1suchthatp* q)
If the indices h, k, | and unequal then

G = Ghik - (1)
But due to skew-symmetric property i.e., G, = — G
Sol
G = Gik= — Gk ~ Gk from (1)
=gy (Skew-symmetric property).
= Qe from (1)
Ow = — G (Skew-symmetric property).
G+ G =0
b 294 =0
P Gw =0

where (I, h, k=1, 2, ..., nsuch that h, k, kIl are unequal).

11.6 CURL OF CONGRUENCE

The curl of the unit tangent to a congruence of curvesis called the curl of congruence.
If e, isagiven congruence of curves then

Curl & = &yi,j — & j;
If curl &, ; = 0 then congruence is irrotational.

THEOREM 11.6 If a congruence of curves satisfy two of the following conditionsit will also satisfy
the third

(@) that it be a satisfy the third

(b) that it be a geodesic congruence

(c) thatit beirrotational.
Proof: Consider an orthogonal ennuple and eih| (h=1, 2, ..., n) be n unit tangent to n congruences of
this orthogona ennnuple.

From theorem (11.2), we have

é k& = Q|i,je£|
h
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Putting | = nand j = m, we have

n

[e]

A Gk = ey el
h=1

Now, multiplying by &, ; and summing with respect to k from 1 to n, we have

n
o]

A InhkEhi®|j = enj.meK|&
hk=1

&) Since egeg; =dj’

d
A &€ = enjij

hk=1
By definition of curl of congruence, we have
curl &y = &1 j = &y j,

n

hk=1 nk=1

0 o
A k&G — A Gnn€jChi
h,k=1

curl &yi = L
Jd
curl &y = h?ﬂ (G = Gk) €y i€ |

This double sum may be separated into two sums as follows.
(i) Lethandktakethevauesl, 2, ...,n—1.

(ii) Eitherh=nork=norh=k=n.

Now, the equation (3) becomes

n-1

n
o o]
A InnkhiSqj — A Inhkthij&j;

from (2)

'Y o
crle,, = a (Fntk = Fnin) €& t A (Gnhn —Fnnn) €4 &y
I h=1

hk=1

0
+ a (gnnk _gnkn)enj en|j + (gnnn - gnnn)en|i en|j
k=1
Since we know that ¢, = G, = Gyn= O-
SO!
%—l rz_)—l %—l
curl gy = A Gk —Grkn)€ni €qj ¥ A Inhn€hi &j — A IrknCnji €]
h,k=1 h=1 k=1
'y .
curl e = A Gk —Gokn) By & + Onin (Ehji€hj — Eni&j)
hk h=1

. (2

. ()

. (4
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The first term on R.H.S. of equation (4) vanishes

if Gk~ Gn = 0

i.e.,

if Gk = Gne

i.e., if the congruence €y is normal.

Again the second term of R.H.S of equation (4) vanishes

if Onn=0 i.e,ifgy, =0

i.e., if the congruence ep is a geodesic congruence. Further, if first and second term on right
hand side of equation (4) both vanishes then

curl & =0

Hence we have proved that if the congruence ey satisfies any two of the following conditions
then it will aso satisfy the third.

(a) episanormal congruence

(b) episirrotational

(c) enisageodesic congruence

11.7 CANONICAL CONGRUENCE

It has been shown that given a congruence of curves, it is possible to choose, in a multiply infinite
number of ways, n— 1 other congruences forming with the given congruence an orthogonal ennuple.
Consider the system of n— 1 congruence discovered by Ricci, and known as the system canonical with
respect to the given congruence.

THEOREM 11.7 Necessary and sufficient conditionsthat then—1 congr uences & of an orthogonal
ennuple be canonical with respect to g, are

Gkt =0 (hk=1,2,...,n=1ht k).
Proof: Let the given congruence & be regarded as nhof the required ennuple. Let &,i be unit tangent
to given congruence.

Xij =2 (& j + &) .. (1)
Let us find a quantity r and n quantities € satisfying the n+ 1 equations
_ en|ié =0fl i
(X|]_ngjel+rEn|J :(% , _1’ 2’ ’n (2)

where wis ascaar invariant.
Writing equation (2) in expansion form, we have

ennel + en|2e2 +YaYa + gyne” =0 .. (3
and

(Xqj —WGy ) € +(Xg —WG, )€ + % (X —Wg,y)€" +1 €, =0
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forj=1,2,...,n.
1 2

(X1 —W0y;) € + (X —WOp) € +¥a + (X —W0,y) e +r €pn =

(X1 —WGQy,) € +(X 5o —W0pp) €° +Ya+ (X, —WGp, )" +1 € =

| |
o O

(Xin —WGhn) € +(Xon —WQy) € +¥a+ Xy —WGyy) €" +1 €y = O
from (3)

e + 66" +¥aee" +r.0 =0
giminating r and the quantities €*, €, ...€", we have the equation

(X11—W911) (le—Wgzl) Ya (an_Wgnl) 6
(X12_W912) (xzz_Wgzz) Ya (xn2 _Wgnz) €2

(Xln_ngn) (X2n_W92n) Ya (Xnn_Wgnn) en|n
€ € Ya &in 0

which is of degree n—1in w. Hence there will be n— 1 roots of w and these roots be w,, w,, ...,

h—1- All roots are real. Let w, be one of these roots and let the corresponding values of r and € be

denoted by r h and e'h| respectively. Thenr, and eih| will satisfy the equation (2), we have

get

enieih| =0 .. (@

and (X —wg,) &, +r,e,; =0 .. (5)
Similarly w, be another root of these roots, we have

enieik| =0 ... (6)

(Xij —wg;) qiq'”henu =0 - (7)

Multiplying (5) by e}, and (7)) and using (4) and (6), we get

(X, —w,0;) &8, =0 .. (8

(Xi; =W, 9y) eti<|erj1| =0 .. (9)
Since Xjj and gjj are symmetric tensor ini and j. Now, interchangingi andj in equation (9), we

