MACHINE LEARNING WORKINGS

Charles Ndung'u
July 2024

Derivation of Sigmoid Activation Function Using
Reciprocal Method

The Sigmoid activation function, often used in neural networks, is defined as:

1
olw) = l14+e
Step-by-Step Derivation
1. **Initial Form:**
1
o) = l1+e®

2. **Multiply by e®:**
To simplify, we multiply both the numerator and the denominator by e”:

(@) 1-€”
o(x) = ————
(14+e7)-e”
3. **Simplify the Denominator:**
el
ole) = e’ +1

The denominator (1 + e~%) - e* simplifies as follows:

14+e™)-e"=e"+1

4. **Reciprocal of the Sigmoid Function:**
Taking the reciprocal of the function:

—x

e
Cl4e®

o~} (z)

5. **Simplify the Reciprocal:**
Multiply both the numerator and the denominator by e”:

o~1(z) = ev.e 1
S (I4e) et et 41

Thus, the sigmoid function in terms of its reciprocal representation is:

Properties of the Sigmoid Function

1. **Range:**
The output of the Sigmoid function lies between 0 and 1:

0<o(x)<1

2. **Derivative:**

The derivative of the Sigmoid function is useful for backpropagation in neural
networks:
o'(z) = o(x)(1 - o(x))

Graph of the Sigmoid Function

The Sigmoid function produces an S-shaped curve, which can be plotted as
follows:

x o(x)
-2 ~0.1192
—1 | ~ 0.2689
0 0.5
1 | ~0.7311
2 | = 0.8808

Derivation of ReLU Activation Function
The Rectified Linear Unit (ReLU) activation function is defined as:

ReLU(x) = max(0, x)

This function can be expressed using the Heaviside step function H (), which
is defined as:

0 ifz<0
H =
(z) {1 if 2 >0

Using the Heaviside step function, the ReLU activation function can be
written as:

ReLU(x) =z - H(x)

To derive this, consider the piecewise definition of the ReLU function and
the Heaviside step function:

if
ReLU(z) = 4 1<
z ifxz>0
if
H(z) = 0 ?$<O
1 ifz>0
When z < 0:
ReLU(z)=0==a-H(z)=2z-0=0
When z > 0:

|
8

ReLU(z) =z =z -H((x)=z-1

Thus, we have shown that:

ReLU(z) =z - H(x)

Derivation of Hyperbolic Functions and Euler’s
Formula from Taylor Series

Hyperbolic Functions

The hyperbolic sine function sinh(z) and hyperbolic cosine function cosh(z) are
defined as follows:

e’ —e
h(z) —
sinh(z) 5
cosh(z) = ete”
2
1. **Taylor Series Derivation:**
For e”:
" = " 2 28
n=0

Derivation of sinh(z) and cosh(z):
From Euler’s formula:

e® = cosh(z) 4 sinh(z)

e ¥ = cosh(x) — sinh(x)

Adding these two equations:
e’ + e % = 2cosh(x)

Solving for cosh(x):

e~ + e %
2

Subtracting the second equation from the first:

cosh(z) =

e’ —e™" = 2sinh(x)

Solving for sinh(z):

Derivation of cosh(z):
From Euler’s formula:

e = cos(x) + isin(x)

Taking the real part: , 4
cos(x) = erre™
B 2
Using €' = cosh(iz):
cos(z) = cosh(ix)
So,

cosh(z) = cos(ix)

Derivation of tanh(x):

sinh(z)
tanh(z) =
anh(z) cosh(x)

Substituting sinh(z) and cosh(z):

tanh(z) = Pw_fpﬁ

=

Simplifying gives:

tanh(z) = &

2. **Using Taylor Series for e® and e~ *:**

- <1+x+§+%+~-)—<1fx+§f“§—?+~~>

2 2

x® 2

sinh(z) =z + T

T 4 v @+x+%?+§w~~)+(1—x+§-¢%+~}
2

2?2 ot

cosh(x):l—s—g—i-ﬁ—i—---
3. **Tanh Function Derivation:**
The hyperbolic tangent function tanh(z) is defined as:

sinh(x)
cosh(z)

