
The Linux Command Line
Second Internet Edition

William E. Shotts, Jr.

A LinuxCommand.org Book

Copyright ©2008-2013, William E. Shotts, Jr.

This work is licensed under the Creative Commons Attribution-Noncommercial-No De-
rivative Works 3.0 United States License. To view a copy of this license, visit the link
above or send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.

Linux® is the registered trademark of Linus Torvalds. All other trademarks belong to
their respective owners.

This book is part of the LinuxCommand.org project, a site for Linux education and advo-
cacy devoted to helping users of legacy operating systems migrate into the future. You
may contact the LinuxCommand.org project at http://linuxcommand.org.

This book is also available in printed form, published by No Starch Press and may be
purchased wherever fine books are sold. No Starch Press also offers this book in elec-
tronic formats for most popular e-readers: http://nostarch.com/tlcl.htm

Release History

Version Date Description

13.07 July 6, 2013 Second Internet Edition.

09.12 December 14, 2009 First Internet Edition.

09.11 November 19, 2009 Fourth draft with almost all reviewer feedback
incorporated and edited through chapter 37.

09.10 October 3, 2009 Third draft with revised table formatting,
partial application of reviewers feedback and
edited through chapter 18.

09.08 August 12, 2009 Second draft incorporating the first editing
pass.

09.07 July 18, 2009 Completed first draft.

http://linuxcommand.org/
http://nostarch.com/tlcl.htm

Table of Contents

Introduction..xvi

Why Use The Command Line?...xvi
What This Book Is About..xvii
Who Should Read This Book...xvii
What's In This Book...xviii
How To Read This Book..xviii

Prerequisites..xix
Why I Don't Call It “GNU/Linux”...xix

Acknowledgments..xx
Your Feedback Is Needed!..xx
What's New In The Second Internet Edition...xxi
Further Reading..xxi
Colophon...xxi

Part 1 – Learning The Shell..1

1 – What Is The Shell?...2

Terminal Emulators..2
Your First Keystrokes..2

Command History...3
Cursor Movement...3

A Few Words About Mice And Focus..3
Try Some Simple Commands..4
Ending A Terminal Session..5

The Console Behind The Curtain..5
Summing Up..5
Further Reading...6

2 – Navigation...7

Understanding The File System Tree..7
The Current Working Directory..7
Listing The Contents Of A Directory..8
Changing The Current Working Directory...9

Absolute Pathnames..9
Relative Pathnames...9
Some Helpful Shortcuts..11

Important Facts About Filenames..11

i

Summing Up..12

3 – Exploring The System...13

More Fun With ls...13
Options And Arguments..14
A Longer Look At Long Format...16

Determining A File's Type With file..17
Viewing File Contents With less..17

What Is “Text”?...17
Less Is More..19

A Guided Tour..19
Symbolic Links...23
Hard Links...24
Summing Up..24
Further Reading...24

4 – Manipulating Files And Directories..25

Wildcards...25
Character Ranges..27
Wildcards Work In The GUI Too..27

mkdir – Create Directories...28
cp – Copy Files And Directories..28

Useful Options And Examples..29
mv – Move And Rename Files..30

Useful Options And Examples..30
rm – Remove Files And Directories...31

Useful Options And Examples..31
Be Careful With rm!...32

ln – Create Links..33
Hard Links..33
Symbolic Links..33

Let's Build A Playground..34
Creating Directories..34
Copying Files..34
Moving And Renaming Files...35
Creating Hard Links..37
Creating Symbolic Links...38
Removing Files And Directories...39

Creating Symlinks With The GUI...40
Summing Up..41
Further Reading...41

5 – Working With Commands..42

What Exactly Are Commands?..42
Identifying Commands...43

type – Display A Command's Type...43
which – Display An Executable's Location...43

Getting A Command's Documentation..44
help – Get Help For Shell Builtins..44
--help – Display Usage Information..45

ii

man – Display A Program's Manual Page..45
apropos – Display Appropriate Commands..47
whatis – Display A Very Brief Description Of A Command.......................................47

The Most Brutal Man Page Of Them All..48
info – Display A Program's Info Entry...48
README And Other Program Documentation Files..49

Creating Your Own Commands With alias..50
Summing Up..52
Further Reading...52

6 – Redirection..53

Standard Input, Output, And Error...53
Redirecting Standard Output...54
Redirecting Standard Error..55

Redirecting Standard Output And Standard Error To One File................................56
Disposing Of Unwanted Output..57

/dev/null In Unix Culture..57
Redirecting Standard Input..57

cat – Concatenate Files..57
Pipelines..59

The Difference Between > and |..60
Filters..61
uniq - Report Or Omit Repeated Lines...61
wc – Print Line, Word, And Byte Counts..62
grep – Print Lines Matching A Pattern..62
head / tail – Print First / Last Part Of Files..63
tee – Read From Stdin And Output To Stdout And Files..64

Summing Up..65
Linux Is About Imagination..65

7 – Seeing The World As The Shell Sees It..67

Expansion..67
Pathname Expansion...68

Pathname Expansion Of Hidden Files...69
Tilde Expansion..69
Arithmetic Expansion..70
Brace Expansion..71
Parameter Expansion...72
Command Substitution...73

Quoting..74
Double Quotes..75
Single Quotes...76
Escaping Characters..77

Backslash Escape Sequences..77
Summing Up..78
Further Reading...78

8 – Advanced Keyboard Tricks...79

Command Line Editing..79
Cursor Movement...79

iii

Modifying Text...80
Cutting And Pasting (Killing And Yanking) Text..80

The Meta Key..81
Completion..81

Programmable Completion..83
Using History...83

Searching History...84
History Expansion...86

script..86
Summing Up..86
Further Reading...87

9 – Permissions..88

Owners, Group Members, And Everybody Else..89
Reading, Writing, And Executing...90

chmod – Change File Mode...92
What The Heck Is Octal?...93

Setting File Mode With The GUI...95
umask – Set Default Permissions..96

Some Special Permissions..98
Changing Identities..99

su – Run A Shell With Substitute User And Group IDs..99
sudo – Execute A Command As Another User...101

Ubuntu And sudo...101
chown – Change File Owner And Group..102
chgrp – Change Group Ownership...103

Exercising Our Privileges..103
Changing Your Password..106
Summing Up..107
Further Reading..107

10 – Processes...108

How A Process Works...108
Viewing Processes..109

Viewing Processes Dynamically With top..111
Controlling Processes...113

Interrupting A Process..114
Putting A Process In The Background..114
Returning A Process To The Foreground...115
Stopping (Pausing) A Process..116

Signals...117
Sending Signals To Processes With kill...117
Sending Signals To Multiple Processes With killall..120

More Process Related Commands...120
Summing Up..121

Part 2 – Configuration And The Environment.............................123

11 – The Environment..124

iv

What Is Stored In The Environment?..124
Examining The Environment..124
Some Interesting Variables...126

How Is The Environment Established?...127
What's In A Startup File?..128

Modifying The Environment...130
Which Files Should We Modify?...130
Text Editors...130
Using A Text Editor...131

Why Comments Are Important..134
Activating Our Changes..135

Summing Up..135
Further Reading..135

12 – A Gentle Introduction To vi...136

Why We Should Learn vi...136
A Little Background ..137
Starting And Stopping vi..137

Compatibility Mode..138
Editing Modes..139

Entering Insert Mode..140
Saving Our Work..140

Moving The Cursor Around...141
Basic Editing..142

Appending Text...142
Opening A Line...143
Deleting Text...144
Cutting, Copying, And Pasting Text..145
Joining Lines...147

Search-And-Replace...147
Searching Within A Line..147
Searching The Entire File...147
Global Search-And-Replace...148

Editing Multiple Files...150
Switching Between Files...151
Opening Additional Files For Editing..151
Copying Content From One File Into Another..152
Inserting An Entire File Into Another...153

Saving Our Work...154
Summing Up..155
Further Reading..155

13 – Customizing The Prompt...156

Anatomy Of A Prompt..156
Trying Some Alternative Prompt Designs..158
Adding Color..159

Terminal Confusion..160
Moving The Cursor..162
Saving The Prompt..163
Summing Up..164

v

Further Reading..164

Part 3 – Common Tasks And Essential Tools.............................165

14 – Package Management..166

Packaging Systems...166
How A Package System Works...167

Package Files...167
Repositories..167
Dependencies...168
High And Low-level Package Tools..168

Common Package Management Tasks...169
Finding A Package In A Repository..169
Installing A Package From A Repository...169
Installing A Package From A Package File...170
Removing A Package...170
Updating Packages From A Repository..171
Upgrading A Package From A Package File...171
Listing Installed Packages..172
Determining If A Package Is Installed...172
Displaying Info About An Installed Package...173
Finding Which Package Installed A File...173

Summing Up..173
The Linux Software Installation Myth...174

Further Reading..175

15 – Storage Media...176

Mounting And Unmounting Storage Devices..176
Viewing A List Of Mounted File Systems..178

Why Unmounting Is Important...181
Determining Device Names..182

Creating New File Systems...185
Manipulating Partitions With fdisk..185
Creating A New File System With mkfs..188

Testing And Repairing File Systems..189
What The fsck?..189

Formatting Floppy Disks..189
Moving Data Directly To/From Devices...190
Creating CD-ROM Images..191

Creating An Image Copy Of A CD-ROM...191
Creating An Image From A Collection Of Files...191

A Program By Any Other Name...192
Writing CD-ROM Images...192

Mounting An ISO Image Directly..192
Blanking A Re-Writable CD-ROM...193
Writing An Image..193

Summing Up..193
Further Reading..193
Extra Credit..193

vi

16 – Networking..195

Examining And Monitoring A Network...196
ping...196
traceroute...197
netstat...198

Transporting Files Over A Network..199
ftp..199
lftp – A Better ftp...202
wget..202

Secure Communication With Remote Hosts...202
ssh..203

Tunneling With SSH..206
scp And sftp..207

An SSH Client For Windows?..208
Summing Up..208
Further Reading..208

17 – Searching For Files..209

locate – Find Files The Easy Way...209
Where Does The locate Database Come From?..211

find – Find Files The Hard Way...211
Tests...212
Operators..214
Predefined Actions..217
User-Defined Actions..219
Improving Efficiency...220
xargs...220

Dealing With Funny Filenames..221
A Return To The Playground..221
Options...224

Summing Up..225
Further Reading..225

18 – Archiving And Backup...226

Compressing Files...226
gzip...227
bzip2...229

Don’t Be Compressive Compulsive...230
Archiving Files...230

tar..230
zip...236

Synchronizing Files And Directories..238
Using rsync Over A Network...240

Summing Up..241
Further Reading..241

19 – Regular Expressions...243

What Are Regular Expressions?..243
grep...243

vii

Metacharacters And Literals..245
The Any Character..246
Anchors...247

A Crossword Puzzle Helper...247
Bracket Expressions And Character Classes..248

Negation...248
Traditional Character Ranges...249
POSIX Character Classes..250

Reverting To Traditional Collation Order..253
POSIX Basic Vs. Extended Regular Expressions...254

POSIX..254
Alternation...255
Quantifiers...256

? - Match An Element Zero Or One Time...256
* - Match An Element Zero Or More Times..257
+ - Match An Element One Or More Times..258
{ } - Match An Element A Specific Number Of Times..258

Putting Regular Expressions To Work...259
Validating A Phone List With grep...259
Finding Ugly Filenames With find...260
Searching For Files With locate...261
Searching For Text With less And vim..261

Summing Up..263
Further Reading..263

20 – Text Processing..264

Applications Of Text...264
Documents...265
Web Pages...265
Email...265
Printer Output...265
Program Source Code..265

Revisiting Some Old Friends...265
cat...266

MS-DOS Text Vs. Unix Text...267
sort..267
uniq...275

Slicing And Dicing..276
cut...276

Expanding Tabs...279
paste...280
join..281

Comparing Text...283
comm..284
diff...284
patch...287

Editing On The Fly...288
tr..288

ROT13: The Not-So-Secret Decoder Ring..290
sed..290

viii

People Who Like sed Also Like...299
aspell..299

Summing Up..303
Further Reading..303
Extra Credit..304

21 – Formatting Output..305

Simple Formatting Tools..305
nl – Number Lines..305
fold – Wrap Each Line To A Specified Length..309
fmt – A Simple Text Formatter..309
pr – Format Text For Printing..313
printf – Format And Print Data..314

Document Formatting Systems...317
groff...318

Summing Up..324
Further Reading..324

22 – Printing..326

A Brief History Of Printing..326
Printing In The Dim Times..326
Character-based Printers...327
Graphical Printers...328

Printing With Linux..329
Preparing Files For Printing...329

pr – Convert Text Files For Printing..329
Sending A Print Job To A Printer..331

lpr – Print Files (Berkeley Style)...331
lp – Print Files (System V Style)...332
Another Option: a2ps..333

Monitoring And Controlling Print Jobs...336
lpstat – Display Print System Status..336
lpq – Display Printer Queue Status..337
lprm / cancel – Cancel Print Jobs...338

Summing Up..338
Further Reading..338

23 – Compiling Programs..340

What Is Compiling?...340
Are All Programs Compiled?..341

Compiling A C Program...342
Obtaining The Source Code...342
Examining The Source Tree...344
Building The Program...346
Installing The Program...350

Summing Up..350
Further Reading..350

Part 4 – Writing Shell Scripts...353

ix

24 – Writing Your First Script..354

What Are Shell Scripts?...354
How To Write A Shell Script...354
Script File Format..355
Executable Permissions..356
Script File Location..356

Good Locations For Scripts..358
More Formatting Tricks..358

Long Option Names..358
Indentation And line-continuation...358

Configuring vim For Script Writing...359
Summing Up..360
Further Reading..360

25 – Starting A Project...361

First Stage: Minimal Document...361
Second Stage: Adding A Little Data..363
Variables And Constants...364

Assigning Values To Variables And Constants...367
Here Documents...368
Summing Up..371
Further Reading..371

26 – Top-Down Design...372

Shell Functions..373
Local Variables..376
Keep Scripts Running..377

Shell Functions In Your .bashrc File..380
Summing Up..380
Further Reading..380

27 – Flow Control: Branching With if...381

if...381
Exit Status...382
test...384

File Expressions...384
String Expressions..387
Integer Expressions..388

A More Modern Version Of test...389
(()) - Designed For Integers..391
Combining Expressions...392

Portability Is The Hobgoblin Of Little Minds...394
Control Operators: Another Way To Branch..394
Summing Up..395
Further Reading..396

28 – Reading Keyboard Input..397

read – Read Values From Standard Input...398
Options...400

x

IFS..402
You Can’t Pipe read...404

Validating Input..404
Menus..406
Summing Up..407

Extra Credit...407
Further Reading..408

29 – Flow Control: Looping With while / until...409

Looping..409
while..409

Breaking Out Of A Loop...412
until...413

Reading Files With Loops...414
Summing Up..415
Further Reading..415

30 – Troubleshooting...416

Syntactic Errors...416
Missing Quotes...417
Missing Or Unexpected Tokens..417
Unanticipated Expansions..418

Logical Errors ...420
Defensive Programming...420
Verifying Input...422

Design Is A Function Of Time..422
Testing...422

Test Cases..423
Debugging...424

Finding The Problem Area..424
Tracing..424
Examining Values During Execution..427

Summing Up..427
Further Reading..428

31 – Flow Control: Branching With case...429

case...429
Patterns..431
Performing Multiple Actions..433

Summing Up..434
Further Reading..434

32 – Positional Parameters...436

Accessing The Command Line...436
Determining The Number of Arguments...437
shift – Getting Access To Many Arguments..438
Simple Applications..439
Using Positional Parameters With Shell Functions..440

Handling Positional Parameters En Masse...441

xi

A More Complete Application..443
Summing Up..446
Further Reading..449

33 – Flow Control: Looping With for..450

for: Traditional Shell Form...450
Why i?..452

for: C Language Form...453
Summing Up..454
Further Reading..455

34 – Strings And Numbers..456

Parameter Expansion..456
Basic Parameters...456
Expansions To Manage Empty Variables...457
Expansions That Return Variable Names..459
String Operations..459
Case Conversion..462

Arithmetic Evaluation And Expansion...464
Number Bases..465
Unary Operators...465
Simple Arithmetic..465
Assignment...467
Bit Operations...469
Logic...470

bc – An Arbitrary Precision Calculator Language..473
Using bc..474
An Example Script..475

Summing Up..476
Extra Credit..476
Further Reading..476

35 – Arrays..478

What Are Arrays?..478
Creating An Array..478
Assigning Values To An Array..479
Accessing Array Elements...480
Array Operations...482

Outputting The Entire Contents Of An Array..482
Determining The Number Of Array Elements...482
Finding The Subscripts Used By An Array...483
Adding Elements To The End Of An Array...483
Sorting An Array..484
Deleting An Array..484

Associative Arrays...485
Summing Up..486
Further Reading..486

36 – Exotica...487

xii

Group Commands And Subshells...487
Process Substitution...491

Traps..493
Temporary Files...495

Asynchronous Execution...496
wait...496

Named Pipes...498
Setting Up A Named Pipe...498
Using Named Pipes..499

Summing Up..499
Further Reading..499

Index..501

xiii

xiv

To Karen

xv

Introduction

I want to tell you a story.

No, not the story of how, in 1991, Linus Torvalds wrote the first version of the Linux ker-
nel. You can read that story in lots of Linux books. Nor am I going to tell you the story of
how, some years earlier, Richard Stallman began the GNU Project to create a free Unix-
like operating system. That's an important story too, but most other Linux books have that
one, as well.

No, I want to tell you the story of how you can take back control of your computer.

When I began working with computers as a college student in the late 1970s, there was a
revolution going on. The invention of the microprocessor had made it possible for ordi-
nary people like you and me to actually own a computer. It's hard for many people today
to imagine what the world was like when only big business and big government ran all
the computers. Let's just say, you couldn't get much done.

Today, the world is very different. Computers are everywhere, from tiny wristwatches to
giant data centers to everything in between. In addition to ubiquitous computers, we also
have a ubiquitous network connecting them together. This has created a wondrous new
age of personal empowerment and creative freedom, but over the last couple of decades
something else has been happening. A few giant corporations have been imposing their
control over most of the world's computers and deciding what you can and cannot do
with them. Fortunately, people from all over the world are doing something about it. They
are fighting to maintain control of their computers by writing their own software. They
are building Linux.