(X —w, 9;)) eri1|e1£| =0 ... (10)
Subtracting (10) and (8), we get

(W, =Wy ) gijeihlei| =0 .. (11

b gijeh% =0 ... (12)
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This shows that eih| and elil unit vectors are orthogonal to each other and hence the congruence

ep and ey (h?* k) are orthogonal to each other. Hence the n—1 congruence g| (h=1, 2, ..., n) thus
determined form an orthogonal ennuple with g,
Using equation (12), equation (10) becomes

Xjene) =0
Since from (1), X;; :%(enu,j +en|j,i). Then we have,
%(emm‘ +en|J,iein|eKj|) =0
i, €% * & ieke =0
ikt Gn=0; (h,k=1,2 ...,n-1 suchthat h1 k) ... (13)

Conversely if equation (13) is true then (n — 1) congruences &, of the orthogonal ennuple and

canonical with respect to €. Hence necessary and sufficient condition that the n — 1 congruences €,
of an orthogonal ennuple be canonical with respect to g, are
Ok TG =0, (h,k=1,2,...,n suchthat h1 k)

THEOREM 11.8 Necessary and sufficient conditions that n —1 mutually orthogonal congruences ey,

orthogonal to a normal congruence €y, be canconical with respect to the later are g, = 0 wherek, h
=1 2..,n-1suchthath? k.
Proof: By theorem (11.7), Necessary and sufficient conditions that (n — 1) congruences €y of an

orthogonal ennuple be canonical with respect to g, are
Okt Gn=0 (h,k=1,2,...,n-1 such that h* k).
If the congruence &, is normal. Then
Gk = Ghin
The given condition gy + 9y = O becomes
Gkt Gk =0
2 =0
g =0 Proved.

EXAMPLE 1

1
If e, are the congruences canonical with respect to e, prove that (i) w, = gy (i) 1, = 2 G,
(iii) If &, is a geodesic congruence, the congruences canonical with respect to it are given by

(X - wg;)€ =0 =0
Solution

Suppose (n — 1) congruences g, of an orthogonal ennablein a V,, are canonical with respect to
the cougruence g, then

en|iin| =0 . (1)
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and  (Xj; —w,g;) qi1|+rhen|j =0 .. (2
where

1
Xij=7% (&ij * &) - (3
Since ein| unit tangents then
gije(iﬂerj‘l =0 (4)
(i) Multiplying equation (2) by ey, we get
(Xij —Wh3;)) eri1| er£| I €y er1| =0
Xij eHer{l—whgijeHeﬂ;' =0 since en“-qil =0 (from (1))
1 o
E(enﬁ,j + eh”,i) eh|er]1| —W, =0; from (3)
1o g "
E(en|i,jen|erj1| + €& —W, =0

1
> (G * Gpn) —WH =0
Wh = Ghnh

(i) Multiplying (2) by €', we get
Sl
(Xij —Whgj)) eri1| er{| I €Eqj erjll =0
Xije{]|q{|—whgijeﬁ|eg| +rn"1 =0 from (1)
1 o o
E(enﬁ,j +eyi)eey*ry =0, since eyey =0
1 o o
E(enh,j ey ey EE)tIh=0
1
5 G+ Gn) + 1= 0

1 :
Th== 7 Ghn SINCE Gy = 0

1
or Mh= Egmn
(iii) If e, isageodesic congruence, theng,,, = 0 from theresult (ii), we have
1
r,=—=0
h™ 2

r,=0



Ricci's Coefficients of Rotation and Congruence 217

from equation (2), we get
(Xij —Wpg;) & +0ey; =00r (X —w,g;;) ey =0
this gives (X;; —wg;) € =0.

EXAMPLE 2

Prove that when a manifold admits an orthogonal systyem of n normal congruences then any of
these in canonical with respect to each other congruence of the system.

solution

Let e'h| (h=1, 2, ..., n) be unit tangents to n normal congruences of an orthogonal ennuplein a

V,,. So that
9 = 0, where |, h, k=1, 2,...n such that |, h, k being unequal.
It isrequired to show that a congruence &, is canonical with respect to the congruence g (h, k=1, 2,
..., h* k). We know that the n — 1 congruence &, of an orthogonal ennuple be canonical to g iff
Gkt G = 0

Thisconditionissatisfied by virtue of equation (1). Hence (n — 1) congruencese, of an orthogonal
ennuple are canonical to e,

Similarly we can show that any n — 1 congruences are canonical to the remaining congruence.

It follows from the above results that any one congruence is canonical with respect to each other
congruence of the system.

EXERCISE

1. If fisascaarinvariant
Jiy o
a fij ehehy = e
h=1

2. Thecoefficient of r "= in the expansion of the determinant |f,;; —r g;| is equal to .

3. If &, are the unit tangents to n mutually orthogonal normal congruences and e+ be,; is also a
normal congruence then ae;; —be,; isanormal congruence.

4. Show that
1T % 1 Q9 X2
————— _ A (G —kn)
s s T Ts, [
where S, denotesthe arc length of acurve through apoint P of an ennuple andQisascalar invariant.
5. If the congruence e, (h=1,2, ... n—1) of an orthogonal ennuple are normal, prove that they are
canonical with respect to other congruence ey .

fe)
s



CHAPTER - 12

HYPERSURFACES

12.1 INTRODUCTION

We have aready studied (Art 10.3 chapter 10) that if m> nthen wecall V,, to be a subspace of V,,,and
consequently V,, is called enveloping space of V. We also know that there are m—n linearly independent
normals N? to V,, (Art 10.3 Theorem 10.5, chapter 10). If we take m= n + 1 then V,, is said to be
hypersurface of the enveloping space V,, ;