Substituting the Taylor series expansions of sinh(z) and cosh(x):

tanh(z) =

3 5

T+ L+ L
1+ %+ 2+

8

A

tanh(z) =

8

Euler’s Formula from Taylor Series

Euler’s formula relates the complex exponential function to trigonometric func-
tions:
i

€' = cos(x) + isin(x)

1. **Taylor Series for e@:**

o oo (Z-Qf)n_) 3?2 ,$3 .7}4 ,$5
D D R T b T
n=0

2. **Separating Real and Imaginary Parts:**

e = cos(z) + isin(z)
B e (_1)nx2n - 72 24
cos(x)—nz:;] 2n)] —1—5—1—1
) B s (_1)nx2n+1 _ (E3 (E5
sin(e) = Gnr)l T TR
n=0

Activation Functions in The Model
ReLU (Rectified Linear Unit)

Layers:

e The Dense layers with 256 and 128 units use ReLU as the activation
function.

model.add (Dense (256, input_shape=(max_length,), activation="relu’))
model.add (Dense (128, activation=’"relu’))

Role:

¢ ReLU Function:
ReLU(z) = max(0, x)

e ReLU is widely used in neural networks because it helps mitigate the van-
ishing gradient problem by allowing only positive values to pass through
while setting negative values to zero.

e It helps in introducing non-linearity to the model, which enables the net-
work to learn complex patterns.

e ReLU is computationally efficient, making the training process faster.

Softmax
Layer:

e The final Dense layer with the number of units equal to the number of
classes (len(train_y[0])) uses Softmax as the activation function.

model.add (Dense(len(train_y [0]), activation=’softmax’))

Role:

e Softmax Function:

evi

Zj €%

Softmax(z;) =

e The Softmax function converts the output of the final layer into a proba-
bility distribution over the classes.

e Each output value lies between 0 and 1, and the sum of all output values
equals 1.

e It is used in multi-class classification problems where the model needs to
assign probabilities to each class.

Summary of Activation Functions

ReLU

e Purpose: Introduces non-linearity, avoids vanishing gradient problem,
and improves computational efficiency.

e Usage: Used in hidden layers (Dense layers with 256 and 128 units).

Softmax

e Purpose: Converts output logits into a probability distribution over
classes.

e Usage: Used in the final output layer for multi-class classification.

Full Code Context

Here is the relevant section of your model code with activation functions high-
lighted:

model = Sequential ()

model.add (Dense (256, input_shape=(max_length,), activation="relu’))
model.add (Dropout (0.5))

model.add (Dense (128, activation=’"relu’))

model . add (Dropout (0.5))

model.add (Dense(len(train_y [0]), activation='softmax’))

P,

Explanation

e First Dense Layer: Uses 256 units with ReLU activation to capture
complex patterns from the input.

e Dropout Layer: Helps prevent overfitting by randomly setting a fraction
of input units to 0 during training.

e Second Dense Layer: Uses 128 units with ReLU activation to further
process the learned features.

e Dropout Layer: Again, helps prevent overfitting.

e Final Dense Layer: Uses a number of units equal to the number of
classes with Softmax activation to output the probability distribution over
the classes.

These activation functions help your model learn effectively from the input
data and make accurate predictions for the chatbot responses.

1 Introduction

Diagram Explanation

Input Layer

e Receives the input features (bag of words) of length max_length.

Dense Layer 1
e Neurons: 256
e Activation Function: ReLU

e Dropout: 50%

Dense Layer 2
e Neurons: 128
e Activation Function: ReLU

e Dropout: 50%

Output Layer

e Neurons: Number of classes

e Activation Function: Softmax

Diagram

Input Layer
(max_length)

|

Dense Layer 1
(256 neurons, ReLU)

|

Dropout Layer
(50%)

|

Dense Layer 2
(128 neurons, ReLU)

|

Dropout Layer
(50%)

I

Output Layer
(Number of classes, Softmax)

Detailed Representation

Input Layer
(max_length)
]
Dense Layer 1
(256 neurons)
Activation Function: ReLLU

]

Dropout Layer
(50%)

]
Dense Layer 2
(128 neurons)
Activation Function: ReLLU
]
Dropout Layer
(50%)

]
Output Layer
(Number of classes neurons)
Activation Function: Softmax

Description of Each Layer

Input Layer

The input layer takes the preprocessed input data (bag of words) with a length
equal to max_length.