Many people speak of “freedom” with regard to Linux, but I don't think most people
know what this freedom really means. Freedom is the power to decide what your com-
puter does, and the only way to have this freedom is to know what your computer is do-
ing. Freedom is a computer that is without secrets, one where everything can be known if
you care enough to find out.

Why Use The Command Line?

Have you ever noticed in the movies when the “super hacker,”—you know, the guy who   
can break into the ultra-secure military computer in under thirty seconds—sits down at   
the computer, he never touches a mouse? It's because movie makers realize that we, as
human beings, instinctively know the only way to really get anything done on a computer

xvi

is by typing on a keyboard!

Most computer users today are only familiar with the graphical user interface (GUI) and
have been taught by vendors and pundits that the command line interface (CLI) is a terri-
fying thing of the past. This is unfortunate, because a good command line interface is a
marvelously expressive way of communicating with a computer in much the same way
the written word is for human beings. It's been said that “graphical user interfaces make
easy tasks easy, while command line interfaces make difficult tasks possible” and this is
still very true today.

Since Linux is modeled after the Unix family of operating systems, it shares the same
rich heritage of command line tools as Unix. Unix came into prominence during the early
1980s (although it was first developed a decade earlier), before the widespread adoption
of the graphical user interface and, as a result, developed an extensive command line in-
terface instead. In fact, one of the strongest reasons early adopters of Linux chose it over,
say, Windows NT was the powerful command line interface which made the “difficult
tasks possible.”

What This Book Is About

This book is a broad overview of “living” on the Linux command line. Unlike some
books that concentrate on just a single program, such as the shell program, bash, this
book will try to convey how to get along with the command line interface in a larger
sense. How does it all work? What can it do? What's the best way to use it?

This is not a book about Linux system administration. While any serious discussion of
the command line will invariably lead to system administration topics, this book only
touches on a few administration issues. It will, however, prepare the reader for additional
study by providing a solid foundation in the use of the command line, an essential tool for
any serious system administration task.

This book is very Linux-centric. Many other books try to broaden their appeal by in-
cluding other platforms such as generic Unix and OS X. In doing so, they “water down”
their content to feature only general topics. This book, on the other hand, only covers
contemporary Linux distributions. Ninety-five percent of the content is useful for users of
other Unix-like systems, but this book is highly targeted at the modern Linux command
line user.

Who Should Read This Book

This book is for new Linux users who have migrated from other platforms. Most likely
you are a “power user” of some version of Microsoft Windows. Perhaps your boss has
told you to administer a Linux server, or maybe you're just a desktop user who is tired of
all the security problems and want to give Linux a try. That's fine. All are welcome here.

That being said, there is no shortcut to Linux enlightenment. Learning the command line
is challenging and takes real effort. It's not that it's so hard, but rather it's so vast. The av-

xvii

erage Linux system has literally thousands of programs you can employ on the command
line. Consider yourself warned; learning the command line is not a casual endeavor.

On the other hand, learning the Linux command line is extremely rewarding. If you think
you're a “power user” now, just wait. You don't know what real power is—yet. And, un    -
like many other computer skills, knowledge of the command line is long lasting. The
skills learned today will still be useful ten years from now. The command line has sur-
vived the test of time.

It is also assumed that you have no programming experience, but not to worry, we'll start
you down that path as well.

What's In This Book

This material is presented in a carefully chosen sequence, much like a tutor sitting next to
you guiding you along. Many authors treat this material in a “systematic” fashion, which
makes sense from a writer’s perspective, but can be very confusing to new users.

Another goal is to acquaint you with the Unix way of thinking, which is different from
the Windows way of thinking. Along the way, we'll go on a few side trips to help you un-
derstand why certain things work the way they do and how they got that way. Linux is
not just a piece of software, it's also a small part of the larger Unix culture, which has its
own language and history. I might throw in a rant or two, as well.

This book is divided into four parts, each covering some aspect of the command line ex-
perience:

● Part 1 – Learning The Shell starts our exploration of the basic language of the
command line including such things as the structure of commands, file system
navigation, command line editing, and finding help and documentation for com-
mands.

● Part 2 – Configuration And The Environment covers editing configuration
files that control the computer's operation from the command line.

● Part 3 – Common Tasks And Essential Tools explores many of the ordinary
tasks that are commonly performed from the command line. Unix-like operating
systems, such as Linux, contain many “classic” command line programs that are
used to perform powerful operations on data.

● Part 4 – Writing Shell Scripts introduces shell programming, an admittedly
rudimentary, but easy to learn, technique for automating many common comput-
ing tasks. By learning shell programming, you will become familiar with concepts
that can be applied to many other programming languages.

How To Read This Book

Start at the beginning of the book and follow it to the end. It isn’t written as a reference
work, it's really more like a story with a beginning, middle, and an end.

xviii

Prerequisites

To use this book, all you will need is a working Linux installation. You can get this in one
of two ways:

1. Install Linux on a (not so new) computer. It doesn't matter which distribution
you choose, though most people today start out with either Ubuntu, Fedora, or
OpenSUSE. If in doubt, try Ubuntu first. Installing a modern Linux distribution
can be ridiculously easy or ridiculously difficult depending on your hardware. I
suggest a desktop computer that is a couple of years old and has at least 256
megabytes of RAM and 6 gigabytes of free hard disk space. Avoid laptops and
wireless networks if at all possible, as these are often more difficult to get work-
ing.

2. Use a “Live CD.” One of the cool things you can do with many Linux distribu-
tions is run them directly from a CDROM (or USB flash drive) without installing
them at all. Just go into your BIOS setup and set your computer to “Boot from
CDROM,” insert the live CD, and reboot. Using a live CD is a great way to test a
computer for Linux compatibility prior to installation. The disadvantage of using
a live CD is that it may be very slow compared to having Linux installed on your
hard drive. Both Ubuntu and Fedora (among others) have live CD versions.

Regardless of how you install Linux, you will need to have occasional superuser (i.e., ad-
ministrative) privileges to carry out the lessons in this book.

After you have a working installation, start reading and follow along with your own com-
puter. Most of the material in this book is “hands on,” so sit down and get typing!

Why I Don't Call It “GNU/Linux”

In some quarters, it's politically correct to call the Linux operating system the
“GNU/Linux operating system.” The problem with “Linux” is that there is no
completely correct way to name it because it was written by many different peo-
ple in a vast, distributed development effort. Technically speaking, Linux is the
name of the operating system's kernel, nothing more. The kernel is very important
of course, since it makes the operating system go, but it's not enough to form a
complete operating system.
Enter Richard Stallman, the genius-philosopher who founded the Free Software
movement, started the Free Software Foundation, formed the GNU Project, wrote
the first version of the GNU C Compiler (gcc), created the GNU General Public
License (the GPL), etc., etc., etc. He insists that you call it “GNU/Linux” to prop-
erly reflect the contributions of the GNU Project. While the GNU Project predates
the Linux kernel, and the project's contributions are extremely deserving of recog-
nition, placing them in the name is unfair to everyone else who made significant

xix

contributions. Besides, I think “Linux/GNU” would be more technically accurate
since the kernel boots first and everything else runs on top of it.
In popular usage, “Linux” refers to the kernel and all the other free and open
source software found in the typical Linux distribution; that is, the entire Linux
ecosystem, not just the GNU components. The operating system marketplace
seems to prefer one-word names such as DOS, Windows, Solaris, Irix, AIX. I
have chosen to use the popular format. If, however, you prefer to use
“GNU/Linux” instead, please perform a mental search-and-replace while reading
this book. I won't mind.

Acknowledgments

I want to thank the following people, who helped make this book possible:

Jenny Watson, Acquisitions Editor at Wiley Publishing who originally suggested that I
write a shell scripting book.

mailto:bshotts@users.sourceforge.net
http://linuxcommand.org/

What's New In The Second Internet Edition

This version of The Linux Command Line has undergone some additional polish and
modernization. In particular, bash version 4.x is assumed to be the standard version and
the text has been updated to reflect this. The chapter numbers in the Second Internet Edi-
tion now align with those in the No Starch Press edition. I also fixed a few bugs ;-).

Special thanks go out to the following individuals who provided valuable feedback on the
first edition: Adrian Arpidez, Hu Bo, Heriberto Cantú, Joshua Escamilla, Bruce Fowler,
Ma Jun, Seth King, Mike O'Donnell, Parviz Rasoulipour, Gabriel Stutzman, and Chris-
tian Wuethrich.

Further Reading

● Here are some Wikipedia articles on the famous people mentioned in this chapter:
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Richard_Stallman

● The Free Software Foundation and the GNU Project:
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://www.fsf.org
http://www.gnu.org

● Richard Stallman has written extensively on the “GNU/Linux” naming issue:
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/gnu-linux-faq.html#tools

Colophon

This book was originally written using OpenOffice.org Writer in Liberation Serif and
Sans fonts on a Dell Inspiron 530N, factory configured with Ubuntu 8.04. The PDF ver-
sion of the text was generated directly by OpenOffice.org Writer. The Second Internet
Edition was produced on the same computer using LibreOffice Writer on Ubuntu 12.04.

xxi

http://www.gnu.org/gnu/gnu-linux-faq.html#tools
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/
http://www.fsf.org/
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/Richard_Stallman
http://en.wikipedia.org/wiki/Linux_Torvalds

xxii

Part 1 – Learning The Shell

1

1 – What Is The Shell?

1 – What Is The Shell?

When we speak of the command line, we are really referring to the shell. The shell is a
program that takes keyboard commands and passes them to the operating system to carry
out. Almost all Linux distributions supply a shell program from the GNU Project called
bash. The name “bash” is an acronym for “Bourne Again SHell”, a reference to the fact
bash is an enhanced replacement for sh, the original Unix shell program written by
Steve Bourne.

Terminal Emulators

When using a graphical user interface, we need another program called a terminal emula-
tor to interact with the shell. If we look through our desktop menus, we will probably find
one. KDE uses konsole and GNOME uses gnome-terminal, though it's likely
called simply “terminal” on our menu. There are a number of other terminal emulators
available for Linux, but they all basically do the same thing; give us access to the shell.
You will probably develop a preference for one or another based on the number of bells
and whistles it has.

Your First Keystrokes

So let's get started. Launch the terminal emulator! Once it comes up, we should see some-
thing like this:

[me@linuxbox ~]$

This is called a shell prompt and it will appear whenever the shell is ready to accept in-
put. While it may vary in appearance somewhat depending on the distribution, it will usu-
ally include your username@machinename, followed by the current working directory
(more about that in a little bit) and a dollar sign.

If the last character of the prompt is a pound sign (“#”) rather than a dollar sign, the ter-
minal session has superuser privileges. This means either we are logged in as the root
user or we selected a terminal emulator that provides superuser (administrative) privi-

2

Your First Keystrokes

leges.

Assuming that things are good so far, let's try some typing. Enter some gibberish at the
prompt like so:

[me@linuxbox ~]$ kaekfjaeifj

Since this command makes no sense, the shell will tell us so and give us another chance:

bash: kaekfjaeifj: command not found
[me@linuxbox ~]$

Command History

If we press the up-arrow key, we will see that the previous command “kaekfjaeifj” reap-
pears after the prompt. This is called command history. Most Linux distributions remem-
ber the last 500 commands by default. Press the down-arrow key and the previous com-
mand disappears.

Cursor Movement

Recall the previous command with the up-arrow key again. Now try the left and right-ar-
row keys. See how we can position the cursor anywhere on the command line? This
makes editing commands easy.

A Few Words About Mice And Focus

While the shell is all about the keyboard, you can also use a mouse with your ter-
minal emulator. There is a mechanism built into the X Window System (the un-
derlying engine that makes the GUI go) that supports a quick copy and paste tech-
nique. If you highlight some text by holding down the left mouse button and drag-
ging the mouse over it (or double clicking on a word), it is copied into a buffer
maintained by X. Pressing the middle mouse button will cause the text to be
pasted at the cursor location. Try it.
Note: Don't be tempted to use Ctrl-c and Ctrl-v to perform copy and paste
inside a terminal window. They don't work. These control codes have different
meanings to the shell and were assigned many years before Microsoft Windows.

3

1 – What Is The Shell?

Your graphical desktop environment (most likely KDE or GNOME), in an effort
to behave like Windows, probably has its focus policy set to “click to focus.” This
means for a window to get focus (become active) you need to click on it. This is
contrary to the traditional X behavior of “focus follows mouse” which means that
a window gets focus just by passing the mouse over it. The window will not come
to the foreground until you click on it but it will be able to receive input. Setting
the focus policy to “focus follows mouse” will make the copy and paste technique
even more useful. Give it a try if you can (some desktop environments such as
Ubuntu's Unity no longer support it). I think if you give it a chance you will pre-
fer it. You will find this setting in the configuration program for your window
manager.

Try Some Simple Commands

Now that we have learned to type, let's try a few simple commands. The first one is
date. This command displays the current time and date.

[me@linuxbox ~]$ date
Thu Oct 25 13:51:54 EDT 2007

A related command is cal which, by default, displays a calendar of the current month.

[me@linuxbox ~]$ cal
 October 2007
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

To see the current amount of free space on your disk drives, enter df:

[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5012392 9949716 34% /
/dev/sda5 59631908 26545424 30008432 47% /home
/dev/sda1 147764 17370 122765 13% /boot

4

Try Some Simple Commands

tmpfs 256856 0 256856 0% /dev/shm

Likewise, to display the amount of free memory, enter the free command.

[me@linuxbox ~]$ free
 total used free shared buffers cached
Mem: 513712 503976 9736 0 5312 122916
-/+ buffers/cache: 375748 137964
Swap: 1052248 104712 947536

Ending A Terminal Session

We can end a terminal session by either closing the terminal emulator window, or by en-
tering the exit command at the shell prompt:

[me@linuxbox ~]$ exit

The Console Behind The Curtain

Even if we have no terminal emulator running, several terminal sessions continue
to run behind the graphical desktop. Called virtual terminals or virtual consoles,
these sessions can be accessed on most Linux distributions by pressing Ctrl-
Alt-F1 through Ctrl-Alt-F6. When a session is accessed, it presents a login
prompt into which we can enter our username and password. To switch from one
virtual console to another, press Alt and F1-F6. To return to the graphical desk-
top, press Alt-F7.

Summing Up

As we begin our journey, we are introduced to the shell and see the command line for the
first time and learn how to start and end a terminal session. We also see how to issue
some simple commands and perform a little light command line editing. That wasn't so
scary was it?

5

1 – What Is The Shell?

Further Reading

● To learn more about Steve Bourne, father of the Bourne Shell, see this Wikipedia
article:
http://en.wikipedia.org/wiki/Steve_Bourne

● Here is an article about the concept of shells in computing:
http://en.wikipedia.org/wiki/Shell_(computing)

6

http://en.wikipedia.org/wiki/Shell_(computing)
http://en.wikipedia.org/wiki/Steve_Bourne

2 – Navigation

2 – Navigation

The first thing we need to learn (besides just typing) is how to navigate the file system on
our Linux system. In this chapter we will introduce the following commands:

● pwd - Print name of current working directory

● cd - Change directory

● ls - List directory contents

Understanding The File System Tree

Like Windows, a Unix-like operating system such as Linux organizes its files in what is
called a hierarchical directory structure. This means that they are organized in a tree-like
pattern of directories (sometimes called folders in other systems), which may contain
files and other directories. The first directory in the file system is called the root direc-
tory. The root directory contains files and subdirectories, which contain more files and
subdirectories and so on and so on.

Note that unlike Windows, which has a separate file system tree for each storage device,
Unix-like systems such as Linux always have a single file system tree, regardless of how
many drives or storage devices are attached to the computer. Storage devices are attached
(or more correctly, mounted) at various points on the tree according to the whims of the
system administrator, the person (or persons) responsible for the maintenance of the sys-
tem.

The Current Working Directory

Most of us are probably familiar with a graphical file manager which represents the file
system tree as in Figure 1. Notice that the tree is usually shown upended, that is, with the
root at the top and the various branches descending below.

However, the command line has no pictures, so to navigate the file system tree we need
to think of it in a different way.

7

2 – Navigation

Imagine that the file system is a maze shaped like an upside-down tree and we are able to

stand in the middle of it. At any given time, we are inside a single directory and we can
see the files contained in the directory and the pathway to the directory above us (called
the parent directory) and any subdirectories below us. The directory we are standing in is
called the current working directory. To display the current working directory, we use the
pwd (print working directory) command.

[me@linuxbox ~]$ pwd
/home/me

When we first log in to our system (or start a terminal emulator session) our current
working directory is set to our home directory. Each user account is given its own home
directory and it is the only place a regular user is allowed to write files.

Listing The Contents Of A Directory

To list the files and directories in the current working directory, we use the ls command.

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

8

Figure 1: File system tree as shown by a
graphical file manager

Listing The Contents Of A Directory

Actually, we can use the ls command to list the contents of any directory, not just the
current working directory, and there are many other fun things it can do as well. We'll
spend more time with ls in the next chapter.

Changing The Current Working Directory

To change your working directory (where we are standing in our tree-shaped maze) we
use the cd command. To do this, type cd followed by the pathname of the desired work-
ing directory. A pathname is the route we take along the branches of the tree to get to the
directory we want. Pathnames can be specified in one of two different ways; as absolute
pathnames or as relative pathnames. Let's deal with absolute pathnames first.

Absolute Pathnames

An absolute pathname begins with the root directory and follows the tree branch by
branch until the path to the desired directory or file is completed. For example, there is a
directory on your system in which most of your system's programs are installed. The
pathname of the directory is /usr/bin. This means from the root directory (represented
by the leading slash in the pathname) there is a directory called "usr" which contains a di-
rectory called "bin".

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin
[me@linuxbox bin]$ ls

...Listing of many, many files ...

Now we can see that we have changed the current working directory to /usr/bin and
that it is full of files. Notice how the shell prompt has changed? As a convenience, it is
usually set up to automatically display the name of the working directory.

Relative Pathnames

Where an absolute pathname starts from the root directory and leads to its destination, a
relative pathname starts from the working directory. To do this, it uses a couple of special
symbols to represent relative positions in the file system tree. These special symbols are
"." (dot) and ".." (dot dot).