Let V,, be Riemannian space of n dimensions referred to cordinatesx' and having the metric ds? =
9; dx' dx. Let V,, be Riemannian space of mdimensions referred to coordinatesy? and having the metric
ds? = a, dy? dy®. Where m> n. Let Greek lettersa, b, g ... take the values 1, 2, ..., mand latin indices
i, ],k ... takethevalues 1, 2, ...n. Then we have, the relation between a,;,, and 9

b
9ij = @b ﬁﬂi o
™ fx .
Since the function y? are invariants for transformations of the coordinates X in V,, their first
covariant derivatives with respect to the metric of V, are the same as their ordinary derivatives with
respect to the variables X

. %
i.e., yaI = ﬁ
Then equation (1) can be written as
Gij = @ap y?y,bj - (9
The vector of V,, , ; whose contravariant components are y$ is tangential to the curve of

parameter X in V. Consequently if N2 are the contravariant components of the unit vector normal to
V,. Then we have

apNPyd =0, (i=1,2 ..,n) .. (3)
and a,,NaNP =1 e (4
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12.2GENERALISED COVARIANT DIFFERENTIATION

Let Cbeany curveinV, and sitsarc length. The along this curve the x's and the y's may be expressed
as function of sonly. Let u, and n ® be the components in the y's of two unit vector fields which are
paralel aong C with respect to V. Smilarly w' the components in x's of a unit vector field which is
parallel along C with respect to V,. Now, u, is parallel dong C relative to V,, then we have,

d
Ug bd_f

fu, 10l
&y’ abﬁu ds ~ 0

W01 gud!

Iy> ds g{abl\; ds ~

du,  1gudy
ds g}abﬁ ds ~ 9
dy, _, 12udy
s g%b% ds .. (D)

smilarly v is paralel dong C relative to V,,, then
P ol 9 Udy*
— =V -
ds %ab% ds SO
and W is paralel adong C relative to V,, then

dw 0 aox
= _-w
9 |Jk% s .. (3

The Christoffel symbol with Greek indices being formed with respect to the a,,, and the y's and
christoffel symbol with Latin indices with respect to the g;; and the x's.

Let AZ beatensor field, defined along C, which |sm|xed tenser of the second order inthey'sand
acovariant vector in the X's. Then the product u, Vb w A is scalar invariant and it is a function of s
along c. Its derivative with respect to sis also a scalar invariant.

Differentiating u, v° w/ ASi with respect to s, we have

d b. i Aa . du . av dw

—(U,VPWAL) = u vPwW — P+ —abyipad ¢ —u W uv

dt( Ai) = uvw -t WA+ —=U, A+ "2
b I L AUy g dVd dw/

I
=
<
=

PP T by pd uw + — P
a ds ds ! ds Ai ds & A
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AN |audL bv\)ldudyg
d;’KV) —Adl aV bg% ds
;1 ja dx*

_ A U VW Lk "gs + by eauation (1, (2) & (3).

uvPw

i iad 9 1 di] ku
:uvwei dl: UdL_A;: 0 dy? A):Judx
ds tdghds  “ibgh ds " iikp dsg

= Scalar, dong C
Since the outer product u,v°w is atensor and hence from quotient law that the expression within
the bracket is tenser of the type AS; and thistensor is called intrinsic derivative of AS with respect to

S
The expression within the bracket can also be expressed as

X eﬂﬁbu qlad al Ju
as gﬂk Ab|ld3g kK~ Ad| bggyk Abj |ka)
k
Since % is arbitrary.
So, by Quotient law the expression within the bracket is atensor and is called tensor derivative of

A2 with respect to XX It is denoted by Abik - Then we have

glat g al jU

a. +
Adi-k dxk Ab|l %yk Ad| b %Yk Aji Ik%
Ak isaso defined as generalised covariant derivative A with respect to x¥.

Note:— Semi-colon(;) is used to denote tensor differentiation.

12.3 LAWS OF TENSOR DIFFERENTIATION

THEOREM 121 Tensor differentiation of sumsand products obeysthe ordinary rules of differentiation.
Proof: Suppose A;.B; and Bjare tensorsin V.,
(i) To prove that
(A +B5) = Abk +BSk
Let the sum AZ +B be denoted by the tensor C£ .
Now,

‘ﬂCb alau ¢ ~aldl ;
Cg;k Cb 'k Ca|b



Hypersurface

\ (A +B)) =

(Ad +BS)., = A, +Bf, Hence
(ii) Prove that

(As +By) k =
Let ASBy =
we have
Dgg;k =
\ (AZ Bg);k =
(Ang);k =

Hence the result (ii).

221

ﬂ a+ C a

(%M%)ﬂ%+AJ:a§ Vi (AT + B» gw

TS alal o alau C@

§11x_k+pb%a Y,k—AaTbC YKH+

A a N .. N .

oI ga 2 0y 621 2006

g | .bcﬁ

the result (i)

AE Ab ok

Df;‘g Then Dfy is a tensor

ﬂbg+ a|au D!au D|au

X< aCEyC ag| KYk ba| t\;yk

W% |au iai

_ aB C _A2B 1 gve

gyk \ 1b gxk A a%bcgyk

eAS alal ¢ gl cu e1By iag U

e’ b 4 vyk — AL v5 B ax _B. 1 d%ec

o :a% k lbg kH 9+ Ab&? a%g:tv)y,ku

A?;kBg"'A:Bg k

Note:—a, b, g, a, ¢ take values from 1 to mwhile k take values from 1 to n.

THEOREM 122 To show that agpj= 0

or

To prove that the metric tensor of the enveloping space is generalised covariant constant with respect
to the Christoffel symbol of the subspace.

Proof: We have (see pg. 220)

Aapi =

ﬂaa |gud

agblab%yl aagl bdrv))h

0 ([adb]+[ba.a]) y¢
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Taap Yab g
or aab;i = dX ﬂy i
‘ITaab Taap Ty, 1 )|
or agpi = x—=d Zab il =0 Proved.

dx ﬂyd T O X

12.4 GAUSS'S FORMULA
At apoint of ahypersurface V, of a Riemannian space V,, . ;, the formula of Gauss are given by
Vi) = WjN?