Dense Layer 1

e Neurons: 256

e Activation Function: ReLU

Applies the ReLU function to the weighted sum of inputs.

Output is passed to the next layer.

Dropout Layer

e Randomly sets 50% of the input units to 0 at each update during training
time, which helps prevent overfitting.

10

Dense Layer 2

Neurons: 128
Activation Function: ReLU
Applies the ReLU function to the weighted sum of inputs.

Output is passed to the next layer.

Dropout Layer

Randomly sets 50% of the input units to 0 at each update during training
time, which helps prevent overfitting.

Output Layer

Neurons: Number of classes (equal to the number of possible responses).
Activation Function: Softmax

Converts the outputs into a probability distribution over the classes, in-
dicating the model’s confidence in each class.

ReLU (Rectified Linear Unit) is considered one of the best activa-
tion functions in neural networks due to several advantages it offers
over other activation functions:

1.

Simplicity: ReLU is computationally efficient and easy to implement,
involving simple mathematical operations (max function).

. Avoids Vanishing Gradient: Unlike activation functions like sigmoid

or tanh that saturate at high or low values, causing gradients to vanish,
ReLU does not saturate in the positive region (outputting zero for negative
inputs), thereby mitigating the vanishing gradient problem.

Faster Convergence: ReLU accelerates the convergence of stochastic
gradient descent (SGD) compared to saturating activation functions be-
cause its derivative is either 0 or 1, simplifying the gradient computation.

. Sparsity: ReLU can lead to sparsity in neural networks by zeroing out

negative values, which can be beneficial in certain types of networks, re-
ducing the computational load and overfitting.

Better Representational Power: ReLU allows neural networks to
learn complex representations more effectively due to its non-linear na-
ture and ability to model intricate relationships in data.

Biological Plausibility: ReLU is loosely inspired by the behavior of
biological neurons, where they either fire (output a signal) or do not fire
based on their input.

11

7. State-of-the-Art Performance: In practice, ReLU has been found to

perform well across a wide range of tasks and is a default choice in many
deep learning models.

Despite its advantages, ReLU also has limitations, such as the ”dying ReLLU”
problem where neurons can permanently output zero if their weights are updated
in a way that keeps their output always negative. Techniques like Leaky ReLLU
and variants such as Parametric ReLU (PReLU) and Exponential Linear Unit
(ELU) have been developed to address some of these issues while retaining the
benefits of ReLLU.

The main purpose of using activation functions in deep learning, especially
nonlinear activation functions like ReLU (Rectified Linear Unit), sigmoid, tanh,
etc., is to introduce nonlinearity into the network. Neural networks need to
learn complex patterns and relationships in data that are often nonlinear in
nature. Here are the key reasons why activation functions are crucial:

1.

Introducing Nonlinearity: Without activation functions, neural net-
works would simply be linear transformations of their inputs, regardless
of the number of layers. This would severely limit their ability to learn
and represent complex patterns in data.

Learning Complex Functions: By applying nonlinear activation func-
tions, neural networks can learn and approximate complex, nonlinear map-
pings between input and output data. This enables them to model intri-
cate relationships that exist in real-world datasets.

Capturing Higher-Level Features: Activation functions allow neural
networks to capture and represent higher-level features in data, which are
often not linearly separable. For example, in image recognition tasks,
networks need to detect edges, textures, and shapes—tasks that require
nonlinear transformations of the input data.

Gradient Propagation: Activation functions play a critical role in back-
propagation, the algorithm used to update the weights of neural networks
during training. They ensure that gradients can be calculated and propa-
gated efficiently through the network layers, facilitating learning and con-
vergence.

Stabilizing Outputs: Certain activation functions, like sigmoid and
tanh, normalize the outputs of neurons to a specific range (e.g., [0, 1]
for sigmoid), which can be beneficial for certain types of tasks, such as
binary classification.

12