The "." symbol refers to the working directory and the ".." symbol refers to the working
directory's parent directory. Here is how it works. Let's change the working directory to

9

2 – Navigation

/usr/bin again:

[me@linuxbox ~]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Okay, now let's say that we wanted to change the working directory to the parent of
/usr/bin which is /usr. We could do that two different ways. Either with an absolute
pathname:

[me@linuxbox bin]$ cd /usr
[me@linuxbox usr]$ pwd
/usr

Or, with a relative pathname:

[me@linuxbox bin]$ cd ..
[me@linuxbox usr]$ pwd
/usr

Two different methods with identical results. Which one should we use? The one that
requires the least typing!

Likewise, we can change the working directory from /usr to /usr/bin in two
different ways. Either using an absolute pathname:

[me@linuxbox usr]$ cd /usr/bin
[me@linuxbox bin]$ pwd
/usr/bin

Or, with a relative pathname:

[me@linuxbox usr]$ cd ./bin
[me@linuxbox bin]$ pwd
/usr/bin

Now, there is something important that I must point out here. In almost all cases, you can

10

Changing The Current Working Directory

omit the "./". It is implied. Typing:

[me@linuxbox usr]$ cd bin

does the same thing. In general, if you do not specify a pathname to something, the work-
ing directory will be assumed.

Some Helpful Shortcuts

In Table 2-1 we see some useful ways the current working directory can be quickly
changed.

Table 2-1: cd Shortcuts

Shortcut Result

cd Changes the working directory to your home directory.

cd - Changes the working directory to the previous working directory.

cd ~user_name Changes the working directory to the home directory of
user_name. For example, cd ~bob will change the directory to
the home directory of user “bob.”

Important Facts About Filenames

1. Filenames that begin with a period character are hidden. This only means that
ls will not list them unless you say ls -a. When your account was created,
several hidden files were placed in your home directory to configure things
for your account. Later on we will take a closer look at some of these files to
see how you can customize your environment. In addition, some applications
place their configuration and settings files in your home directory as hidden
files.

2. Filenames and commands in Linux, like Unix, are case sensitive. The file-
names “File1” and “file1” refer to different files.

3. Linux has no concept of a “file extension” like some other operating systems.
You may name files any way you like. The contents and/or purpose of a file is
determined by other means. Although Unix-like operating system don’t use

11

2 – Navigation

file extensions to determine the contents/purpose of files, some application
programs do.

4. Though Linux supports long filenames which may contain embedded spaces
and punctuation characters, limit the punctuation characters in the names of
files you create to period, dash, and underscore. Most importantly, do not em-
bed spaces in filenames. If you want to represent spaces between words in a
filename, use underscore characters. You will thank yourself later.

Summing Up

In this chapter we saw how the shell treats the directory structure of the system. We
learned about absolute and relative pathnames and the basic commands that are used to
move about that structure. In the next chapter we will use this knowledge to go on a tour
of a modern Linux system.

12

3 – Exploring The System

3 – Exploring The System

Now that we know how to move around the file system, it's time for a guided tour of our
Linux system. Before we start however, we’re going to learn some more commands that
will be useful along the way:

● ls – List directory contents

● file – Determine file type

● less – View file contents

More Fun With ls

The ls command is probably the most used command, and for good reason. With it, we
can see directory contents and determine a variety of important file and directory at-
tributes. As we have seen, we can simply enter ls to see a list of files and subdirectories
contained in the current working directory:

[me@linuxbox ~]$ ls
Desktop Documents Music Pictures Public Templates Videos

Besides the current working directory, we can specify the directory to list, like so:

me@linuxbox ~]$ ls /usr
bin games kerberos libexec sbin src
etc include lib local share tmp

Or even specify multiple directories. In this example we will list both the user's home di-
rectory (symbolized by the “~” character) and the /usr directory:

[me@linuxbox ~]$ ls ~ /usr
/home/me:

13

3 – Exploring The System

Desktop Documents Music Pictures Public Templates Videos

/usr:
bin games kerberos libexec sbin src
etc include lib local share tmp

We can also change the format of the output to reveal more detail:

[me@linuxbox ~]$ ls -l
total 56
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Desktop
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Documents
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Music
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Pictures
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Public
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Templates
drwxrwxr-x 2 me me 4096 2007-10-26 17:20 Videos

By adding “-l” to the command, we changed the output to the long format.

Options And Arguments

This brings us to a very important point about how most commands work. Commands are
often followed by one or more options that modify their behavior, and further, by one or
more arguments, the items upon which the command acts. So most commands look kind
of like this:

command -options arguments

Most commands use options consisting of a single character preceded by a dash, for ex-
ample, “-l”, but many commands, including those from the GNU Project, also support
long options, consisting of a word preceded by two dashes. Also, many commands allow
multiple short options to be strung together. In this example, the ls command is given
two options, the “l” option to produce long format output, and the “t” option to sort the
result by the file's modification time.

[me@linuxbox ~]$ ls -lt

14

More Fun With ls

We'll add the long option “--reverse” to reverse the order of the sort:

[me@linuxbox ~]$ ls -lt --reverse

Note that command options, like filenames in Linux, are case-sensitive.

The ls command has a large number of possible options. The most common are listed in
Table 3-1.

Table 3- 1: Common ls Options

Option Long Option Description

-a --all List all files, even those with names that begin
with a period, which are normally not listed
(i.e., hidden).

-A --almost-all Like the -a option above except it does not
list . (current directory) and .. (parent
directory).

-d --directory Ordinarily, if a directory is specified, ls will
list the contents of the directory, not the
directory itself. Use this option in conjunction
with the -l option to see details about the
directory rather than its contents.

-F --classify This option will append an indicator character
to the end of each listed name. For example, a
“/” if the name is a directory.

-h --human-readable In long format listings, display file sizes in
human readable format rather than in bytes.

-l Display results in long format.

-r --reverse Display the results in reverse order. Normally,
ls displays its results in ascending
alphabetical order.

-S Sort results by file size.

-t Sort by modification time.

15

3 – Exploring The System

A Longer Look At Long Format

As we saw before, the “-l” option causes ls to display its results in long format. This for-
mat contains a great deal of useful information. Here is the Examples directory from an
Ubuntu system:

-rw-r--r-- 1 root root 3576296 2007-04-03 11:05 Experience ubuntu.ogg
-rw-r--r-- 1 root root 1186219 2007-04-03 11:05 kubuntu-leaflet.png
-rw-r--r-- 1 root root 47584 2007-04-03 11:05 logo-Edubuntu.png
-rw-r--r-- 1 root root 44355 2007-04-03 11:05 logo-Kubuntu.png
-rw-r--r-- 1 root root 34391 2007-04-03 11:05 logo-Ubuntu.png
-rw-r--r-- 1 root root 32059 2007-04-03 11:05 oo-cd-cover.odf
-rw-r--r-- 1 root root 159744 2007-04-03 11:05 oo-derivatives.doc
-rw-r--r-- 1 root root 27837 2007-04-03 11:05 oo-maxwell.odt
-rw-r--r-- 1 root root 98816 2007-04-03 11:05 oo-trig.xls
-rw-r--r-- 1 root root 453764 2007-04-03 11:05 oo-welcome.odt
-rw-r--r-- 1 root root 358374 2007-04-03 11:05 ubuntu Sax.ogg

Let's look at the different fields from one of the files and examine their meanings:

Table 3-2: ls Long Listing Fields

Field Meaning

-rw-r--r-- Access rights to the file. The first character indicates the
type of file. Among the different types, a leading dash
means a regular file, while a “d” indicates a directory.
The next three characters are the access rights for the
file's owner, the next three are for members of the file's
group, and the final three are for everyone else. The full
meaning of this is discussed in Chapter 9 – Permissions.

1 File's number of hard links. See the discussion of links
later in this chapter.

root The username of the file's owner.

root The name of the group which owns the file.

32059 Size of the file in bytes.

2007-04-03 11:05 Date and time of the file's last modification.

oo-cd-cover.odf Name of the file.

16

Determining A File's Type With file

Determining A File's Type With file

As we explore the system it will be useful to know what files contain. To do this we will
use the file command to determine a file's type. As we discussed earlier, filenames in
Linux are not required to reflect a file's contents. While a filename like “picture.jpg”
would normally be expected to contain a JPEG compressed image, it is not required to in
Linux. We can invoke the file command this way:

file filename

When invoked, the file command will print a brief description of the file's contents.
For example:

[me@linuxbox ~]$ file picture.jpg
picture.jpg: JPEG image data, JFIF standard 1.01

There are many kinds of files. In fact, one of the common ideas in Unix-like operating
systems such as Linux is that “everything is a file.” As we proceed with our lessons, we
will see just how true that statement is.

While many of the files on your system are familiar, for example MP3 and JPEG, there
are many kinds that are a little less obvious and a few that are quite strange.

Viewing File Contents With less

The less command is a program to view text files. Throughout our Linux system, there
are many files that contain human-readable text. The less program provides a conve-
nient way to examine them.

What Is “Text”?

There are many ways to represent information on a computer. All methods in-
volve defining a relationship between the information and some numbers that will
be used to represent it. Computers, after all, only understand numbers and all data
is converted to numeric representation.
Some of these representation systems are very complex (such as compressed
video files), while others are rather simple. One of the earliest and simplest is
called ASCII text. ASCII (pronounced "As-Key") is short for American Standard

17

3 – Exploring The System

Code for Information Interchange. This is a simple encoding scheme that was first
used on Teletype machines to map keyboard characters to numbers.
Text is a simple one-to-one mapping of characters to numbers. It is very compact.
Fifty characters of text translates to fifty bytes of data. It is important to under-
stand that text only contains a simple mapping of characters to numbers. It is not
the same as a word processor document such as one created by Microsoft Word or
OpenOffice.org Writer. Those files, in contrast to simple ASCII text, contain
many non-text elements that are used to describe its structure and formatting.
Plain ASCII text files contain only the characters themselves and a few rudimen-
tary control codes like tabs, carriage returns and line feeds.
Throughout a Linux system, many files are stored in text format and there are
many Linux tools that work with text files. Even Windows recognizes the impor-
tance of this format. The well-known NOTEPAD.EXE program is an editor for
plain ASCII text files.

Why would we want to examine text files? Because many of the files that contain system
settings (called configuration files) are stored in this format, and being able to read them
gives us insight about how the system works. In addition, many of the actual programs
that the system uses (called scripts) are stored in this format. In later chapters, we will
learn how to edit text files in order to modify systems settings and write our own scripts,
but for now we will just look at their contents.

The less command is used like this:

less filename

Once started, the less program allows you to scroll forward and backward through a
text file. For example, to examine the file that defines all the system's user accounts, enter
the following command:

[me@linuxbox ~]$ less /etc/passwd

Once the less program starts, we can view the contents of the file. If the file is longer
than one page, we can scroll up and down. To exit less, press the “q” key.

The table below lists the most common keyboard commands used by less.

18

Viewing File Contents With less

Table 3-3: less Commands

Command Action

Page Up or b Scroll back one page

Page Down or space Scroll forward one page

Up Arrow Scroll up one line

Down Arrow Scroll down one line

G Move to the end of the text file

1G or g Move to the beginning of the text file

/characters Search forward to the next occurrence of characters

n Search for the next occurrence of the previous search

h Display help screen

q Quit less

Less Is More

The less program was designed as an improved replacement of an earlier Unix
program called more. The name “less” is a play on the phrase “less is more”—a   
motto of modernist architects and designers.
less falls into the class of programs called “pagers,” programs that allow the
easy viewing of long text documents in a page by page manner. Whereas the
more program could only page forward, the less program allows paging both
forward and backward and has many other features as well.

A Guided Tour

The file system layout on your Linux system is much like that found on other Unix-like
systems. The design is actually specified in a published standard called the Linux Filesys-
tem Hierarchy Standard. Not all Linux distributions conform to the standard exactly but
most come pretty close.

Next, we are going to wander around the file system ourselves to see what makes our
Linux system tick. This will give you a chance to practice your navigation skills. One of
the things we will discover is that many of the interesting files are in plain human-read-
able text. As we go about our tour, try the following:

19

3 – Exploring The System

1. cd into a given directory

2. List the directory contents with ls -l

3. If you see an interesting file, determine its contents with file

4. If it looks like it might be text, try viewing it with less

Remember the copy and paste trick! If you are using a mouse, you can double
click on a filename to copy it and middle click to paste it into commands.

As we wander around, don't be afraid to look at stuff. Regular users are largely prohibited
from messing things up. That's the system administrators job! If a command complains
about something, just move on to something else. Spend some time looking around. The
system is ours to explore. Remember, in Linux, there are no secrets!

Table 3-4 lists just a few of the directories we can explore. Feel free to try more!

Table 3-4: Directories Found On Linux Systems

Directory Comments

/ The root directory. Where everything begins.

/bin Contains binaries (programs) that must be present for the
system to boot and run.

/boot Contains the Linux kernel, initial RAM disk image (for
drivers needed at boot time), and the boot loader.

Interesting files:
● /boot/grub/grub.conf or menu.lst, which

are used to configure the boot loader.
● /boot/vmlinuz, the Linux kernel

/dev This is a special directory which contains device nodes.
“Everything is a file” also applies to devices. Here is where
the kernel maintains a list of all the devices it understands.

20

A Guided Tour

Directory Comments

/etc The /etc directory contains all of the system-wide
configuration files. It also contains a collection of shell
scripts which start each of the system services at boot time.
Everything in this directory should be readable text.

Interesting files: While everything in /etc is interesting,
here are some of my all-time favorites:

● /etc/crontab, a file that defines when
automated jobs will run.

● /etc/fstab, a table of storage devices and their
associated mount points.

● /etc/passwd, a list of the user accounts.

/home In normal configurations, each user is given a directory in
/home. Ordinary users can only write files in their home
directories. This limitation protects the system from errant
user activity.

/lib Contains shared library files used by the core system
programs. These are similar to DLLs in Windows.

/lost+found Each formatted partition or device using a Linux file system,
such as ext3, will have this directory. It is used in the case of
a partial recovery from a file system corruption event.
Unless something really bad has happened to your system,
this directory will remain empty.

/media On modern Linux systems the /media directory will
contain the mount points for removable media such as USB
drives, CD-ROMs, etc. that are mounted automatically at
insertion.

/mnt On older Linux systems, the /mnt directory contains mount
points for removable devices that have been mounted
manually.

/opt The /opt directory is used to install “optional” software.
This is mainly used to hold commercial software products
that may be installed on your system.

21

3 – Exploring The System

Directory Comments

/proc The /proc directory is special. It's not a real file system in
the sense of files stored on your hard drive. Rather, it is a
virtual file system maintained by the Linux kernel. The
“files” it contains are peepholes into the kernel itself. The
files are readable and will give you a picture of how the
kernel sees your computer.

/root This is the home directory for the root account.

/sbin This directory contains “system” binaries. These are
programs that perform vital system tasks that are generally
reserved for the superuser.

/tmp The /tmp directory is intended for storage of temporary,
transient files created by various programs. Some
configurations cause this directory to be emptied each time
the system is rebooted.

/usr The /usr directory tree is likely the largest one on a Linux
system. It contains all the programs and support files used
by regular users.

/usr/bin /usr/bin contains the executable programs installed by
your Linux distribution. It is not uncommon for this
directory to hold thousands of programs.

/usr/lib The shared libraries for the programs in /usr/bin.

/usr/local The /usr/local tree is where programs that are not
included with your distribution but are intended for system-
wide use are installed. Programs compiled from source code
are normally installed in /usr/local/bin. On a newly
installed Linux system, this tree exists, but it will be empty
until the system administrator puts something in it.

/usr/sbin Contains more system administration programs.

/usr/share /usr/share contains all the shared data used by
programs in /usr/bin. This includes things like default
configuration files, icons, screen backgrounds, sound files,
etc.

/usr/share/doc Most packages installed on the system will include some
kind of documentation. In /usr/share/doc, we will find
documentation files organized by package.

22

A Guided Tour

Directory Comments

/var With the exception of /tmp and /home, the directories we
have looked at so far remain relatively static, that is, their
contents don't change. The /var directory tree is where
data that is likely to change is stored. Various databases,
spool files, user mail, etc. are located here.

/var/log /var/log contains log files, records of various system
activity. These are very important and should be monitored
from time to time. The most useful one is
/var/log/messages. Note that for security reasons on
some systems, you must be the superuser to view log files .

Symbolic Links

As we look around, we are likely to see a directory listing with an entry like this:

lrwxrwxrwx 1 root root 11 2007-08-11 07:34 libc.so.6 -> libc-2.6.so

Notice how the first letter of the listing is “l” and the entry seems to have two filenames?
This is a special kind of a file called a symbolic link (also known as a soft link or sym-
link.) In most Unix-like systems it is possible to have a file referenced by multiple names.
While the value of this may not be obvious, it is really a useful feature.

Picture this scenario: A program requires the use of a shared resource of some kind con-
tained in a file named “foo,” but “foo” has frequent version changes. It would be good to
include the version number in the filename so the administrator or other interested party
could see what version of “foo” is installed. This presents a problem. If we change the
name of the shared resource, we have to track down every program that might use it and
change it to look for a new resource name every time a new version of the resource is in-
stalled. That doesn't sound like fun at all.

Here is where symbolic links save the day. Let's say we install version 2.6 of “foo,”
which has the filename “foo-2.6” and then create a symbolic link simply called “foo” that
points to “foo-2.6.” This means that when a program opens the file “foo”, it is actually
opening the file “foo-2.6”. Now everybody is happy. The programs that rely on “foo” can
find it and we can still see what actual version is installed. When it is time to upgrade to
“foo-2.7,” we just add the file to our system, delete the symbolic link “foo” and create a
new one that points to the new version. Not only does this solve the problem of the ver-
sion upgrade, but it also allows us to keep both versions on our machine. Imagine that
“foo-2.7” has a bug (damn those developers!) and we need to revert to the old version.
Again, we just delete the symbolic link pointing to the new version and create a new

23

3 – Exploring The System

symbolic link pointing to the old version.

The directory listing above (from the /lib directory of a Fedora system) shows a sym-
bolic link called “libc.so.6” that points to a shared library file called “libc-2.6.so.” This
means that programs looking for “libc.so.6” will actually get the file “libc-2.6.so.” We
will learn how to create symbolic links in the next chapter.

Hard Links

While we are on the subject of links, we need to mention that there is a second type of
link called a hard link. Hard links also allow files to have multiple names, but they do it
in a different way. We’ll talk more about the differences between symbolic and hard links
in the next chapter.