Proof; Since y? isan invariant for transformation of the x's and its tensor derivative is the same as its
covariant derivative with respect to the X's, so that

i =Y = ya - (1)
Again tenser derivative of equation (1) with respect toX'sis
Yﬁ = (y;?):i = (Y?)
glau
:—(Y) y||iv) Y, ye bg[V)
_ 1 &2 A glad

= ——"— +
TSI 5 y||”rv) y yj|bg?;

LT3R il glai
Yij = ) _yaA,% J'bng) .. (2

Interchanging j and i in (2), we have

1°y* Jat
y;e}i - ﬂX]ﬂ i yI J'g y y Ibgg
12 y 3 1] b Yo iau
yva“ = ﬂxﬂx] yl ”% J Ib% (3)

al Jadu
[On interchanging b and gin third term of R.H.S. of (3) and using | = 1.
bgg |§b[vj

On comparing equation (2) and (3), we have
Vi = Yii

So, yﬁ is symmetrical with respect to indicesi & j.
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Then

Let g;;dxidx and aqpdy?dyP be fundamental forms corresponding to V, and V., , respectively.

_ L
G = Gab e T
or gij = @ap A Y:bj

Taking tensor derivative of both sides with respect to x¢
G = BabkY5 Y] *+ BapYi Y + By

we have,

0= au,y; y;bjk +a,, Yk Y;bj

or 2ap YikY'} +@ap Y Yk = 0, using (1), Art. 12.4 .. (4)
By cyclic permutation on i, j, k in (4), we have
Qap yii)’i‘*aabY,an;ii =0 ... (5)
and A, YEYs FawpYiys =0 .. (6)
subtracting equation (4) from the sum of (5) and (6), we get.
28gp Yijyk =0
or 3, Y5 Yk =0 o (7)

This shows that yﬁ isnormal (orthogonal) to y}?( . Since y’ﬁ’( istangential to V,, and hence yﬁ is

normal to V.. Then we can write

v = Ny (8)
wher e N# is unit vector normal to V, and Wj; is asymmetric covariant tensor of rank two. Since

y§ isafunction of x'sthe tenser W;; is also afunction of xs.

The equation (8) are called Gauss's formula.
From equation (8)

Vi = WiN®
Y;ailjaabNb = W a,p N® N2

:V\/”.N2
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Vi N° =W, N=1
or \Nij = y;?jaabNb.
The quadratic differential form

W o dx)

is called the second fundamental formfor the hypersurface V,, of V,,, ;. The components of tenser W,
are said to be coefficient of second fundamental form.
Note: The quadratic differential form g;;dx'dx! is called first fundamental form.

12.5 CURVATURE OF A CURVE IN A HYPERSURFACE AND NORMAL CURVATURE

If U2 and u' be the contravariant components of the vector u relative toV, and V,, , ; respectively then
we have (from chapter 10, Theorem 10.4)
v* i
ud =WU = yj"u‘ .. (D
Let the derived vector to vector u aong C with respect to metric of V, and V,,, ; are denoted by
p and q respectively. Then

. ) de
p-u —
) ds
o dy’
=Us—=
and o * ds
_ ..a dx .
= U?J'E’ (from equation 1, Art 12.4) ... (2

Taking the tensor derivative of each side of equation (1) with respect to x's, we have

Ui = yiu' +yiu
By Gauss's formula, we have Y = W;N?
Then U3 = W;N*u' +yiu,
Putting the value of uf in equation (2), we have

i Fy i
of = (WyN7u'+yjus) ——

idXi C)Na VA
U —z ;
ds 5 Yi P ... (3)

oo

or ¢

where p=uj—
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Now suppose that vector u is a the unit tangent t to the curve C. Then the derived vectors g and
p are the curvature vectors of a C relatively to V,, , ; and V,, respectively. Then equation (3) becomes.

@& dx' dx/ 0 ,

- CW. — —iN® +y2 p
qa —é 1] dS dS a y,| p (4)
dx' dx!
' =W, — —
Taking K, i g Ve get
¢ =K, N+ v pl ..(5)

K, is called Normal curvature of V,, at any point P of the curve C and K, N is called normal
curvature vector of V,, , ; in the direction of C.
Meaunier's Theorem
If K, and K, are thefirst curvature of C relativetoV,,, ; and normal curvature of V,, respectively
and wisthe angle between N and C (C being the unit vector of V. ; then the relation between K, K|,
and w isgiven by
K, = K,cosw

Proof: We know that

P = KN +plyd (1)
here K, = ___dxi _dxj
W n~ Y ds ds

Let K, and K be the first curvatures of C with respect V,, ; and V, respectively then
Ka= yaapd?d”, Ky = 1/ gjn'p’

Let w bethe angle between § and G .

Then N>C = | N|}C|cosw
= COSW aslNl:lCl:l
NC = cosw -(2)

If b isaunit vector of V, , ; in the direction principal normal of C with respect to V, then
equation (1) becomes

K,C = Kgb+K, N .. (3
Taking scalar product of equation (3) with | , we have
K,NC = K,Nb+K,N.N
KqCosw = Kg>0+Kp  from (2)

K, = K,cosw .. (®

Proved.

n
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EXAMPLE 1
Show that the normal curvature is the difference of squares of geodesic curvatures.
Solution
We know that (from Meurier’s Theorem, equation 3)
KoC = Kgb+KpN
Taking modulus of both sides, we get

K2 = K§+K§3
or K2 = KZ-K3.

Theorem 12.3 To show that the first curvaturein V,, , ; of a geodesic of the hypersurface V,, is the
normal curvature of the hypersurface in the direction of the geodesic.
Proof: From, example 1, we have

K2 = K§+K§3
If Cisageodesic of V,, then p'=0p Kg=0
Then we have
K2 = K2
b K,= K. Proved.

Dupin's Theorem

The sum of normal curvatures of a hypersurface V, for n mutually orthogona directions is an
invariant and equal to W;;g".
Proof: Let aiﬂ (h=1, 2, ..., n) be unit tangents to n congruences of an orthogonal ennupleinaV,, Let

K., be normal curvature of the hypersurface V,, in the direction of the congruence &,;. Then
Knh = VViJ qi”llqjl
The sum of normal curvatures for n mutually orthogonal directions of an orthogonal ennupleisa
V, is

n

Y n
[o] o . .
a Knnh = Wij dn| er{|
h=1 h=1
S
=W a & &
h=1
=W gl

= Scalar invariant Proved.



Hypersurface 227

12.6 DEFINITIONS

(@) First curvature (or mean curvature) of the hypersurface V, at point P.
It is defined as the sum of normal curvatures of a hypersurface V,, form mutually orthogonal directions
at P and is denoted by M. Then
M= W,;g"

(b) Minimal Hypersurface
The hypersurface V,, is said to be minimal if M = 0

e, W;g'=0
(c) Principle normal curvatures
The maximum and minimum values of K, are said to be the principle normal curvatures of V, at P.
Since these maximum and minimum values of K, correspond to the principal directions of the symmetric
tensor Wj .
(d) Principal directions of the hypersurface at a point P

The principal directions determined by the symmetric tensor Wj at P are said to be principal directions
of the hypersurface at P.
(e) Line of curvature in V,
A line of curvature in a hypersurface V,, is a curve such that its direction at any point is a principal
direction.

Hence we have n congruences of lines of curvature of a V.

THEOREM 124 To show that the mean curvature of a hypersurface is equal to the negative of the
divergence of the unit normal.
or

To show that the first curvature of a hypersurfaceis equal to the negative of the divergence of the unit
normal.
or

To show that the normal curvature of a hypersurface for any direction is the negative of the tendency
of the unit normal in that direction.

Proof: Let N be the unit normal vector to the hypersurface V,, in y's and let N, be its covariant
components. Let t be the unit tangent vector to N congruences e, (h= 1, 2, ..., n) of an orthogonal

ennuplein V, and let Ti§ be the contravariant components in V,,, ; of t. Since t is orthogonal to N,
therefore

T,f|1 N, =0 .. (D
Taking covariant derivative of equation (1) with regard to y° provides
Tap Na +Ty Ny, =0 .. (2
Multiplying equation (2) by Tr? , we get

TthTrﬁ N, +Ty Thtl) N,p =0
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(TN == Ngp Ty T e

Now Tﬁ,bTh? isthefirst curvature of the curve g, and Na,b.Tﬁ.Tﬁ] isthe tendency of N, isthe
direction of &y . Hence equation (3) implies that the normal component of the first curvature of the e
relativeto V, , ; or the normal curvature of V,, in the direction of the curve ey

= —tendency of N in the direction of the curve & .. (@

Taking summation of both of (3) and (4) forh=1, 2, ..., n

we have

i.e., mean curvature or first curvature of a hypersurface = — divergence of the unit normal.
Corollary: To prove that

M= —div,, ;N
Proof: Since N is a vector of unit magnitude i.e., constant magnitude, its tendency is zero. also by
definition, the div, , ; N and div, N differ only by the tendency of the vector N in its direction. But the
tendency of N is zero hence it follows that
dv,N=—-dv,, ;N
Hence M= —div,N=—div_,, ;N

12.7 EULER'S THEOREM

Statement
The normal curvature K, of V,, for any direction of & inV, isgiven by

K = Kpcos?ap

n

0

7 Qo5

1

where K, are the principal curvature and a,, are the angles between direction of a and the congruence
&

Proof: The principal directions in V,, determined by the symmetric covariant tensor teser W;; are
given by

(W) — Ky g;) Py =0 - (D)
where K, are the roots of the equation
W —Kgj| =0 (2

and p|i1| are the unit tangents to n congruences of lines of curvature.
The roots of the equation (2) are the maximum and minimum values of the quality K, defined by
Wp'p!

K. = .3
T gip'p (3)



Hypersurface 229

Multiplying equation (1) by p,iq, (Kt h), we get
(W —Kq9;) pih| pik| =0

The principal directions satisfy the equation

W, phypd =0 (htK) . (8
Let ey betheunit tangentsto the n congruences of lines of curvature. Then the principal curvatures

are given by
Ko= W e e, (h=12 ..,n) ... (5)

Any other unit vector a inV, isexpressible in the form

[o]
. - A encosap
a=

-
or d=a €cosa, ... (6)
h=L
where cosap = ax§, = aien"

a being the contravariant components of & and a , being the inclination of vector ato &, The
normal curvature of V,, for the direction of a is given by

Kn = W alal
from (6), we get

& . 0 & . 0
K = W, (g‘a e’hlcosah; éa q{l cosa ;-
h g &n o

n
8 o
a (Wehey) cosajcosay
hk=1

(W,e,e))cos’a,

1
o0
(o}
5 7 Qos

- S2
Kn_ ha_.l KhCO a.h (7)
I hisisageneralisation of Euler’s Theorem.

12.8 CONJUGATE DIRECTIONS AND ASYMPTOTIC DIRECTIONS IN A HYPERSURFACE
The directions of two vector, a and p, at apoint in V,, are said to be conjugate if
Wjab! =0 (D

and two congruences of curvesin the hypersurface are said to be conjugate if the directions of the two
curves through any point are conjugate.
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A direction in V,, which is self-conjugate is said to be asymptotic and the curves whose direction
are along asymptotic directions are called asymptotic lines.