Summing Up

With our tour behind us, we have learned a lot about our system. We've seen various files
and directories and their contents. One thing you should take away from this is how open
the system is. In Linux there are many important files that are plain human-readable text.
Unlike many proprietary systems, Linux makes everything available for examination and
study.

Further Reading

● The full version of the Linux Filesystem Hierarchy Standard can be found here:
http://www.pathname.com/fhs/

● An article about the directory structure of Unix and Unix-like systems:
http://en.wikipedia.org/wiki/Unix_directory_structure

● A detailed description of the ASCII text format:
http://en.wikipedia.org/wiki/ASCII

24

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Unix_directory_structure
http://www.pathname.com/fhs/

4 – Manipulating Files And Directories

4 – Manipulating Files And Directories

At this point, we are ready for some real work! This chapter will introduce the following
commands:

● cp – Copy files and directories

● mv – Move/rename files and directories

● mkdir – Create directories

● rm – Remove files and directories

● ln – Create hard and symbolic links

These five commands are among the most frequently used Linux commands. They are
used for manipulating both files and directories.

Now, to be frank, some of the tasks performed by these commands are more easily done
with a graphical file manager. With a file manager, we can drag and drop a file from one
directory to another, cut and paste files, delete files, etc. So why use these old command
line programs?

The answer is power and flexibility. While it is easy to perform simple file manipulations
with a graphical file manager, complicated tasks can be easier with the command line
programs. For example, how could we copy all the HTML files from one directory to an-
other, but only copy files that do not exist in the destination directory or are newer than
the versions in the destination directory? Pretty hard with a file manager. Pretty easy with
the command line:

cp -u *.html destination

Wildcards

Before we begin using our commands, we need to talk about a shell feature that makes
these commands so powerful. Since the shell uses filenames so much, it provides special
characters to help you rapidly specify groups of filenames. These special characters are

25

4 – Manipulating Files And Directories

called wildcards. Using wildcards (which is also known as globbing) allow you to select
filenames based on patterns of characters. The table below lists the wildcards and what
they select:

Table 4-1: Wildcards

Wildcard Meaning

* Matches any characters

? Matches any single character

[characters] Matches any character that is a member of the set characters

[!characters] Matches any character that is not a member of the set
characters

[[:class:]] Matches any character that is a member of the specified
class

Table 4-2 lists the most commonly used character classes:

Table 4-2: Commonly Used Character Classes

Character Class Meaning

[:alnum:] Matches any alphanumeric character

[:alpha:] Matches any alphabetic character

[:digit:] Matches any numeral

[:lower:] Matches any lowercase letter

[:upper:] Matches any uppercase letter

Using wildcards makes it possible to construct very sophisticated selection criteria for
filenames. Here are some examples of patterns and what they match:

Table 4-3: Wildcard Examples

Pattern Matches

* All files

g* Any file beginning with “g”

b*.txt Any file beginning with “b” followed by
any characters and ending with “.txt”

26

Wildcards

Data??? Any file beginning with “Data” followed
by exactly three characters

[abc]* Any file beginning with either an “a”, a
“b”, or a “c”

BACKUP.[0-9][0-9][0-9] Any file beginning with “BACKUP.”
followed by exactly three numerals

[[:upper:]]* Any file beginning with an uppercase letter

[![:digit:]]* Any file not beginning with a numeral

*[[:lower:]123] Any file ending with a lowercase letter or
the numerals “1”, “2”, or “3”

Wildcards can be used with any command that accepts filenames as arguments, but we’ll
talk more about that in Chapter 7.

Character Ranges

If you are coming from another Unix-like environment or have been reading
some other books on this subject, you may have encountered the [A-Z] or the
[a-z] character range notations. These are traditional Unix notations and
worked in older versions of Linux as well. They can still work, but you have to be
very careful with them because they will not produce the expected results unless
properly configured. For now, you should avoid using them and use character
classes instead.

Wildcards Work In The GUI Too

Wildcards are especially valuable not only because they are used so frequently on
the command line, but are also supported by some graphical file managers.
● In Nautilus (the file manager for GNOME), you can select files using the

Edit/Select Pattern menu item. Just enter a file selection pattern with wild-
cards and the files in the currently viewed directory will be highlighted for se-
lection.

● In some versions of Dolphin and Konqueror (the file managers for KDE),
you can enter wildcards directly on the location bar. For example, if you want
to see all the files starting with a lowercase “u” in the /usr/bin directory, enter
“/usr/bin/u*” in the location bar and it will display the result.

27

4 – Manipulating Files And Directories

Many ideas originally found in the command line interface make their way into
the graphical interface, too. It is one of the many things that make the Linux desk-
top so powerful.

mkdir – Create Directories

The mkdir command is used to create directories. It works like this:

mkdir directory...

A note on notation: When three periods follow an argument in the description of a com-
mand (as above), it means that the argument can be repeated, thus:

mkdir dir1

would create a single directory named “dir1”, while

mkdir dir1 dir2 dir3

would create three directories named “dir1”, “dir2”, and “dir3”.

cp – Copy Files And Directories

The cp command copies files or directories. It can be used two different ways:

cp item1 item2

to copy the single file or directory “item1” to file or directory “item2” and:

cp item... directory

to copy multiple items (either files or directories) into a directory.

28

cp – Copy Files And Directories

Useful Options And Examples

Here are some of the commonly used options (the short option and the equivalent long
option) for cp:

Table 4-4: cp Options

Option Meaning

-a, --archive Copy the files and directories and all of their attributes,
including ownerships and permissions. Normally,
copies take on the default attributes of the user
performing the copy.

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, cp will
silently overwrite files.

-r, --recursive Recursively copy directories and their contents. This
option (or the -a option) is required when copying
directories.

-u, --update When copying files from one directory to another, only
copy files that either don't exist, or are newer than the
existing corresponding files, in the destination
directory.

-v, --verbose Display informative messages as the copy is
performed.

Table 4-5: cp Examples

Command Results

cp file1 file2 Copy file1 to file2. If file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created.

cp -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

cp file1 file2 dir1 Copy file1 and file2 into directory dir1. dir1 must
already exist.

cp dir1/* dir2 Using a wildcard, all the files in dir1 are copied
into dir2. dir2 must already exist.

29

4 – Manipulating Files And Directories

cp -r dir1 dir2 Copy the contents of directory dir1 to directory
dir2. If directory dir2 does not exist, it is created
and, after the copy, will contain the same contents
as directory dir1.
If directory dir2 does exist, then directory dir1 (and
its contents) will be copied into dir2.

mv – Move And Rename Files

The mv command performs both file moving and file renaming, depending on how it is
used. In either case, the original filename no longer exists after the operation. mv is used
in much the same way as cp:

mv item1 item2

to move or rename file or directory “item1” to “item2” or:

mv item... directory

to move one or more items from one directory to another.

Useful Options And Examples

mv shares many of the same options as cp:

Table 4-6: mv Options

Option Meaning

-i, --interactive Before overwriting an existing file, prompt the user for
confirmation. If this option is not specified, mv will
silently overwrite files.

-u, --update When moving files from one directory to another, only
move files that either don't exist, or are newer than the
existing corresponding files in the destination
directory.

-v, --verbose Display informative messages as the move is

30

mv – Move And Rename Files

performed.

Table 4-7: mv Examples

Command Results

mv file1 file2 Move file1 to file2. If file2 exists, it is overwritten
with the contents of file1. If file2 does not exist, it
is created. In either case, file1 ceases to exist.

mv -i file1 file2 Same as above, except that if file2 exists, the user is
prompted before it is overwritten.

mv file1 file2 dir1 Move file1 and file2 into directory dir1. dir1 must
already exist.

mv dir1 dir2 If directory dir2 does not exist, create directory
dir2 and move the contents of directory dir1 into
dir2 and delete directory dir1.
If directory dir2 does exist, move directory dir1
(and its contents) into directory dir2.

rm – Remove Files And Directories

The rm command is used to remove (delete) files and directories:

rm item...

where “item” is one or more files or directories.

Useful Options And Examples

Here are some of the common options for rm:

Table 4-8: rm Options

Option Meaning

-i, --interactive Before deleting an existing file, prompt the user for
confirmation. If this option is not specified, rm will
silently delete files.

31

4 – Manipulating Files And Directories

-r, --recursive Recursively delete directories. This means that if a
directory being deleted has subdirectories, delete them
too. To delete a directory, this option must be specified.

-f, --force Ignore nonexistent files and do not prompt. This
overrides the --interactive option.

-v, --verbose Display informative messages as the deletion is
performed.

Table 4-9: rm Examples

Command Results

rm file1 Delete file1 silently.

rm -i file1 Same as above, except that the user is prompted for
confirmation before the deletion is performed.

rm -r file1 dir1 Delete file1 and dir1 and its contents.

rm -rf file1 dir1 Same as above, except that if either file1 or dir1 do
not exist, rm will continue silently.

Be Careful With rm!

Unix-like operating systems such as Linux do not have an undelete command.
Once you delete something with rm, it's gone. Linux assumes you're smart and
you know what you're doing.
Be particularly careful with wildcards. Consider this classic example. Let's say
you want to delete just the HTML files in a directory. To do this, you type:
rm *.html
which is correct, but if you accidentally place a space between the “*” and the
“.html” like so:
rm * .html
the rm command will delete all the files in the directory and then complain that
there is no file called “.html”.
Here is a useful tip. Whenever you use wildcards with rm (besides carefully
checking your typing!), test the wildcard first with ls. This will let you see the

32

rm – Remove Files And Directories

files that will be deleted. Then press the up arrow key to recall the command and
replace the ls with rm.

ln – Create Links

The ln command is used to create either hard or symbolic links. It is used in one of two
ways:

ln file link

to create a hard link, and:

ln -s item link

to create a symbolic link where “item” is either a file or a directory.

Hard Links

Hard links are the original Unix way of creating links, compared to symbolic links, which
are more modern. By default, every file has a single hard link that gives the file its name.
When we create a hard link, we create an additional directory entry for a file. Hard links
have two important limitations:

1. A hard link cannot reference a file outside its own file system. This means a link
cannot reference a file that is not on the same disk partition as the link itself.

2. A hard link may not reference a directory.

A hard link is indistinguishable from the file itself. Unlike a symbolic link, when you list
a directory containing a hard link you will see no special indication of the link. When a
hard link is deleted, the link is removed but the contents of the file itself continue to exist
(that is, its space is not deallocated) until all links to the file are deleted.

It is important to be aware of hard links because you might encounter them from time to
time, but modern practice prefers symbolic links, which we will cover next.

Symbolic Links

Symbolic links were created to overcome the limitations of hard links. Symbolic links
work by creating a special type of file that contains a text pointer to the referenced file or

33

4 – Manipulating Files And Directories

directory. In this regard, they operate in much the same way as a Windows shortcut
though of course, they predate the Windows feature by many years ;-)

A file pointed to by a symbolic link, and the symbolic link itself are largely indistinguish-
able from one another. For example, if you write something to the symbolic link, the ref-
erenced file is written to. However when you delete a symbolic link, only the link is
deleted, not the file itself. If the file is deleted before the symbolic link, the link will con-
tinue to exist, but will point to nothing. In this case, the link is said to be broken. In many
implementations, the ls command will display broken links in a distinguishing color,
such as red, to reveal their presence.

The concept of links can seem very confusing, but hang in there. We're going to try all
this stuff and it will, hopefully, become clear.

Let's Build A Playground

Since we are going to do some real file manipulation, let's build a safe place to “play”
with our file manipulation commands. First we need a directory to work in. We'll create
one in our home directory and call it “playground.”

Creating Directories

The mkdir command is used to create a directory. To create our playground directory we
will first make sure we are in our home directory and will then create the new directory:

[me@linuxbox ~]$ cd
[me@linuxbox ~]$ mkdir playground

To make our playground a little more interesting, let's create a couple of directories inside
it called “dir1” and “dir2”. To do this, we will change our current working directory to
playground and execute another mkdir:

[me@linuxbox ~]$ cd playground
[me@linuxbox playground]$ mkdir dir1 dir2

Notice that the mkdir command will accept multiple arguments allowing us to create
both directories with a single command.

Copying Files

Next, let's get some data into our playground. We'll do this by copying a file. Using the

34

Let's Build A Playground

cp command, we'll copy the passwd file from the /etc directory to the current work-
ing directory:

[me@linuxbox playground]$ cp /etc/passwd .

Notice how we used the shorthand for the current working directory, the single trailing
period. So now if we perform an ls, we will see our file:

[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2008-01-10 16:40 dir1
drwxrwxr-x 2 me me 4096 2008-01-10 16:40 dir2
-rw-r--r-- 1 me me 1650 2008-01-10 16:07 passwd

Now, just for fun, let's repeat the copy using the “-v” option (verbose) to see what it does:

[me@linuxbox playground]$ cp -v /etc/passwd .
`/etc/passwd' -> `./passwd'

The cp command performed the copy again, but this time displayed a concise message
indicating what operation it was performing. Notice that cp overwrote the first copy
without any warning. Again this is a case of cp assuming that you know what you’re are
doing. To get a warning, we'll include the “-i” (interactive) option:

[me@linuxbox playground]$ cp -i /etc/passwd .
cp: overwrite `./passwd'?

Responding to the prompt by entering a “y” will cause the file to be overwritten, any
other character (for example, “n”) will cause cp to leave the file alone.

Moving And Renaming Files

Now, the name “passwd” doesn't seem very playful and this is a playground, so let's
change it to something else:

[me@linuxbox playground]$ mv passwd fun

35

4 – Manipulating Files And Directories

Let's pass the fun around a little by moving our renamed file to each of the directories and
back again:

[me@linuxbox playground]$ mv fun dir1

to move it first to directory dir1, then:

[me@linuxbox playground]$ mv dir1/fun dir2

to move it from dir1 to dir2, then:

[me@linuxbox playground]$ mv dir2/fun .

to finally bring it back to the current working directory. Next, let's see the effect of mv on
directories. First we will move our data file into dir1 again:

[me@linuxbox playground]$ mv fun dir1

then move dir1 into dir2 and confirm it with ls:

[me@linuxbox playground]$ mv dir1 dir2
[me@linuxbox playground]$ ls -l dir2
total 4
drwxrwxr-x 2 me me 4096 2008-01-11 06:06 dir1
[me@linuxbox playground]$ ls -l dir2/dir1
total 4
-rw-r--r-- 1 me me 1650 2008-01-10 16:33 fun

Note that since dir2 already existed, mv moved dir1 into dir2. If dir2 had not ex-
isted, mv would have renamed dir1 to dir2. Lastly, let's put everything back:

[me@linuxbox playground]$ mv dir2/dir1 .
[me@linuxbox playground]$ mv dir1/fun .

36

Let's Build A Playground

Creating Hard Links

Now we'll try some links. First the hard links. We’ll create some links to our data file like
so:

[me@linuxbox playground]$ ln fun fun-hard
[me@linuxbox playground]$ ln fun dir1/fun-hard
[me@linuxbox playground]$ ln fun dir2/fun-hard

So now we have four instances of the file “fun”. Let's take a look our playground direc-
tory:

[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir1
drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir2
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard

One thing you notice is that the second field in the listing for fun and fun-hard both
contain a “4” which is the number of hard links that now exist for the file. You'll remem-
ber that a file will aways have at least one link because the file's name is created by a
link. So, how do we know that fun and fun-hard are, in fact, the same file? In this
case, ls is not very helpful. While we can see that fun and fun-hard are both the
same size (field 5), our listing provides no way to be sure. To solve this problem, we're
going to have to dig a little deeper.

When thinking about hard links, it is helpful to imagine that files are made up of two
parts: the data part containing the file's contents and the name part which holds the file's
name. When we create hard links, we are actually creating additional name parts that all
refer to the same data part. The system assigns a chain of disk blocks to what is called an
inode, which is then associated with the name part. Each hard link therefore refers to a
specific inode containing the file's contents.

The ls command has a way to reveal this information. It is invoked with the “-i” option:

[me@linuxbox playground]$ ls -li
total 16
12353539 drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir1
12353540 drwxrwxr-x 2 me me 4096 2008-01-14 16:17 dir2
12353538 -rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun

37

4 – Manipulating Files And Directories

12353538 -rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard

In this version of the listing, the first field is the inode number and, as we can see, both
fun and fun-hard share the same inode number, which confirms they are the same
file.

Creating Symbolic Links

Symbolic links were created to overcome the two disadvantages of hard links: Hard links
cannot span physical devices and hard links cannot reference directories, only files. Sym-
bolic links are a special type of file that contains a text pointer to the target file or direc-
tory.

Creating symbolic links is similar to creating hard links:

[me@linuxbox playground]$ ln -s fun fun-sym
[me@linuxbox playground]$ ln -s ../fun dir1/fun-sym
[me@linuxbox playground]$ ln -s ../fun dir2/fun-sym

The first example is pretty straightforward, we simply add the “-s” option to create a
symbolic link rather than a hard link. But what about the next two? Remember, when we
create a symbolic link, we are creating a text description of where the target file is rela-
tive to the symbolic link. It's easier to see if we look at the ls output:

[me@linuxbox playground]$ ls -l dir1
total 4
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 6 2008-01-15 15:17 fun-sym -> ../fun

The listing for fun-sym in dir1 shows that it is a symbolic link by the leading “l” in
the first field and that it points to “../fun”, which is correct. Relative to the location of
fun-sym, fun is in the directory above it. Notice too, that the length of the symbolic
link file is 6, the number of characters in the string “../fun” rather than the length of the
file to which it is pointing.

When creating symbolic links, you can either use absolute pathnames:

ln -s /home/me/playground/fun dir1/fun-sym

38

Let's Build A Playground

or relative pathnames, as we did in our earlier example. Using relative pathnames is more
desirable because it allows a directory containing symbolic links to be renamed and/or
moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

[me@linuxbox playground]$ ln -s dir1 dir1-sym
[me@linuxbox playground]$ ls -l
total 16
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun
-rw-r--r-- 4 me me 1650 2008-01-10 16:33 fun-hard
lrwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

Removing Files And Directories

As we covered earlier, the rm command is used to delete files and directories. We are go-
ing to use it to clean up our playground a little bit. First, let's delete one of our hard links:

[me@linuxbox playground]$ rm fun-hard
[me@linuxbox playground]$ ls -l
total 12
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2
-rw-r--r-- 3 me me 1650 2008-01-10 16:33 fun
lrwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

That worked as expected. The file fun-hard is gone and the link count shown for fun
is reduced from four to three, as indicated in the second field of the directory listing.
Next, we'll delete the file fun, and just for enjoyment, we'll include the “-i” option to
show what that does:

[me@linuxbox playground]$ rm -i fun
rm: remove regular file `fun'?