Therefore the direction the vector a at a point of V,, be asymptotic if
W a'a’ =0 .. (2
The asymptotic lines at a point of a hypersurface satisfies the differential equation
W dx dx' = .. 3

THEOREM 125 If acurve Cinahypersurface V,, has any two of the following propertiesit has the
third
(i) itisageodesicin the hypersurfaceV,
(if) itisageodesic in the enveloping space V,, , ;
(iif) itisan asymptotic line in the hypersurface V.
Proof: Let CbeacurveinthehypersurfaceV,. Thennormal curvature K, of the hypersurfaceV, inthe
direction of Cisgiven by

K2 = K§+K§3 .. (1)
where K, and K, are the first curvatures of C relative to enveloping space V,, , ; and hypersurface V,,
respectively.
Suppose C is ageodesic in the hypersurface V), [i.e., (i) holds] then K, = 0.
If Cisalso ageodesic in the enveloping space V,, , 4 [i.e, (ii) holds] then K, = 0.
Now, using these values in equation (1), we have

K2=0 PK,=0
Implies that C is an asymptotic line is the hypersurface V,, i.e., (iii) holds.
Hence we have proved that (i) and (ii) b (iii)
Similarly we have proved that
(i) and (iii) p (i)
and (i) and (iii) b (ii)
12.9 TENSOR DERIVATIVE OF THE UNIT NORMAL .
The function y? are invariants for transformations of the coordinates x' in V,, their first covariant

derivatives with respect to the metric of V,, are the same astheir ordinary derivatives with respect to the
variables x'.

ie, A A (D)

The unit Normal N2 bethe contravariant vector in the y' swhose tensor derivative with respect
tothe X' sis

a - ——+j yNPye
N;I R % lbdg Yi - (2
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Since agpNPN2 = 1 .. (3
Tensor derivative of this equation with respect to X gives
3apNAND +a5pNEND = 0

Interchanging a and b in Ist term, we get

or 8, N°NS +a,, NIN° = 0
b nja a pnb _—
aapN" N +a,, Nj N° =0
285, N"N{ =0
a,p, N°NS =0 .. (4

which shows that N$ is orthogonal to the normal and therefore tangential to the hypersurface.
Thus N§ can be expressed in terms to tangential vectors y% to V, so that
NG = A"y .. 5
where AK is amixed tensor of second order in V, to be determined.
Since unit normal N2 is orthogonal to tangential vector y3 inV,. Then
aabNay,'? =0
Taking tensor derivative with respect to x/, we get

Ao N5 YS +a,, N*y) = 0 since y5 =W, N°

or aap N5 V3 +a,, N*W; N = 0

or 3y N Y7 + Wy (@ N*N") = 0

from equation (3), a,, N*N° = 1

or A N5 YT +W, =0

or gkiAj!<+\N|j =0
e Ty* > _
gsmceaab Yi Yi =8 ﬂka ﬂ%: gkiH

Multiplying this equation by g™, we get
ga 9"A +W g™ = 0
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dR A +wyg'™ =0
AT+ Wig™ =0
Substituting this value in equation (5), we get
NG = W™y = -W; 0™vi
N§ = —-w; g™y .. (6)
This is the required expression for the tensor derivative of 2.

Theorem 12.6 The derived vector of the unit normal with respect to the enveloping space, along a
curve provided it be a line of curvature of the hypersurface.

Proof: Since the tensor derivative of N2 is
NG = —W,; g'fy5 . (D)
Consider a unit vector ¢ tangential to the curve C.
Then N{e = —W, g'yié .. (2
The direction of N3€' isidentical with that of ¢

Then N&e = —1y2e, (I isscalar constant)
from (2), we have

ai

Iy’ie

W gyie
Multiplying both sides of this equation by aab)}j
Wi g €' (aep Vi V1) = 1 € (BanYS y))
V\(jgjkei O = Iégi| since g; = agp Y?y,t;
V\(jdiei =1 dg;
W€ -l gy =0

(W, —lg,)€ =0 (1=1,2..n)

This equation implies that the direction of €' isaprincipal direction for the symmetric tensor W,
i.e., € isaprincipal direction for the hypersurface V,. Hence by definition the curve C is a line of
curvature V..
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12.10 THE EQUATION OF GAUSS AND CODAZZI
since we know that (pg. 86, equation 5)

Aik=A)k = ApRjk ()
where A, is a covariant tenser of rank one and difference of two tensers A jk— Ay IS a covariant
tenser of rank three.

It y? are components of a covariant tensor of rank one in xs. Then replacing A; by y§ in
equation (1), we get

Yik—Yig = YpRk = y,%gphﬂnijk, Since Rfi = gthhijk - (2
where Ryijk are Riemann symbols for the tensor  gj;
We know that
yi = W; N® )
and N2 = -, gy} . (4

Let ﬁgje are Riemann symbols for the tensor ay and evaluated at points of the hypersurface
using equation (3) and (4), equation (2) becomes

y,ap gph[ Riijk _(Whj Wiy _th\Nij)]_ Na(vvij,k —V\/ik,j)—ﬁg%e Y? Y,dj y,i ... (5)

Multiplying equation (5) by aab)}j and summed with respect to a. Using the relations

2 Yi Y =0
and gab = be? =0|
we get

Rijk = (W Wi _\/\/Ik\/\/lj)+§bgje Y,tl) y; Y,c} Y ... (6)

Multiplying (6) by a,,N b and summing with respect to a. Using relations

aab be? =0
and a, N°B” =0
we get W, — Wy ; +§bgde NP y? Y,dj y%=0 . (7)

Hence, The equation (6) are generalisation of the Gauss Characteristic equation and equation
(7) of the Mainardi-Codazzi equations.
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12.11 HYPERSURFACES WITH INDETERMINATE LINES OF CURVATURE

A point of a hypersurface at which thelines of curvature are indeterminate is called an Umbilical Point.
The lines of curvature may be indeterminate at every point of the hypersurface iff

Wij = wagj; .. (8)

where wis an invariant
The mean curvature M of such a hypersurface is given by
ij =

M= Wig" = wg;g’ =wn

M
p w= —.
n
So that the conditions for indeterminate lines of curvature are expressible as

W = %gij, from (i) (9

If al the geodesics of a hypersurface V, are aso geodesics of an enveloping V,, , ;. They
hypersurface V,, is called a totally geodesic hypersurface of the hypersurface V,, , ;.