Enter “y” at the prompt and the file is deleted. But let's look at the output of ls now. No-
ticed what happened to fun-sym? Since it's a symbolic link pointing to a now-nonexis-
tent file, the link is broken:

39

4 – Manipulating Files And Directories

[me@linuxbox playground]$ ls -l
total 8
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir1
lrwxrwxrwx 1 me me 4 2008-01-16 14:45 dir1-sym -> dir1
drwxrwxr-x 2 me me 4096 2008-01-15 15:17 dir2
lrwxrwxrwx 1 me me 3 2008-01-15 15:15 fun-sym -> fun

Most Linux distributions configure ls to display broken links. On a Fedora box, broken
links are displayed in blinking red text! The presence of a broken link is not, in and of it-

Let's Build A Playground

while dragging a file will create a link rather than copying (or moving) the file. In
KDE, a small menu appears whenever a file is dropped, offering a choice of copy-
ing, moving, or linking the file.

Summing Up

We've covered a lot of ground here and it will take a while to fully sink in. Perform the
playground exercise over and over until it makes sense. It is important to get a good un-
derstanding of basic file manipulation commands and wildcards. Feel free to expand on
the playground exercise by adding more files and directories, using wildcards to specify
files for various operations. The concept of links is a little confusing at first, but take the
time to learn how they work. They can be a real lifesaver.

Further Reading

● A discussion of symbolic links: http://en.wikipedia.org/wiki/Symbolic_link

41

http://en.wikipedia.org/wiki/Symbolic_link

5 – Working With Commands

5 – Working With Commands

Up to this point, we have seen a series of mysterious commands, each with its own mys-
terious options and arguments. In this chapter, we will attempt to remove some of that
mystery and even create some of our own commands. The commands introduced in this
chapter are:

● type – Indicate how a command name is interpreted

● which – Display which executable program will be executed

● help – Get help for shell builtins

● man – Display a command's manual page

● apropos – Display a list of appropriate commands

● info – Display a command's info entry

● whatis – Display a very brief description of a command

● alias – Create an alias for a command

What Exactly Are Commands?

A command can be one of four different things:

1. An executable program like all those files we saw in /usr/bin. Within this
category, programs can be compiled binaries such as programs written in C and
C++, or programs written in scripting languages such as the shell, perl, python,
ruby, etc.

2. A command built into the shell itself. bash supports a number of commands in-
ternally called shell builtins. The cd command, for example, is a shell builtin.

3. A shell function. These are miniature shell scripts incorporated into the environ-
ment. We will cover configuring the environment and writing shell functions in
later chapters, but for now, just be aware that they exist.

4. An alias. Commands that we can define ourselves, built from other commands.

42

Identifying Commands

Identifying Commands

It is often useful to know exactly which of the four kinds of commands is being used and
Linux provides a couple of ways to find out.

type – Display A Command's Type

The type command is a shell builtin that displays the kind of command the shell will
execute, given a particular command name. It works like this:

type command

where “command” is the name of the command you want to examine. Here are some ex-
amples:

[me@linuxbox ~]$ type type
type is a shell builtin
[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'
[me@linuxbox ~]$ type cp
cp is /bin/cp

Here we see the results for three different commands. Notice that the one for ls (taken
from a Fedora system) and how the ls command is actually an alias for the ls command
with the “-- color=tty” option added. Now we know why the output from ls is displayed
in color!

which – Display An Executable's Location

Sometimes there is more than one version of an executable program installed on a sys-
tem. While this is not very common on desktop systems, it's not unusual on large servers.
To determine the exact location of a given executable, the which command is used:

[me@linuxbox ~]$ which ls
/bin/ls

which only works for executable programs, not builtins nor aliases that are substitutes
for actual executable programs. When we try to use which on a shell builtin, for exam-
ple, cd, we either get no response or an error message:

43

5 – Working With Commands

[me@linuxbox ~]$ which cd
/usr/bin/which: no cd in (/opt/jre1.6.0_03/bin:/usr/lib/qt-
3.3/bin:/usr/kerberos/bin:/opt/jre1.6.0_03/bin:/usr/lib/ccache:/usr/l
ocal/bin:/usr/bin:/bin:/home/me/bin)

which is a fancy way of saying “command not found.”

Getting A Command's Documentation

With this knowledge of what a command is, we can now search for the documentation
available for each kind of command.

help – Get Help For Shell Builtins

bash has a built-in help facility available for each of the shell builtins. To use it, type
“help” followed by the name of the shell builtin. For example:

[me@linuxbox ~]$ help cd
cd: cd [-L|[-P [-e]]] [dir]
Change the shell working directory.

Change the current directory to DIR. The default DIR is the value of
the HOME shell variable.

The variable CDPATH defines the search path for the directory
containing DIR. Alternative directory names in CDPATH are separated
by a colon (:). A null directory name is the same as the current
directory. If DIR begins with a slash (/), then CDPATH is not used.

If the directory is not found, and the shell option `cdable_vars' is
set, the word is assumed to be a variable name. If that variable
has a value, its value is used for DIR.

Options:
-L force symbolic links to be followed
-P use the physical directory structure without following symbolic

links
-e if the -P option is supplied, and the current working directory

cannot be determined successfully, exit with a non-zero status

The default is to follow symbolic links, as if `-L' were specified.

Exit Status:
Returns 0 if the directory is changed, and if $PWD is set
successfully when -P is used; non-zero otherwise.

44

Getting A Command's Documentation

A note on notation: When square brackets appear in the description of a command's syn-
tax, they indicate optional items. A vertical bar character indicates mutually exclusive
items. In the case of the cd command above:

cd [-L|[-P[-e]]] [dir]

This notation says that the command cd may be followed optionally by either a “-L” or a
“-P” and further, if the “-P” option is specified the “-e” option may also be included fol-
lowed by the optional argument “dir”.

While the output of help for the cd commands is concise and accurate, it is by no
means tutorial and as we can see, it also seems to mention a lot of things we haven't
talked about yet! Don't worry. We'll get there.

--help – Display Usage Information

Many executable programs support a “--help” option that displays a description of the
command's supported syntax and options. For example:

[me@linuxbox ~]$ mkdir --help
Usage: mkdir [OPTION] DIRECTORY...
Create the DIRECTORY(ies), if they do not already exist.

 -Z, --context=CONTEXT (SELinux) set security context to CONTEXT
Mandatory arguments to long options are mandatory for short options
too.
 -m, --mode=MODE set file mode (as in chmod), not a=rwx – umask
 -p, --parents no error if existing, make parent directories as
 needed
 -v, --verbose print a message for each created directory
 --help display this help and exit
 --version output version information and exit

Report bugs to <bug-coreutils@gnu.org>.

Some programs don't support the “--help” option, but try it anyway. Often it results in an
error message that will reveal the same usage information.

man – Display A Program's Manual Page

Most executable programs intended for command line use provide a formal piece of doc-
umentation called a manual or man page. A special paging program called man is used to
view them. It is used like this:

45

5 – Working With Commands

man program

where “program” is the name of the command to view.

Man pages vary somewhat in format but generally contain a title, a synopsis of the com-
mand's syntax, a description of the command's purpose, and a listing and description of
each of the command's options. Man pages, however, do not usually include examples,
and are intended as a reference, not a tutorial. As an example, let's try viewing the man
page for the ls command:

[me@linuxbox ~]$ man ls

On most Linux systems, man uses less to display the manual page, so all of the familiar
less commands work while displaying the page.

The “manual” that man displays is broken into sections and not only covers user com-
mands but also system administration commands, programming interfaces, file formats
and more. The table below describes the layout of the manual:

Table 5-1: Man Page Organization

Section Contents

1 User commands

2 Programming interfaces kernel system calls

3 Programming interfaces to the C library

4 Special files such as device nodes and drivers

5 File formats

6 Games and amusements such as screen savers

7 Miscellaneous

8 System administration commands

Sometimes we need to look in a specific section of the manual to find what we are look-
ing for. This is particularly true if we are looking for a file format that is also the name of
a command. Without specifying a section number, we will always get the first instance of
a match, probably in section 1. To specify a section number, we use man like this:

46

Getting A Command's Documentation

man section search_term

For example:

[me@linuxbox ~]$ man 5 passwd

This will display the man page describing the file format of the /etc/passwd file.

apropos – Display Appropriate Commands

It is also possible to search the list of man pages for possible matches based on a search
term. It's very crude but sometimes helpful. Here is an example of a search for man pages
using the search term “floppy”:

[me@linuxbox ~]$ apropos floppy
create_floppy_devices (8) - udev callout to create all possible
 floppy device based on the CMOS type
fdformat (8) - Low-level formats a floppy disk
floppy (8) - format floppy disks
gfloppy (1) - a simple floppy formatter for the GNOME
mbadblocks (1) - tests a floppy disk, and marks the bad
 blocks in the FAT
mformat (1) - add an MSDOS filesystem to a low-level
 formatted floppy disk

The first field in each line of output is the name of the man page, the second field shows
the section. Note that the man command with the “-k” option performs the exact same
function as apropos.

whatis – Display A Very Brief Description Of A Command

The whatis program displays the name and a one line description of a man page match-
ing a specified keyword:

[me@linuxbox ~]$ whatis ls
ls (1) - list directory contents

47

5 – Working With Commands

The Most Brutal Man Page Of Them All

As we have seen, the manual pages supplied with Linux and other Unix-like sys-
tems are intended as reference documentation and not as tutorials. Many man
pages are hard to read, but I think that the grand prize for difficulty has got to go
to the man page for bash. As I was doing my research for this book, I gave it
careful review to ensure that I was covering most of its topics. When printed, it's
over 80 pages long and extremely dense, and its structure makes absolutely no
sense to a new user.
On the other hand, it is very accurate and concise, as well as being extremely
complete. So check it out if you dare and look forward to the day when you can
read it and it all makes sense.

info – Display A Program's Info Entry

The GNU Project provides an alternative to man pages for their programs, called “info.”
Info pages are displayed with a reader program named, appropriately enough, info. Info
pages are hyperlinked much like web pages. Here is a sample:

File: coreutils.info, Node: ls invocation, Next: dir invocation,
Up: Directory listing

10.1 `ls': List directory contents
==================================

The `ls' program lists information about files (of any type,
including directories). Options and file arguments can be intermixed
arbitrarily, as usual.

 For non-option command-line arguments that are directories, by
default `ls' lists the contents of directories, not recursively, and
omitting files with names beginning with `.'. For other non-option
arguments, by default `ls' lists just the filename. If no non-option
argument is specified, `ls' operates on the current directory, acting
as if it had been invoked with a single argument of `.'.

48

Getting A Command's Documentation

 By default, the output is sorted alphabetically, according to the
--zz-Info: (coreutils.info.gz)ls invocation, 63 lines --Top----------

The info program reads info files, which are tree structured into individual nodes, each
containing a single topic. Info files contain hyperlinks that can move you from node to
node. A hyperlink can be identified by its leading asterisk, and is activated by placing the
cursor upon it and pressing the enter key.

To invoke info, type “info” followed optionally by the name of a program. Below is a
table of commands used to control the reader while displaying an info page:

Table 5-2: info Commands

Command Action

? Display command help

PgUp or Backspace Display previous page

PgDn or Space Display next page

n Next - Display the next node

p Previous - Display the previous node

u Up - Display the parent node of the currently displayed
node, usually a menu.

Enter Follow the hyperlink at the cursor location

q Quit

Most of the command line programs we have discussed so far are part of the GNU
Project's “coreutils” package, so typing:

[me@linuxbox ~]$ info coreutils

will display a menu page with hyperlinks to each program contained in the coreutils
package.

README And Other Program Documentation Files

Many software packages installed on your system have documentation files residing in
the /usr/share/doc directory. Most of these are stored in plain text format and can

49

5 – Working With Commands

be viewed with less. Some of the files are in HTML format and can be viewed with a
web browser. We may encounter some files ending with a “.gz” extension. This indicates
that they have been compressed with the gzip compression program. The gzip package
includes a special version of less called zless that will display the contents of gzip-
compressed text files.

Creating Your Own Commands With alias

Now for our very first experience with programming! We will create a command of our
own using the alias command. But before we start, we need to reveal a small com-
mand line trick. It's possible to put more than one command on a line by separating each
command with a semicolon character. It works like this:

command1; command2; command3...

Here's the example we will use:

[me@linuxbox ~]$ cd /usr; ls; cd -
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

As we can see, we have combined three commands on one line. First we change directory
to /usr then list the directory and finally return to the original directory (by using 'cd
-') so we end up where we started. Now let's turn this sequence into a new command us-
ing alias. The first thing we have to do is dream up a name for our new command.
Let's try “test”. Before we do that, it would be a good idea to find out if the name “test” is
already being used. To find out, we can use the type command again:

[me@linuxbox ~]$ type test
test is a shell builtin

 Oops! The name “test” is already taken. Let's try “foo”:

[me@linuxbox ~]$ type foo
bash: type: foo: not found

50

Creating Your Own Commands With alias

Great! “foo” is not taken. So let's create our alias:

[me@linuxbox ~]$ alias foo='cd /usr; ls; cd -'

Notice the structure of this command:

alias name='string'

After the command “alias” we give alias a name followed immediately (no whitespace al-
lowed) by an equals sign, followed immediately by a quoted string containing the mean-
ing to be assigned to the name. After we define our alias, it can be used anywhere the
shell would expect a command. Let's try it:

[me@linuxbox ~]$ foo
bin games kerberos lib64 local share tmp
etc include lib libexec sbin src
/home/me
[me@linuxbox ~]$

We can also use the type command again to see our alias:

[me@linuxbox ~]$ type foo
foo is aliased to `cd /usr; ls ; cd -'

To remove an alias, the unalias command is used, like so:

[me@linuxbox ~]$ unalias foo
[me@linuxbox ~]$ type foo
bash: type: foo: not found

While we purposefully avoided naming our alias with an existing command name, it is
not uncommon to do so. This is often done to apply a commonly desired option to each
invocation of a common command. For instance, we saw earlier how the ls command is
often aliased to add color support:

51

5 – Working With Commands

[me@linuxbox ~]$ type ls
ls is aliased to `ls --color=tty'

To see all the aliases defined in the environment, use the alias command without argu-
ments. Here are some of the aliases defined by default on a Fedora system. Try and figure
out what they all do:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'

There is one tiny problem with defining aliases on the command line. They vanish when
your shell session ends. In a later chapter, we will see how to add our own aliases to the
files that establish the environment each time we log on, but for now, enjoy the fact that
we have taken our first, albeit tiny, step into the world of shell programming!

Summing Up

Now that we have learned how to find the documentation for commands, go and look up
the documentation for all the commands we have encountered so far. Study what addi-
tional options are available and try them out!

Further Reading

There are many online sources of documentation for Linux and the command line. Here
are some of the best:

● The Bash Reference Manual is a reference guide to the bash shell. It’s still a ref-
erence work but contains examples and is easier to read than the bash man page.
http://www.gnu.org/software/bash/manual/bashref.html

● The Bash FAQ contains answers to frequently asked questions regarding bash.
This list is aimed at intermediate to advanced users, but contains a lot of good in-
formation.
http://mywiki.wooledge.org/BashFAQ

● The GNU Project provides extensive documentation for its programs, which form
the core of the Linux command line experience. You can see a complete list here:
http://www.gnu.org/manual/manual.html

● Wikipedia has an interesting article on man pages:
http://en.wikipedia.org/wiki/Man_page

52

http://en.wikipedia.org/wiki/Man_page
http://www.gnu.org/manual/manual.html
http://mywiki.wooledge.org/BashFAQ
http://www.gnu.org/software/bash/manual/bashref.html

6 – Redirection

6 – Redirection

In this lesson we are going to unleash what may be the coolest feature of the command
line. It's called I/O redirection. The “I/O” stands for input/output and with this facility
you can redirect the input and output of commands to and from files, as well as connect
multiple commands together into powerful command pipelines. To show off this facility,
we will introduce the following commands:

● cat - Concatenate files

● sort - Sort lines of text

● uniq - Report or omit repeated lines

● grep - Print lines matching a pattern

● wc - Print newline, word, and byte counts for each file

● head - Output the first part of a file

● tail - Output the last part of a file

● tee - Read from standard input and write to standard output and files

Standard Input, Output, And Error

Many of the programs that we have used so far produce output of some kind. This output
often consists of two types. First, we have the program's results; that is, the data the pro-
gram is designed to produce, and second, we have status and error messages that tell us
how the program is getting along. If we look at a command like ls, we can see that it
displays its results and its error messages on the screen.

Keeping with the Unix theme of “everything is a file,” programs such as ls actually send
their results to a special file called standard output (often expressed as stdout) and their
status messages to another file called standard error (stderr). By default, both standard
output and standard error are linked to the screen and not saved into a disk file.

In addition, many programs take input from a facility called standard input (stdin) which
is, by default, attached to the keyboard.

53

6 – Redirection

I/O redirection allows us to change where output goes and where input comes from. Nor-
mally, output goes to the screen and input comes from the keyboard, but with I/O redi-
rection, we can change that.

Redirecting Standard Output

I/O redirection allows us to redefine where standard output goes. To redirect standard
output to another file instead of the screen, we use the “>” redirection operator followed
by the name of the file. Why would we want to do this? It's often useful to store the out-
put of a command in a file. For example, we could tell the shell to send the output of the
ls command to the file ls-output.txt instead of the screen:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Here, we created a long listing of the /usr/bin directory and sent the results to the file
ls-output.txt. Let's examine the redirected output of the command:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 167878 2008-02-01 15:07 ls-output.txt

Good; a nice, large, text file. If we look at the file with less, we will see that the file
ls-output.txt does indeed contain the results from our ls command:

[me@linuxbox ~]$ less ls-output.txt

Now, let's repeat our redirection test, but this time with a twist. We'll change the name of
the directory to one that does not exist:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt
ls: cannot access /bin/usr: No such file or directory

We received an error message. This makes sense since we specified the non-existent di-
rectory /bin/usr, but why was the error message displayed on the screen rather than
being redirected to the file ls-output.txt? The answer is that the ls program does
not send its error messages to standard output. Instead, like most well-written Unix pro-
grams, it sends its error messages to standard error. Since we only redirected standard
output and not standard error, the error message was still sent to the screen. We'll see how

54

Redirecting Standard Output

to redirect standard error in just a minute, but first, let's look at what happened to our out-
put file:

[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 0 2008-02-01 15:08 ls-output.txt

The file now has zero length! This is because, when we redirect output with the “>” redi-
rection operator, the destination file is always rewritten from the beginning. Since our ls
command generated no results and only an error message, the redirection operation
started to rewrite the file and then stopped because of the error, resulting in its truncation.
In fact, if we ever need to actually truncate a file (or create a new, empty file) we can use
a trick like this:

[me@linuxbox ~]$ > ls-output.txt

Simply using the redirection operator with no command preceding it will truncate an ex-
isting file or create a new, empty file.

So, how can we append redirected output to a file instead of overwriting the file from the
beginning? For that, we use the “>>” redirection operator, like so:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt

Using the “>>” operator will result in the output being appended to the file. If the file
does not already exist, it is created just as though the “>” operator had been used. Let's
put it to the test:

[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l /usr/bin >> ls-output.txt
[me@linuxbox ~]$ ls -l ls-output.txt
-rw-rw-r-- 1 me me 503634 2008-02-01 15:45 ls-output.txt

We repeated the command three times resulting in an output file three times as large.

Redirecting Standard Error

Redirecting standard error lacks the ease of a dedicated redirection operator. To redirect

55

6 – Redirection

standard error we must refer to its file descriptor. A program can produce output on any
of several numbered file streams. While we have referred to the first three of these file
streams as standard input, output and error, the shell references them internally as file de-
scriptors 0, 1 and 2, respectively. The shell provides a notation for redirecting files using
the file descriptor number. Since standard error is the same as file descriptor number 2,
we can redirect standard error with this notation:

[me@linuxbox ~]$ ls -l /bin/usr 2> ls-error.txt

The file descriptor “2” is placed immediately before the redirection operator to perform
the redirection of standard error to the file ls-error.txt.

Redirecting Standard Output And Standard Error To One File

There are cases in which we may wish to capture all of the output of a command to a sin-
gle file. To do this, we must redirect both standard output and standard error at the same
time. There are two ways to do this. First, the traditional way, which works with old ver-
sions of the shell:

[me@linuxbox ~]$ ls -l /bin/usr > ls-output.txt 2>&1

Using this method, we perform two redirections. First we redirect standard output to the
file ls-output.txt and then we redirect file descriptor 2 (standard error) to file de-
scriptor one (standard output) using the notation 2>&1.

Notice that the order of the redirections is significant. The redirection of stan-
dard error must always occur after redirecting standard output or it doesn't work. In
the example above,

>ls-output.txt 2>&1

redirects standard error to the file ls-output.txt, but if the order is changed to

 2>&1 >ls-output.txt

standard error is directed to the screen.

Recent versions of bash provide a second, more streamlined method for performing this

56

Redirecting Standard Error

combined redirection:

[me@linuxbox ~]$ ls -l /bin/usr &> ls-output.txt

In this example, we use the single notation &> to redirect both standard output and stan-
dard error to the file ls-output.txt. You may also append the standard output and
standard error streams to a single file like so:

[me@linuxbox ~]$ ls -l /bin/usr &>> ls-output.txt

Disposing Of Unwanted Output

Sometimes “silence is golden,” and we don't want output from a command, we just want
to throw it away. This applies particularly to error and status messages. The system pro-
vides a way to do this by redirecting output to a special file called “/dev/null”. This file is
a system device called a bit bucket which accepts input and does nothing with it. To sup-
press error messages from a command, we do this:

[me@linuxbox ~]$ ls -l /bin/usr 2> /dev/null

/dev/null In Unix Culture

The bit bucket is an ancient Unix concept and due to its universality, it has ap-
peared in many parts of Unix culture. When someone says he/she is sending your
comments to /dev/null, now you know what it means. For more examples,
see the Wikipedia article on “/dev/null”.

Redirecting Standard Input

Up to now, we haven't encountered any commands that make use of standard input (actu-
ally we have, but we’ll reveal that surprise a little bit later), so we need to introduce one.

cat – Concatenate Files

The cat command reads one or more files and copies them to standard output like so:

57

http://en.wikipedia.org/wiki//dev/null

6 – Redirection

cat [file...]

In most cases, you can think of cat as being analogous to the TYPE command in DOS.
You can use it to display files without paging, for example:

[me@linuxbox ~]$ cat ls-output.txt

will display the contents of the file ls-output.txt. cat is often used to display short
text files. Since cat can accept more than one file as an argument, it can also be used to
join files together. Say we have downloaded a large file that has been split into multiple
parts (multimedia files are often split this way on Usenet), and we want to join them back
together. If the files were named:

movie.mpeg.001 movie.mpeg.002 ... movie.mpeg.099

we could join them back together with this command:

cat movie.mpeg.0* > movie.mpeg

Since wildcards always expand in sorted order, the arguments will be arranged in the cor-
rect order.

This is all well and good, but what does this have to do with standard input? Nothing yet,
but let's try something else. What happens if we enter “cat” with no arguments:

[me@linuxbox ~]$ cat

Nothing happens, it just sits there like it's hung. It may seem that way, but it's really doing
exactly what it's supposed to.

If cat is not given any arguments, it reads from standard input and since standard input
is, by default, attached to the keyboard, it's waiting for us to type something! Try adding
the following text and pressing Enter:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.

Next, type a Ctrl-d (i.e., hold down the Ctrl key and press “d”) to tell cat that it has

58

Redirecting Standard Input

reached end of file (EOF) on standard input:

[me@linuxbox ~]$ cat
The quick brown fox jumped over the lazy dog.
The quick brown fox jumped over the lazy dog.

In the absence of filename arguments, cat copies standard input to standard output, so
we see our line of text repeated. We can use this behavior to create short text files. Let's
say that we wanted to create a file called “lazy_dog.txt” containing the text in our exam-
ple. We would do this:

[me@linuxbox ~]$ cat > lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Type the command followed by the text we want in to place in the file. Remember to type
Ctrl-d at the end. Using the command line, we have implemented the world's dumbest
word processor! To see our results, we can use cat to copy the file to stdout again:

[me@linuxbox ~]$ cat lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Now that we know how cat accepts standard input, in addition to filename arguments,
let's try redirecting standard input:

[me@linuxbox ~]$ cat < lazy_dog.txt
The quick brown fox jumped over the lazy dog.

Using the “<” redirection operator, we change the source of standard input from the key-
board to the file lazy_dog.txt. We see that the result is the same as passing a single
filename argument. This is not particularly useful compared to passing a filename argu-
ment, but it serves to demonstrate using a file as a source of standard input. Other com-
mands make better use of standard input, as we shall soon see.

Before we move on, check out the man page for cat, as it has several interesting options.

Pipelines

The ability of commands to read data from standard input and send to standard output is

59

6 – Redirection

utilized by a shell feature called pipelines. Using the pipe operator “|” (vertical bar), the
standard output of one command can be piped into the standard input of another:

command1 | command2

To fully demonstrate this, we are going to need some commands. Remember how we said
there was one we already knew that accepts standard input? It's less. We can use less
to display, page-by-page, the output of any command that sends its results to standard
output:

[me@linuxbox ~]$ ls -l /usr/bin | less

This is extremely handy! Using this technique, we can conveniently examine the output
of any command that produces standard output.

The Difference Between > and |

At first glance, it may be hard to understand the redirection performed by the
pipeline operator | versus the redirection operator >. Simply put, the redirection
operator connects a command with a file while the pipeline operator connects the
output of one command with the input of a second command.

command1 > file1
command1 | command2

A lot of people will try the following when they are learning about pipelines, “just
to see what happens.”

command1 > command2

Answer: Sometimes something really bad.

Here is an actual example submitted by a reader who was administering a Linux-
based server appliance. As the superuser, he did this:

cd /usr/bin
ls > less

60

Pipelines

The first command put him in the directory where most programs are stored and
the second command told the shell to overwrite the file less with the output of
the ls command. Since the /usr/bin directory already contained a file named
“less” (the less program), the second command overwrote the less program
file with the text from ls thus destroying the less program on his system.

The lesson here is that the redirection operator silently creates or overwrites files,
so you need to treat it with a lot of respect.

Filters

Pipelines are often used to perform complex operations on data. It is possible to put sev-
eral commands together into a pipeline. Frequently, the commands used this way are re-
ferred to as filters. Filters take input, change it somehow and then output it. The first one
we will try is sort. Imagine we wanted to make a combined list of all of the executable
programs in /bin and /usr/bin, put them in sorted order and view it:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | less

Since we specified two directories (/bin and /usr/bin), the output of ls would have
consisted of two sorted lists, one for each directory. By including sort in our pipeline,
we changed the data to produce a single, sorted list.

uniq - Report Or Omit Repeated Lines

The uniq command is often used in conjunction with sort. uniq accepts a sorted list
of data from either standard input or a single filename argument (see the uniq man page
for details) and, by default, removes any duplicates from the list. So, to make sure our list
has no duplicates (that is, any programs of the same name that appear in both the /bin
and /usr/bin directories) we will add uniq to our pipeline:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the output of the sort
command. If we want to see the list of duplicates instead, we add the “-d” option to uniq
like so:

61

6 – Redirection

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq -d | less

wc – Print Line, Word, And Byte Counts

The wc (word count) command is used to display the number of lines, words, and bytes
contained in files. For example:

[me@linuxbox ~]$ wc ls-output.txt
 7902 64566 503634 ls-output.txt

In this case it prints out three numbers: lines, words, and bytes contained in ls-out-
put.txt. Like our previous commands, if executed without command line arguments,
wc accepts standard input. The “-l” option limits its output to only report lines. Adding it
to a pipeline is a handy way to count things. To see the number of items we have in our
sorted list, we can do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | wc -l
2728

grep – Print Lines Matching A Pattern

grep is a powerful program used to find text patterns within files. It's used like this:

grep pattern [file...]

When grep encounters a “pattern” in the file, it prints out the lines containing it. The
patterns that grep can match can be very complex, but for now we will concentrate on
simple text matches. We'll cover the advanced patterns, called regular expressions in a
later chapter.

Let's say we wanted to find all the files in our list of programs that had the word “zip”
embedded in the name. Such a search might give us an idea of some of the programs on
our system that had something to do with file compression. We would do this:

[me@linuxbox ~]$ ls /bin /usr/bin | sort | uniq | grep zip

62

Pipelines

bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

There are a couple of handy options for grep: “-i” which causes grep to ignore case
when performing the search (normally searches are case sensitive) and “-v” which tells
grep to only print lines that do not match the pattern.

head / tail – Print First / Last Part Of Files

Sometimes you don't want all the output from a command. You may only want the first
few lines or the last few lines. The head command prints the first ten lines of a file and
the tail command prints the last ten lines. By default, both commands print ten lines of
text, but this can be adjusted with the “-n” option:

[me@linuxbox ~]$ head -n 5 ls-output.txt
total 343496
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2007-11-26 14:27 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
[me@linuxbox ~]$ tail -n 5 ls-output.txt
-rwxr-xr-x 1 root root 5234 2007-06-27 10:56 znew
-rwxr-xr-x 1 root root 691 2005-09-10 04:21 zonetab2pot.py
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyc
-rw-r--r-- 1 root root 930 2007-11-01 12:23 zonetab2pot.pyo
lrwxrwxrwx 1 root root 6 2008-01-31 05:22 zsoelim -> soelim

These can be used in pipelines as well:

[me@linuxbox ~]$ ls /usr/bin | tail -n 5
znew
zonetab2pot.py
zonetab2pot.pyc
zonetab2pot.pyo

63

6 – Redirection

zsoelim

tail has an option which allows you to view files in real-time. This is useful for watch-
ing the progress of log files as they are being written. In the following example, we will
look at the messages file in /var/log (or the /var/log/syslog file if mes-
sages is missing). Superuser privileges are required to do this on some Linux distribu-
tions, since the /var/log/messages file may contain security information:

[me@linuxbox ~]$ tail -f /var/log/messages
Feb 8 13:40:05 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 13:40:05 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1652 seconds.
Feb 8 13:55:32 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in
192.168.1.0/24,twin7.localdomain
Feb 8 14:07:37 twin4 dhclient: DHCPREQUEST on eth0 to 192.168.1.1
port 67
Feb 8 14:07:37 twin4 dhclient: DHCPACK from 192.168.1.1
Feb 8 14:07:37 twin4 dhclient: bound to 192.168.1.4 -- renewal in
1771 seconds.
Feb 8 14:09:56 twin4 smartd[3468]: Device: /dev/hda, SMART
Prefailure Attribute: 8 Seek_Time_Performance changed from 237 to 236
Feb 8 14:10:37 twin4 mountd[3953]: /var/NFSv4/musicbox exported to
both 192.168.1.0/24 and twin7.localdomain in
192.168.1.0/24,twin7.localdomain
Feb 8 14:25:07 twin4 sshd(pam_unix)[29234]: session opened for user
me by (uid=0)
Feb 8 14:25:36 twin4 su(pam_unix)[29279]: session opened for user
root by me(uid=500)

Using the “-f” option, tail continues to monitor the file and when new lines are ap-
pended, they immediately appear on the display. This continues until you type Ctrl-c.

tee – Read From Stdin And Output To Stdout And Files

In keeping with our plumbing metaphor, Linux provides a command called tee which
creates a “tee” fitting on our pipe. The tee program reads standard input and copies it to
both standard output (allowing the data to continue down the pipeline) and to one or more
files. This is useful for capturing a pipeline's contents at an intermediate stage of process-
ing. Here we repeat one of our earlier examples, this time including tee to capture the
entire directory listing to the file ls.txt before grep filters the pipeline's contents:

64

Pipelines

[me@linuxbox ~]$ ls /usr/bin | tee ls.txt | grep zip
bunzip2
bzip2
gunzip
gzip
unzip
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit

Summing Up

As always, check out the documentation of each of the commands we have covered in
this chapter. We have only seen their most basic usage. They all have a number of inter-
esting options. As we gain Linux experience, we will see that the redirection feature of
the command line is extremely useful for solving specialized problems. There are many
commands that make use of standard input and output, and almost all command line pro-
grams use standard error to display their informative messages.

Linux Is About Imagination

When I am asked to explain the difference between Windows and Linux, I often
use a toy analogy.
Windows is like a Game Boy. You go to the store and buy one all shiny new in the
box. You take it home, turn it on and play with it. Pretty graphics, cute sounds.
After a while though, you get tired of the game that came with it so you go back
to the store and buy another one. This cycle repeats over and over. Finally, you go
back to the store and say to the person behind the counter, “I want a game that
does this!” only to be told that no such game exists because there is no “market
demand” for it. Then you say, “But I only need to change this one thing!” The
person behind the counter says you can't change it. The games are all sealed up in
their cartridges. You discover that your toy is limited to the games that others
have decided that you need and no more.
Linux, on the other hand, is like the world's largest Erector Set. You open it up
and it's just a huge collection of parts. A lot of steel struts, screws, nuts, gears,
pulleys, motors, and a few suggestions on what to build. So you start to play with
it. You build one of the suggestions and then another. After a while you discover

65

6 – Redirection

that you have your own ideas of what to make. You don't ever have to go back to
the store, as you already have everything you need. The Erector Set takes on the
shape of your imagination. It does what you want.
Your choice of toys is, of course, a personal thing, so which toy would you find
more satisfying?

66

7 – Seeing The World As The Shell Sees It

7 – Seeing The World As The Shell Sees It

In this chapter we are going to look at some of the “magic” that occurs on the command
line when you press the enter key. While we will examine several interesting and com-
plex features of the shell, we will do it with just one new command:

● echo – Display a line of text

Expansion

Each time you type a command line and press the enter key, bash performs several pro-
cesses upon the text before it carries out your command. We have seen a couple of cases
of how a simple character sequence, for example “*”, can have a lot of meaning to the
shell. The process that makes this happen is called expansion. With expansion, you enter
something and it is expanded into something else before the shell acts upon it. To demon-
strate what we mean by this, let's take a look at the echo command. echo is a shell
builtin that performs a very simple task. It prints out its text arguments on standard out-
put:

[me@linuxbox ~]$ echo this is a test
this is a test

That's pretty straightforward. Any argument passed to echo gets displayed. Let's try an-
other example:

[me@linuxbox ~]$ echo *
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

So what just happened? Why didn't echo print “*”? As you recall from our work with
wildcards, the “*” character means match any characters in a filename, but what we didn't
see in our original discussion was how the shell does that. The simple answer is that the
shell expands the “*” into something else (in this instance, the names of the files in the

67

7 – Seeing The World As The Shell Sees It

current working directory) before the echo command is executed. When the enter key is
pressed, the shell automatically expands any qualifying characters on the command line
before the command is carried out, so the echo command never saw the “*”, only its ex-
panded result. Knowing this, we can see that echo behaved as expected.

Pathname Expansion

The mechanism by which wildcards work is called pathname expansion. If we try some
of the techniques that we employed in our earlier chapters, we will see that they are really
expansions. Given a home directory that looks like this:

[me@linuxbox ~]$ ls
Desktop ls-output.txt Pictures Templates
Documents Music Public Videos

we could carry out the following expansions:

[me@linuxbox ~]$ echo D*
Desktop Documents

and:

[me@linuxbox ~]$ echo *s
Documents Pictures Templates Videos

or even:

[me@linuxbox ~]$ echo [[:upper:]]*
Desktop Documents Music Pictures Public Templates Videos

and looking beyond our home directory:

[me@linuxbox ~]$ echo /usr/*/share
/usr/kerberos/share /usr/local/share

68

Expansion

Pathname Expansion Of Hidden Files

As we know, filenames that begin with a period character are hidden. Pathname
expansion also respects this behavior. An expansion such as:
echo *
does not reveal hidden files.
It might appear at first glance that we could include hidden files in an expansion
by starting the pattern with a leading period, like this:
echo .*
It almost works. However, if we examine the results closely, we will see that the
names “.” and “..” will also appear in the results. Since these names refer to the
current working directory and its parent directory, using this pattern will likely
produce an incorrect result. We can see this if we try the command:
ls -d .* | less
To better perform pathname expansion in this situation, we have to employ a
more specific pattern:
echo .[!.]*
This pattern expands into every filename that begins with a period, does not in-
clude a second period, and followed by any other characters. This will work cor-
rectly with most hidden files (though it still won't include filenames with multiple
leading periods). The ls command with the -A option (“almost all”) will provide
a correct listing of hidden files:
ls -A

Tilde Expansion

As you may recall from our introduction to the cd command, the tilde character (“~”) has
a special meaning. When used at the beginning of a word, it expands into the name of the
home directory of the named user, or if no user is named, the home directory of the cur-
rent user:

[me@linuxbox ~]$ echo ~
/home/me

If user “foo” has an account, then:

[me@linuxbox ~]$ echo ~foo
/home/foo

69

7 – Seeing The World As The Shell Sees It

Arithmetic Expansion

The shell allows arithmetic to be performed by expansion. This allow us to use the shell
prompt as a calculator:

[me@linuxbox ~]$ echo $((2 + 2))
4

Arithmetic expansion uses the form:

$((expression))

where expression is an arithmetic expression consisting of values and arithmetic opera-
tors.