THEOREM 12.7 Atotally geodesic hypersurfaceisa minimal hypersurface and its-lines of curvature
are indeterminate.
Proof: We know that

and a hypersurface is said to be minimal if
M=0 ... (2
and the lines of curvature are indeterminate if
M
W = - Yi )

If ahypersurface V,, is totally geodesic then geodesics of V,, are also geodesics of V,, , ;.
i.e., K,=0 = kg
Now, from (1), we have
K,=0
But normal curvature K, is zero for an asymptotic direction. Hence a hypersurface V,, is totally
geodesic hypersurface iff the normal curvature K, zero for al directionsin V,, and hence

Wi; =0
M= \Nij g'J =0
i.e., equation (2) is satisfied.

Hence, the totally geodesic hypersurface is minimal hypersurface.
In this case equation (3) are satisfied hence the lines of curvature are indeterminate.
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12.12 CENTRAL QUADRATIC HYPERSURFACE

Let X be the cartesian in Euclidean space S;,, so that the components g;; of the fundamental tensor are
constants. Lety' bethe Riemmannian coordinates. If afixed point O istaken as apole and sthe distance
of any point P then Riemannian coordinatesy' of P with pole O are given by
y' = sx! . (1)
x! is unit tangent in the direction of OP.

Let &; be the componentsin the x$ of a symmetric tensor of the rank two and evaluated at the
pole O. Then the equation
yay! = - (2)
represents a central quadratic hypersurface
Substituting the value of equation (1) in equation (2), we get

sxiaj9<i =1
i1
XX = 2 ... (3)

The equation (3) showing that the two values of s are equal in magnitude but opposite in sign.
The positive value of s given by equation (3) is the length of the radius of the quadric (2) for the

direction x' .

THEOREM 12.8 The sumof the inverse squares of the radii of the quadric for n mutually orthogonal
directions at O is an invariant equal to aijgij .

Proof: If eih| ,(h=1, 2, ...n) are the contravariant components of the unit tangents at O to the curves

of an orthogonal ennuplein S,. The radius §, relative to the direction eih| is given by

a el =
j=nl =l sﬁ
(g] -2 Ctl i i
or a (s)”=a asde
h=1 h=1
= ;8 e
h=1
g P y
a (s~ = aj;g" Proved.
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THEOREM 12.9 The equation of hyperplane of contact of the tangent hypercone with vertex at the

point Q(y).
Proof: Given (from equation 2, pg. 235)

ajy'y! =
Differentiating it

a;dy'y' +a;y'dy! =0

or aydy'y +ayyldy' =0
23, dy'y’ =0
a;dy'y’ =0

This shows that dy' is tangential to the quadric. Hence y is normal to the quadric.
The tangent hyperplane at the point P (y!) is given by
(Y'-y)ay' =0
aY'yl = ay'y/
ainiyj =1 since g yiyj = .. (4

This equation represents the equation of tangent hyperplaneat P (y /).
If the tangent hyperplane P (y!) passes through the point Q (y). Then we have

Vay =1 .. (5)

Thus all points of the hyperquadric, the tangent hyperplanes at which pass through Q lie on the
hyperplane (5) on which y' is the current point. This is the hyperplane of contact of the tangent

hypercone whose vertex isQ(y') .

12.13 POLAR HYPERPLANE
The polar hyperplane of the point R(y') with respect to quadric (2) is the locus of the vertices of the
hypercones which touch the hyperquadric along its intersections with hyperplanes through R. If Q(y')
is the vertex of such tangent hypercone, then R lies on the hyperplane of contact of Q so that
)_/i q;j y b=
Consequently for all positions of the hyperplane through R, Q lies on the hyperplane
ya; ¥l = .. (6)
Thisis required eguations of the polar hyperplane of R and R is the pole of this hyperplane.



Hypersurface 237

12.14 EVOLUTE OF A HYPERSURFACE IN EUCLIDEAN SPACE

Consider a hypersurface V,, of Euclidean space S,, ; and let x' (i = 1, 2, ... n) be coordinates of an
arbitrary point P of V, whose components relativeto §, , ; are

ya(a :]_'2,...n+1)

Let N be aunit normal vector at P relative to S, ., ; so that tensor derivate N* becomes covariant
derivative.

S0, Ni = Nf = - |j9jky,?< .. (1
i = ¥§ = W;N? )

1
and g =a Yivj .. (3

=1

(3]

Let P(y®) beapoint on the unit normal N2 such that distance of P from P isr inthe direction

of N2 such that
y* = y* +rN? .. (4

Suppose P undergoes a displacement dx' in V,, then the corresponding displacement dy? of P is
given by
dy® = (y3 +rN2)dx' +N2dr ... (5)
The vector (y& +r Nj‘)dxi istangential toV,, whereasN2dr isanormal vector. Thereforeif the
displacement of P(y2) be along the normal to the hypersurface then we have
(y? -rN?0)dx' =0 ... (6)
Using equation (1) in equation (6), we get
(yi —rg’yl)dx' =0
Multiplying it by yfi‘ and summing with respect to a, we get, using equation (3), as
(9 —r \Nljgjkglk)d)é =0
(9 —r Vvijdlj)d)é =0
(gy—rW,)dx =0

(g —rW,)dX =0 . (D
This shows that the directionsdx' given by equation (7) are principal directions of the hypersurface
where the rootsr of the equation |g;; —r W;;| = 0 are called principal radii of normal curvature. The
locus of P(y?) satisfying the condition (4) is called evolute of the hypersurface V,, of S, , ; where r
isaroot of (7). The evolute is also a hypersurface of §, | ;.
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12.15 HYPERSPHERE
Thelocus of a point in S, which movesin such way that it is always at afixed distance R from afixed

point C(b®) is caled a hypersphere of radius R and centre C. Therefore the equation of such a
hypersphere is given by

n
[]

a ' -b*)? -ge . (D)

a=1

THEOREM 1210 The Riemannian curvatrure of a hypersphere of radius R is constant and equal to
1