Arithmetic expansion only supports integers (whole numbers, no decimals), but can per-
form quite a number of different operations. Here are a few of the supported operators:

Table 7-1: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division (but remember, since expansion only supports integer
arithmetic, results are integers.)

% Modulo, which simply means, “ remainder.”

** Exponentiation

Spaces are not significant in arithmetic expressions and expressions may be nested. For
example, to multiply 5 squared by 3:

[me@linuxbox ~]$ echo $(($((5**2)) * 3))
75

Single parentheses may be used to group multiple subexpressions. With this technique,
we can rewrite the example above and get the same result using a single expansion in-
stead of two:

70

Expansion

[me@linuxbox ~]$ echo $(((5**2) * 3))
75

Here is an example using the division and remainder operators. Notice the effect of inte-
ger division:

[me@linuxbox ~]$ echo Five divided by two equals $((5/2))
Five divided by two equals 2
[me@linuxbox ~]$ echo with $((5%2)) left over.
with 1 left over.

Arithmetic expansion is covered in greater detail in Chapter 34.

Brace Expansion

Perhaps the strangest expansion is called brace expansion. With it, you can create multi-
ple text strings from a pattern containing braces. Here's an example:

[me@linuxbox ~]$ echo Front-{A,B,C}-Back
Front-A-Back Front-B-Back Front-C-Back

Patterns to be brace expanded may contain a leading portion called a preamble and a
trailing portion called a postscript. The brace expression itself may contain either a
comma-separated list of strings, or a range of integers or single characters. The pattern
may not contain embedded whitespace. Here is an example using a range of integers:

[me@linuxbox ~]$ echo Number_{1..5}
Number_1 Number_2 Number_3 Number_4 Number_5

Integers may also be zero-padded like so:

[me@linuxbox ~]$ echo {01..15}
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
[me@linuxbox ~]$ echo {001..15}
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015

A range of letters in reverse order:

71

7 – Seeing The World As The Shell Sees It

[me@linuxbox ~]$ echo {Z..A}
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

Brace expansions may be nested:

[me@linuxbox ~]$ echo a{A{1,2},B{3,4}}b
aA1b aA2b aB3b aB4b

So what is this good for? The most common application is to make lists of files or direc-
tories to be created. For example, if we were photographers and had a large collection of
images that we wanted to organize into years and months, the first thing we might do is
create a series of directories named in numeric “Year-Month” format. This way, the direc-
tory names will sort in chronological order. We could type out a complete list of directo-
ries, but that's a lot of work and it's error-prone too. Instead, we could do this:

[me@linuxbox ~]$ mkdir Photos
[me@linuxbox ~]$ cd Photos
[me@linuxbox Photos]$ mkdir {2007..2009}-{01..12}
[me@linuxbox Photos]$ ls
2007-01 2007-07 2008-01 2008-07 2009-01 2009-07
2007-02 2007-08 2008-02 2008-08 2009-02 2009-08
2007-03 2007-09 2008-03 2008-09 2009-03 2009-09
2007-04 2007-10 2008-04 2008-10 2009-04 2009-10
2007-05 2007-11 2008-05 2008-11 2009-05 2009-11
2007-06 2007-12 2008-06 2008-12 2009-06 2009-12

Pretty slick!

Parameter Expansion

We're only going to touch briefly on parameter expansion in this chapter, but we'll be
covering it extensively later. It's a feature that is more useful in shell scripts than directly
on the command line. Many of its capabilities have to do with the system's ability to store
small chunks of data and to give each chunk a name. Many such chunks, more properly
called variables, are available for your examination. For example, the variable named
“USER” contains your username. To invoke parameter expansion and reveal the contents
of USER you would do this:

[me@linuxbox ~]$ echo $USER

72

Expansion

me

To see a list of available variables, try this:

[me@linuxbox ~]$ printenv | less

You may have noticed that with other types of expansion, if you mistype a pattern, the
expansion will not take place and the echo command will simply display the mistyped
pattern. With parameter expansion, if you misspell the name of a variable, the expansion
will still take place, but will result in an empty string:

[me@linuxbox ~]$ echo $SUER

[me@linuxbox ~]$

Command Substitution

Command substitution allows us to use the output of a command as an expansion:

[me@linuxbox ~]$ echo $(ls)
Desktop Documents ls-output.txt Music Pictures Public Templates
Videos

One of my favorites goes something like this:

[me@linuxbox ~]$ ls -l $(which cp)
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Here we passed the results of which cp as an argument to the ls command, thereby
getting the listing of of the cp program without having to know its full pathname. We are
not limited to just simple commands. Entire pipelines can be used (only partial output
shown):

[me@linuxbox ~]$ file $(ls -d /usr/bin/* | grep zip)
/usr/bin/bunzip2: symbolic link to `bzip2'

73

7 – Seeing The World As The Shell Sees It

/usr/bin/bzip2: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped
/usr/bin/bzip2recover: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped
/usr/bin/funzip: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), dynamically linked (uses shared libs), for
GNU/Linux 2.6.9, stripped
/usr/bin/gpg-zip: Bourne shell script text executable
/usr/bin/gunzip: symbolic link to `../../bin/gunzip'
/usr/bin/gzip: symbolic link to `../../bin/gzip'
/usr/bin/mzip: symbolic link to `mtools'

In this example, the results of the pipeline became the argument list of the file com-
mand.

There is an alternate syntax for command substitution in older shell programs which is
also supported in bash. It uses back-quotes instead of the dollar sign and parentheses:

[me@linuxbox ~]$ ls -l `which cp`
-rwxr-xr-x 1 root root 71516 2007-12-05 08:58 /bin/cp

Quoting

Now that we've seen how many ways the shell can perform expansions, it's time to learn
how we can control it. Take for example:

[me@linuxbox ~]$ echo this is a test
this is a test

or:

[me@linuxbox ~]$ echo The total is $100.00
The total is 00.00

In the first example, word-splitting by the shell removed extra whitespace from the echo
command's list of arguments. In the second example, parameter expansion substituted an
empty string for the value of “$1” because it was an undefined variable. The shell pro-
vides a mechanism called quoting to selectively suppress unwanted expansions.

74

Quoting

Double Quotes

The first type of quoting we will look at is double quotes. If you place text inside double
quotes, all the special characters used by the shell lose their special meaning and are

7 – Seeing The World As The Shell Sees It

[me@linuxbox ~]$ echo this is a test
this is a test

By default, word-splitting looks for the presence of spaces, tabs, and newlines (linefeed
characters) and treats them as delimiters between words. This means that unquoted spa-
ces, tabs, and newlines are not considered to be part of the text. They only serve as sepa-
rators. Since they separate the words into different arguments, our example command line
contains a command followed by four distinct arguments. If we add double quotes:

[me@linuxbox ~]$ echo "this is a test"
this is a test

word-splitting is suppressed and the embedded spaces are not treated as delimiters, rather
they become part of the argument. Once the double quotes are added, our command line
contains a command followed by a single argument.

The fact that newlines are considered delimiters by the word-splitting mechanism causes
an interesting, albeit subtle, effect on command substitution. Consider the following:

[me@linuxbox ~]$ echo $(cal)
February 2008 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
[me@linuxbox ~]$ echo "$(cal)"
 February 2008
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29

In the first instance, the unquoted command substitution resulted in a command line con-
taining 38 arguments. In the second, a command line with one argument that includes the
embedded spaces and newlines.

Single Quotes

If we need to suppress all expansions, we use single quotes. Here is a comparison of un-
quoted, double quotes, and single quotes:

76

Quoting

[me@linuxbox ~]$ echo text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER
text /home/me/ls-output.txt a b foo 4 me
[me@linuxbox ~]$ echo "text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER"
text ~/*.txt {a,b} foo 4 me
[me@linuxbox ~]$ echo 'text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER'
text ~/*.txt {a,b} $(echo foo) $((2+2)) $USER

As we can see, with each succeeding level of quoting, more and more of the expansions
are suppressed.

Escaping Characters

Sometimes we only want to quote a single character. To do this, we can precede a charac-
ter with a backslash, which in this context is called the escape character. Often this is
done inside double quotes to selectively prevent an expansion:

[me@linuxbox ~]$ echo "The balance for user $USER is: \$5.00"
The balance for user me is: $5.00

It is also common to use escaping to eliminate the special meaning of a character in a
filename. For example, it is possible to use characters in filenames that normally have
special meaning to the shell. These would include “$”, “!”, “&”, “ “, and others. To in-
clude a special character in a filename you can to this:

[me@linuxbox ~]$ mv bad\&filename good_filename

To allow a backslash character to appear, escape it by typing “\\”. Note that within single
quotes, the backslash loses its special meaning and is treated as an ordinary character.

Backslash Escape Sequences

In addition to its role as the escape character, the backslash is also used as part of
a notation to represent certain special characters called control codes. The first 32
characters in the ASCII coding scheme are used to transmit commands to tele-
type-like devices. Some of these codes are familiar (tab, backspace, linefeed, and
carriage return), while others are not (null, end-of-transmission, and acknowl-
edge).

77

7 – Seeing The World As The Shell Sees It

The table above lists some of the common backslash escape sequences. The idea
behind this representation using the backslash originated in the C programming
language and has been adopted by many others, including the shell.
Adding the “-e” option to echo will enable interpretation of escape sequences.
You may also place them inside $' '. Here, using the sleep command, a sim-
ple program that just waits for the specified number of seconds and then exits, we
can create a primitive countdown timer:
sleep 10; echo -e "Time's up\a"

We could also do this:
sleep 10; echo "Time's up" $'\a'

Summing Up

As we move forward with using the shell, we will find that expansions and quoting will
be used with increasing frequency, so it makes sense to get a good understanding of the
way they work. In fact, it could be argued that they are the most important subjects to
learn about the shell. Without a proper understanding of expansion, the shell will always
be a source of mystery and confusion, and much of it potential power wasted.

Further Reading

● The bash man page has major sections on both expansion and quoting which
cover these topics in a more formal manner.

● The Bash Reference Manual also contains chapters on expansion and quoting:
http://www.gnu.org/software/bash/manual/bashref.html

78

Escape Sequence Meaning

\a Bell (“Alert” - causes the computer to beep)

\b Backspace

\n Newline. On Unix-like systems, this
produces a linefeed.

\r Carriage return

\t Tab

http://www.gnu.org/software/bash/manual/bashref.html

8 – Advanced Keyboard Tricks

8 – Advanced Keyboard Tricks

I often kiddingly describe Unix as “the operating system for people who like to type.” Of
course, the fact that it even has a command line is a testament to that. But command line
users don't like to type that much. Why else would so many commands have such short
names like cp, ls, mv, and rm? In fact, one of the most cherished goals of the command
line is laziness; doing the most work with the fewest number of keystrokes. Another goal
is never having to lift your fingers from the keyboard, never reaching for the mouse. In
this chapter, we will look at bash features that make keyboard use faster and more effi-
cient.

The following commands will make an appearance:

● clear – Clear the screen

● history – Display the contents of the history list

Command Line Editing

bash uses a library (a shared collection of routines that different programs can use)
called Readline to implement command line editing. We have already seen some of this.
We know, for example, that the arrow keys move the cursor but there are many more fea-
tures. Think of these as additional tools that we can employ in our work. It’s not impor-
tant to learn all of them, but many of them are very useful. Pick and choose as desired.

Note: Some of the key sequences below (particularly those which use the Alt key)
may be intercepted by the GUI for other functions. All of the key sequences should
work properly when using a virtual console.

Cursor Movement

The following table lists the keys used to move the cursor:

79

8 – Advanced Keyboard Tricks

Table 8-1: Cursor Movement Commands

Key Action

Ctrl-a Move cursor to the beginning of the line.

Ctrl-e Move cursor to the end of the line.

Ctrl-f Move cursor forward one character; same as the right arrow key.

Ctrl-b Move cursor backward one character; same as the left arrow key.

Alt-f Move cursor forward one word.

Alt-b Move cursor backward one word.

Ctrl-l Clear the screen and move the cursor to the top left corner. The
clear command does the same thing.

Modifying Text

Table 8-2 lists keyboard commands that are used to edit characters on the command line.

Table 8-2: Text Editing Commands

Key Action

Ctrl-d Delete the character at the cursor location

Ctrl-t Transpose (exchange) the character at the cursor location with the
one preceding it.

Alt-t Transpose the word at the cursor location with the one preceding it.

Alt-l Convert the characters from the cursor location to the end of the
word to lowercase.

Alt-u Convert the characters from the cursor location to the end of the
word to uppercase.

Cutting And Pasting (Killing And Yanking) Text

The Readline documentation uses the terms killing and yanking to refer to what we would
commonly call cutting and pasting. Items that are cut are stored in a buffer called the kill-
ring.

80

Command Line Editing

Table 8-3: Cut And Paste Commands

Key Action

Ctrl-k Kill text from the cursor location to the end of line.

Ctrl-u Kill text from the cursor location to the beginning of the line.

Alt-d Kill text from the cursor location to the end of the current word.

Alt-
Backspace

Kill text from the cursor location to the beginning of the current
word. If the cursor is at the beginning of a word, kill the previous
word.

Ctrl-y Yank text from the kill-ring and insert it at the cursor location.

The Meta Key

If you venture into the Readline documentation, which can be found in the
READLINE section of the bash man page, you will encounter the term “meta
key.” On modern keyboards this maps to the Alt key but it wasn't always so.
Back in the dim times (before PCs but after Unix) not everybody had their own
computer. What they might have had was a device called a terminal. A terminal
was a communication device that featured a text display screen and a keyboard
and just enough electronics inside to display text characters and move the cursor
around. It was attached (usually by serial cable) to a larger computer or the com-
munication network of a larger computer. There were many different brands of
terminals and they all had different keyboards and display feature sets. Since they
all tended to at least understand ASCII, software developers wanting portable ap-
plications wrote to the lowest common denominator. Unix systems have a very
elaborate way of dealing with terminals and their different display features. Since
the developers of Readline could not be sure of the presence of a dedicated extra
control key, they invented one and called it “meta.” While the Alt key serves as
the meta key on modern keyboards, you can also press and release the Esc key to
get the same effect as holding down the Alt key if you're still using a terminal
(which you can still do in Linux!).

Completion

Another way that the shell can help you is through a mechanism called completion. Com-
pletion occurs when you press the tab key while typing a command. Let's see how this
works. Given a home directory that looks like this:

81

8 – Advanced Keyboard Tricks

[me@linuxbox ~]$ ls
Desktop ls-output.txt Pictures Templates Videos
Documents Music Public

Try typing the following but don't press the Enter key:

[me@linuxbox ~]$ ls l

Now press the tab key:

[me@linuxbox ~]$ ls ls-output.txt

See how the shell completed the line for you? Let's try another one. Again, don't press
Enter:

[me@linuxbox ~]$ ls D

Press tab:

[me@linuxbox ~]$ ls D

No completion, just a beep. This happened because “D” matches more than one entry in
the directory. For completion to be successful, the “clue” you give it has to be unambigu-
ous. If we go further:

[me@linuxbox ~]$ ls Do

 Then press tab:

[me@linuxbox ~]$ ls Documents

The completion is successful.

While this example shows completion of pathnames, which is its most common use,

82

Completion

completion will also work on variables (if the beginning of the word is a “$”), user names
(if the word begins with “~”), commands (if the word is the first word on the line.) and
hostnames (if the beginning of the word is “@”). Hostname completion only works for
hostnames listed in /etc/hosts.

There are a number of control and meta key sequences that are associated with comple-
tion:

Table 8-4: Completion Commands

Key Action

Alt-? Display list of possible completions. On most systems you can also
do this by pressing the tab key a second time, which is much easier.

Alt-* Insert all possible completions. This is useful when you want to use
more than one possible match.

There quite a few more that I find rather obscure. You can see a list in the bash man
page under “READLINE”.

Programmable Completion

Recent versions of bash have a facility called programmable completion. Pro-
grammable completion allows you (or more likely, your distribution provider) to
add additional completion rules. Usually this is done to add support for specific
applications. For example it is possible to add completions for the option list of a
command or match particular file types that an application supports. Ubuntu has a
fairly large set defined by default. Programmable completion is implemented by
shell functions, a kind of mini shell script that we will cover in later chapters. If
you are curious, try:
set | less

and see if you can find them. Not all distributions include them by default.

Using History

As we discovered in Chapter 1, bash maintains a history of commands that have been
entered. This list of commands is kept in your home directory in a file called
.bash_history. The history facility is a useful resource for reducing the amount of
typing you have to do, especially when combined with command line editing.