R*
Proof: Let the hypersurface be a V, of S, ; and let its centre be taken as origin of Euclidean
coordinatesin S, , ; Then the hypersphere is given by
2 a
AP =R @=12..,n+1) .. (2
a

For the point in V,, the y's are functions of the coordinates x' on the hypersphere.
Differentiating equation (2) with respect to x', we get

2 .a,a
?y Yi o .. (3
and again differentiating it with respect to x/, we get.
2 a.a_ 8 .a,8a
avy;vitaY VY=o .. (®
a a
By Gauss formula,
yi = W;jN® ... (5
Using (5), equation (4) becomes
o
gj+a Y"WN® =0 ... (6)

a
From equation (3) it follows that y¢ is perpendicular to y? . But y$ istangential to V. Hence

y? isnormal to V,,. The equation (2) implies that the components of the unit vector N2 are given by

a

N2 :y?t) y? =RN? ..
Using (7), equation (6) becomes
[o]
g;+a RNIN* W, _ g

a

2 2
or g; +RW;a (N*)* _ g

or gij +RWj =0 since (N?)? =1
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or RQy; = —-g; ... (8

Suppose R;;;, and Eﬂy&: are Reimann’s symbols with respect to metrics g, dx' dx’ and ag, P dy’

respectively.

g JLB=Y
we know that agy = &y = 0By

This shows that Christoffel brackets vanish

) d
e} = 0fors]-o

Hence EBYSp =0

This Gauss characteristic equation,

becomes
Ry = Qy Q. — Qp
1 . -
=R (e; & — 2w gl (using equation 8)
Ryjjx |
or = constant

Ey&ik — 88y - R?
Now, the tormula for A, ihe Riemannian curvature to V, at the origin P corresponding to the
orientation determined by unit vector p' and g’ is given by
I i j k
Rywp'q'p'q
K= I i ik
(858 — gngy)P'a' P’'q

1 ple'p’'q*
p’ pPle'p'q*
1 |
K="7 ... (9)

o

Proved.

Nore: 1. Pointcoordinates of Weierstrass for V,,. The function y* satisfying the following conditions are called point
coordinates of Weierstrass for J,;: We have
n+l

a 1
i = 2@ i — =K
a=1 R
n+l

a,2
such that Z(y ) =pe
a=I
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2. Toprovethat for aspaceV, with positive constant Riemannian curvatureK these exists setsof n+ 1real

coordinate ya satisfyingthecondition

rgl 1 1
a

aw)= ra whereRZ:?

a=l

Proof: Using (9) in equation (1), we get

2 ay2
? ") Proved.

.
K
EXAMPLE 2

Show that the directions of two lines of curvature at a point of a hypersurface are conjugate.
Solution

The principal direction eih| are given by

W eri1|enj| =0 (D)
The shows that principal directions at a point of a hypersurface are conjugate.
Thus we say that two congruences of lines of curvature are conjugate.

EXAMPLE 3
Show that the normal curvature of hyper surface V,, in an asymptotic direction vanishes.
Solution

Let us consider acurve Cina V,. If Cisan asymptotic line then it satisfies the differential
equation

W, dX dx' =0
. dx' dx!
l.e., ”EK =0 (1)
Now the normal curvature K, of the hypersurface V,, in an asymptotic directionin a V,, is given
by
d¥ dx!
K =W ——2"_
n " ds ds
i.e., K,=0 from (1)
EXAMPLE 4

To provethat if the polar hyperplane of the point R passes through a point P then that of P passes
through R.

Solution

Let P(y') and R(J') be two points. The polar hyperplane of R(V') is
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Y'a;y' = (D)

If equation (1) passes through P(3') then

Fay =1 e (2)

Again polar hyperplane of P(3') is

Y'a; 37 =0 .. (3)

If equation (3) passes through R(3') then

ya, ) =1
or ¥’/a;y' = (on interchanging i & /)
or yagy' =1 o (4)
Clearly the relation (2) and (4) are same. Proved.
EXERCISES
1. Show that the normal to a total geodesic hypersurface is parallel in the enveloping manifold.
2. Obtain an expression for the derived vector of the unit normal N° to a hypersurface ¥/, along a curve

10.

Cin V, and prove that it will be tangential to the curve provided that C be a line of curvature of V.
Deduce that the first curvature in V,, . | of geodesic of the hypersurface V, is the normal curvature
of the hypersurface in the direction of the geodesic.

Prove that when a geodesic of V), , | lies in a hypersurface V, it is both geodesic and an asymptotic
line in the hypersurface.

Prove that a surface C in a subspace V), is a geodesic in the enveloping space V,, if and only if it is
both a geodesic and an asymptotic line in the subspace V..

Show that any two distinct principal directions relative to the normal N of a hypersurface in the
neighbourhood U of a point are conjugate direction.

Prove that conjugate directions in a hypersurface are such that the derived vector of the unit normal
in ecither direction is orthogonal to the other direction.

Prove that when the line of curvature of a hypersurface of a space of constant curvature are
indeterminate, the hypersurface has constant curvature.

Show that if, in a hypersurface &jj =0 and Q,j = 0(i # j) the coordinate curves are lines of curvature.

Show that for a hypersurface in Euclidean space the Gauss and Codazzi equations reduce to

Rlijk = Qlj Qy — Qlk Qij

and Qjjx —Qig,; =0
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11. Provethat the necessary and sufficient condition that system of hypersurface with unit normal N be
isothermic is that

r (Ndiv N-N.NN) =0.

12. Show that the normal curvature of a subspace in an asymptotic direction is zero.

13. If straight line through a point P in S, meets a hyperquadric in A and B and the polar hyperplane of
P in Q prove that P, Q are harmonic conjugates to A, B.

14. What are evolutes of ahypersurface in an Euclidean space. Show that the varietiesr, = constantin

evolute are parallel, having the curves of parameter r 4 as orthogonal geodesics of V.
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