83

8 – Advanced Keyboard Tricks

Searching History

At any time, we can view the contents of the history list by:

[me@linuxbox ~]$ history | less

By default, bash stores the last 500 commands you have entered. We will see how to ad-
just this value in a later chapter. Let's say we want to find the commands we used to list
/usr/bin. One way we could do this:

[me@linuxbox ~]$ history | grep /usr/bin

And let's say that among our results we got a line containing an interesting command like
this:

 88 ls -l /usr/bin > ls-output.txt

The number “88” is the line number of the command in the history list. We could use this
immediately using another type of expansion called history expansion. To use our discov-
ered line we could do this:

[me@linuxbox ~]$!88

bash will expand “!88” into the contents of the eighty-eighth line in the history list.
There are other forms of history expansion that we will cover a little later.

bash also provides the ability to search the history list incrementally. This means that we
can tell bash to search the history list as we enter characters, with each additional char-
acter further refining our search. To start incremental search press Ctrl-r followed by
the text you are looking for. When you find it, you can either press Enter to execute the
command or press Ctrl-j to copy the line from the history list to the current command
line. To find the next occurrence of the text (moving “up” the history list), press Ctrl-r
again. To quit searching, press either Ctrl-g or Ctrl-c. Here we see it in action:

[me@linuxbox ~]$

First press Ctrl-r:

84

Using History

(reverse-i-search)`':

The prompt changes to indicate that we are performing a reverse incremental search. It is
“reverse” because we are searching from “now” to some time in the past. Next, we start
typing our search text. In this example “/usr/bin”:

(reverse-i-search)`/usr/bin': ls -l /usr/bin > ls-output.txt

Immediately, the search returns our result. With our result, we can execute the command
by pressing Enter, or we can copy the command to our current command line for fur-
ther editing by pressing Ctrl-j. Let's copy it. Press Ctrl-j:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Our shell prompt returns and our command line is loaded and ready for action!

The table below lists some of the keystrokes used to manipulate the history list:

Table 8-5: History Commands

Key Action

Ctrl-p Move to the previous history entry. Same action as the up arrow.

Ctrl-n Move to the next history entry. Same action as the down arrow.

Alt-< Move to the beginning (top) of the history list.

Alt-> Move to the end (bottom) of the history list, i.e., the current
command line.

Ctrl-r Reverse incremental search. Searches incrementally from the
current command line up the history list.

Alt-p Reverse search, non-incremental. With this key, type in the search
string and press enter before the search is performed.

Alt-n Forward search, non-incremental.

Ctrl-o Execute the current item in the history list and advance to the next
one. This is handy if you are trying to re-execute a sequence of
commands in the history list.

85

8 – Advanced Keyboard Tricks

History Expansion

The shell offers a specialized type of expansion for items in the history list by using the
“!” character. We have already seen how the exclamation point can be followed by a
number to insert an entry from the history list. There are a number of other expansion fea-
tures:

Table 8-6: History Expansion Commands

Sequence Action

!! Repeat the last command. It is probably easier to press up arrow and
enter.

!number Repeat history list item number.

!string Repeat last history list item starting with string.

!?string Repeat last history list item containing string.

I would caution against using the “!string” and “!?string” forms unless you are absolutely
sure of the contents of the history list items.

There are many more elements available in the history expansion mechanism, but this
subject is already too arcane and our heads may explode if we continue. The HISTORY
EXPANSION section of the bash man page goes into all the gory details. Feel free to
explore!

script

In addition to the command history feature in bash, most Linux distributions in-
clude a program called script that can be used to record an entire shell session
and store it in a file. The basic syntax of the command is:
script [file]
where file is the name of the file used for storing the recording. If no file is speci-
fied, the file typescript is used. See the script man page for a complete
list of the program’s options and features.

Summing Up

In this chapter we have covered some of the keyboard tricks that the shell provides to
help hardcore typists reduce their workloads. I suspect that as time goes by and you be-
come more involved with the command line, you will refer back to this chapter to pick up

86

Summing Up

more of these tricks. For now, consider them optional and potentially helpful.

Further Reading

● The Wikipedia has a good article on computer terminals:
http://en.wikipedia.org/wiki/Computer_terminal

87

http://en.wikipedia.org/wiki/Computer_terminal

9 – Permissions

9 – Permissions

Operating systems in the Unix tradition differ from those in the MS-DOS tradition in that
they are not only multitasking systems, but also multi-user systems, as well.

What exactly does this mean? It means that more than one person can be using the com-
puter at the same time. While a typical computer will likely have only one keyboard and
monitor, it can still be used by more than one user. For example, if a computer is attached
to a network or the Internet, remote users can log in via ssh (secure shell) and operate
the computer. In fact, remote users can execute graphical applications and have the
graphical output appear on a remote display. The X Window System supports this as part
of its basic design.

The multiuser capability of Linux is not a recent "innovation," but rather a feature that is
deeply embedded into the design of the operating system. Considering the environment in
which Unix was created, this makes perfect sense. Years ago, before computers were
"personal," they were large, expensive, and centralized. A typical university computer
system, for example, consisted of a large central computer located in one building and
terminals which were located throughout the campus, each connected to the large central
computer. The computer would support many users at the same time.

In order to make this practical, a method had to be devised to protect the users from each
other. After all, the actions of one user could not be allowed to crash the computer, nor
could one user interfere with the files belonging to another user.

In this chapter we are going to look at this essential part of system security and introduce
the following commands:

● id – Display user identity

● chmod – Change a file's mode

● umask – Set the default file permissions

● su – Run a shell as another user

● sudo – Execute a command as another user

● chown – Change a file's owner

88

9 – Permissions

● chgrp – Change a file's group ownership

● passwd – Change a user's password

Owners, Group Members, And Everybody Else

When we were exploring the system back in Chapter 3, we may have encountered a prob-
lem when trying to examine a file such as /etc/shadow:

[me@linuxbox ~]$ file /etc/shadow
/etc/shadow: regular file, no read permission
[me@linuxbox ~]$ less /etc/shadow
/etc/shadow: Permission denied

The reason for this error message is that, as regular users, we do not have permission to
read this file.

In the Unix security model, a user may own files and directories. When a user owns a file
or directory, the user has control over its access. Users can, in turn, belong to a group
consisting of one or more users who are given access to files and directories by their
owners. In addition to granting access to a group, an owner may also grant some set of
access rights to everybody, which in Unix terms is referred to as the world. To find out in-
formation about your identity, use the id command:

[me@linuxbox ~]$ id
uid=500(me) gid=500(me) groups=500(me)

Let's look at the output. When user accounts are created, users are assigned a number
called a user ID or uid which is then, for the sake of the humans, mapped to a username.
The user is assigned a primary group ID or gid and may belong to additional groups. The
above example is from a Fedora system. On other systems, such as Ubuntu, the output
may look a little different:

[me@linuxbox ~]$ id
uid=1000(me) gid=1000(me)
groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(v
ideo),46(plugdev),108(lpadmin),114(admin),1000(me)

As we can see, the uid and gid numbers are different. This is simply because Fedora starts
its numbering of regular user accounts at 500, while Ubuntu starts at 1000. We can also

89

9 – Permissions

see that the Ubuntu user belongs to a lot more groups. This has to do with the way
Ubuntu manages privileges for system devices and services.

So where does this information come from? Like so many things in Linux, from a couple
of text files. User accounts are defined in the /etc/passwd file and groups are defined
in the /etc/group file. When user accounts and groups are created, these files are
modified along with /etc/shadow which holds information about the user's password.
For each user account, the /etc/passwd file defines the user (login) name, uid, gid,
the account's real name, home directory, and login shell. If you examine the contents of
/etc/passwd and /etc/group, you will notice that besides the regular user ac-
counts, there are accounts for the superuser (uid 0) and various other system users.

In the next chapter, when we cover processes, you will see that some of these other
“users” are, in fact, quite busy.

While many Unix-like systems assign regular users to a common group such as “users”,
modern Linux practice is to create a unique, single-member group with the same name as
the user. This makes certain types of permission assignment easier.

Reading, Writing, And Executing

Access rights to files and directories are defined in terms of read access, write access, and
execution access. If we look at the output of the ls command, we can get some clue as to
how this is implemented:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2008-03-06 14:52 foo.txt

The first ten characters of the listing are the file attributes. The first of these characters is
the file type. Here are the file types you are most likely to see (there are other, less com-
mon types too):

Table 9-1: File Types

Attribute File Type

- A regular file.

d A directory.

l A symbolic link. Notice that with symbolic links, the remaining file
attributes are always “rwxrwxrwx” and are dummy values. The real
file attributes are those of the file the symbolic link points to.

90

Reading, Writing, And Executing

c A character special file. This file type refers to a device that
handles data as a stream of bytes, such as a terminal or modem.

b A block special file. This file type refers to a device that handles
data in blocks, such as a hard drive or CD-ROM drive.

The remaining nine characters of the file attributes, called the file mode, represent the
read, write, and execute permissions for the file's owner, the file's group owner, and
everybody else:

Owner Group World

rwx rwx rwx

When set, the r, w, and x mode attributes have the following effect on files and directo-
ries:

Table 9-2: Permission Attributes

Attribute Files Directories

r Allows a file to be opened and
read.

Allows a directory's contents to
be listed if the execute attribute
is also set.

w Allows a file to be written to or
truncated, however this attribute
does not allow files to be
renamed or deleted. The ability
to delete or rename files is
determined by directory
attributes.

Allows files within a directory
to be created, deleted, and
renamed if the execute attribute
is also set.

x Allows a file to be treated as a
program and executed. Program
files written in scripting
languages must also be set as
readable to be executed.

Allows a directory to be
entered, e.g., cd directory.

Here are some examples of file attribute settings:

91

9 – Permissions

Table 9-3: Permission Attribute Examples

File Attributes Meaning

-rwx------ A regular file that is readable, writable, and executable by the
file's owner. No one else has any access.

-rw------- A regular file that is readable and writable by the file's owner.
No one else has any access.

-rw-r--r-- A regular file that is readable and writable by the file's owner.
Members of the file's owner group may read the file. The file is
world-readable.

-rwxr-xr-x A regular file that is readable, writable, and executable by the
file's owner. The file may be read and executed by everybody
else.

-rw-rw---- A regular file that is readable and writable by the file's owner
and members of the file's group owner only.

lrwxrwxrwx A symbolic link. All symbolic links have “dummy”
permissions. The real permissions are kept with the actual file
pointed to by the symbolic link.

drwxrwx--- A directory. The owner and the members of the owner group
may enter the directory and, create, rename and remove files
within the directory.

drwxr-x--- A directory. The owner may enter the directory and create,
rename and delete files within the directory. Members of the
owner group may enter the directory but cannot create, delete
or rename files.

chmod – Change File Mode

To change the mode (permissions) of a file or directory, the chmod command is used. Be
aware that only the file’s owner or the superuser can change the mode of a file or direc-
tory. chmod supports two distinct ways of specifying mode changes: octal number repre-
sentation, or symbolic representation. We will cover octal number representation first.

92

Reading, Writing, And Executing

What The Heck Is Octal?

Octal (base 8), and its cousin, hexadecimal (base 16) are number systems often
used to express numbers on computers. We humans, owing to the fact that we (or
at least most of us) were born with ten fingers, count using a base 10 number sys-
tem. Computers, on the other the other hand, were born with only one finger and
thus do all all their counting in binary (base 2). Their number system only has two
numerals, 0 and 1. So in binary, counting looks like this:
0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011...
In octal, counting is done with the numerals zero through seven, like so:
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21...
Hexadecimal counting uses the numerals zero through nine plus the letters “A”
through “F”:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13...
While we can see the sense in binary (since computers only have one finger),
what are octal and hexadecimal good for? The answer has to do with human con-
venience. Many times, small portions of data are represented on computers as bit
patterns. Take for example an RGB color. On most computer displays, each pixel
is composed of three color components: eight bits of red, eight bits of green, and
eight bits of blue. A lovely medium blue would be a 24 digit number:
010000110110111111001101
How would you like to read and write those kinds of numbers all day? I didn't
think so. Here's where another number system would help. Each digit in a hexa-
decimal number represents four digits in binary. In octal, each digit represents
three binary digits. So our 24 digit medium blue could be condensed down to a
six digit hexadecimal number:
436FCD
Since the digits in the hexadecimal number “line up” with the bits in the binary
number we can see that the red component of our color is 43, the green 6F, and
the blue CD.
These days, hexadecimal notation (often spoken as “hex”) is more common than
octal, but as we shall soon see, octal's ability to express three bits of binary will
be very useful...

With octal notation we use octal numbers to set the pattern of desired permissions. Since
each digit in an octal number represents three binary digits, this maps nicely to the
scheme used to store the file mode. This table shows what we mean:

Table 9-4: File Modes In Binary And Octal

Octal Binary File Mode

93

9 – Permissions

0 000 ---

1 001 --x

2 010 -w-

3 011 -wx

4 100 r--

5 101 r-x

6 110 rw-

7 111 rwx

By using three octal digits, we can set the file mode for the owner, group owner, and
world:

[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2008-03-06 14:52 foo.txt
[me@linuxbox ~]$ chmod 600 foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw------- 1 me me 0 2008-03-06 14:52 foo.txt

By passing the argument “600”, we were able to set the permissions of the owner to read
and write while removing all permissions from the group owner and world. Though re-
membering the octal to binary mapping may seem inconvenient, you will usually only
have to use a few common ones: 7 (rwx), 6 (rw-), 5 (r-x), 4 (r--), and 0 (---).

chmod also supports a symbolic notation for specifying file modes. Symbolic notation is
divided into three parts: who the change will affect, which operation will be performed,
and what permission will be set. To specify who is affected, a combination of the charac-
ters “u”, “g”, “o”, and “a” is used as follows:

Table 9-5: chmod Symbolic Notation

Symbol Meaning

u Short for “user” but means the file or directory owner.

g Group owner.

o Short for “others,” but means world.

a Short for “all.” The combination of “u”, “g”, and “o”.

94

Reading, Writing, And Executing

If no character is specified, “all” will be assumed. The operation may be a “+” indicating
that a permission is to be added, a “-” indicating that a permission is to be taken away, or
a “=” indicating that only the specified permissions are to be applied and that all others
are to be removed.

Permissions are specified with the “r”, “w”, and “x” characters. Here are some examples
of symbolic notation:

Table 9-6: chmod Symbolic Notation Examples

Notation Meaning

u+x Add execute permission for the owner.

u-x Remove execute permission from the owner.

+x Add execute permission for the owner, group, and world.
Equivalent to a+x.

o-rw Remove the read and write permission from anyone besides the
owner and group owner.

go=rw Set the group owner and anyone besides the owner to have read and
write permission. If either the group owner or world previously had
execute permissions, they are removed.

u+x,go=rx Add execute permission for the owner and set the permissions for
the group and others to read and execute. Multiple specifications
may be separated by commas.

Some people prefer to use octal notation, some folks really like the symbolic. Symbolic
notation does offer the advantage of allowing you to set a single attribute without disturb-
ing any of the others.

Take a look at the chmod man page for more details and a list of options. A word of cau-
tion regarding the “--recursive” option: it acts on both files and directories, so it's not as
useful as one would hope since, we rarely want files and directories to have the same per-
missions.

Setting File Mode With The GUI

Now that we have seen how the permissions on files and directories are set, we can better
understand the permission dialogs in the GUI. In both Nautilus (GNOME) and Kon-
queror (KDE), right-clicking a file or directory icon will expose a properties dialog. Here
is an example from KDE 3.5:

95

9 – Permissions

Here we can see the settings for the owner, group, and world. In KDE, clicking the “Ad-
vanced Permissions” button brings up another dialog that allows you to set each of the
mode attributes individually. Another victory for understanding brought to us by the com-
mand line!

umask – Set Default Permissions

The umask command controls the default permissions given to a file when it is created.
It uses octal notation to express a mask of bits to be removed from a file's mode at-
tributes. Let's take a look:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ umask
0002
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-r-- 1 me me 0 2008-03-06 14:53 foo.txt

We first removed any old copy of foo.txt to make sure we were starting fresh. Next,
we ran the umask command without an argument to see the current value. It responded

96

Figure 2: KDE 3.5 File
Properties Dialog

Reading, Writing, And Executing

with the value 0002 (the value 0022 is another common default value), which is the oc-
tal representation of our mask. We next create a new instance of the file foo.txt and
observe its permissions.

We can see that both the owner and group get read and write permission, while everyone
else only gets read permission. The reason that world does not have write permission is
because of the value of the mask. Let's repeat our example, this time setting the mask our-
selves:

[me@linuxbox ~]$ rm foo.txt
[me@linuxbox ~]$ umask 0000
[me@linuxbox ~]$ > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-rw-rw- 1 me me 0 2008-03-06 14:58 foo.txt

When we set the mask to 0000 (effectively turning it off), we see that the file is now
world writable. To understand how this works, we have to look at octal numbers again. If
we take the mask and expand it into binary, and then compare it to the attributes we can
see what happens:

Original file mode --- rw- rw- rw-

Mask 000 000 000 010

Result --- rw- rw- r--

Ignore for the moment the leading zeros (we'll get to those in a minute) and observe that
where the 1 appears in our mask, an attribute was removed—in this case, the world write   
permission. That's what the mask does. Everywhere a 1 appears in the binary value of the
mask, an attribute is unset. If we look at a mask value of 0022, we can see what it does:

Original file mode --- rw- rw- rw-

Mask 000 000 010 010

Result --- rw- r-- r--

Again, where a 1 appears in the binary value, the corresponding attribute is unset. Play
with some values (try some sevens) to get used to how this works. When you're done, re-
member to clean up:

97

9 – Permissions

[me@linuxbox ~]$ rm foo.txt; umask 0002

Most of the time you won't have to change the mask; the default provided by your distri-
bution will be fine. In some high-security situations, however, you will want to control it.

Some Special Permissions

Though we usually see an octal permission mask expressed as a three digit num-
ber, it is more technically correct to express it in four digits. Why? Because, in ad-
dition to read, write, and execute permission, there are some other, less used, per-
mission settings.
The first of these is the setuid bit (octal 4000). When applied to an executable file,
it sets the effective user ID from that of the real user (the user actually running the
program) to that of the program's owner. Most often this is given to a few pro-
grams owned by the superuser. When an ordinary user runs a program that is “se-
tuid root” , the program runs with the effective privileges of the superuser. This
allows the program to access files and directories that an ordinary user would nor-
mally be prohibited from accessing. Clearly, because this raises security concerns,
the number of setuid programs must be held to an absolute minimum.
The second less-used setting is the setgid bit (octal 2000) which, like the setuid
bit, changes the effective group ID from the real group ID of the real user to that
of the file owner. If the setgid bit is set on a directory, newly created files in the
directory will be given the group ownership of the directory rather the group own-
ership of the file's creator. This is useful in a shared directory when members of a
common group need access to all the files in the directory, regardless of the file
owner's primary group.
The third is called the sticky bit (octal 1000). This is a holdover from ancient
Unix, where it was possible to mark an executable file as “not swappable.” On
files, Linux ignores the sticky bit, but if applied to a directory, it prevents users
from deleting or renaming files unless the user is either the owner of the directory,
the owner of the file, or the superuser. This is often used to control access to a
shared directory, such as /tmp.
Here are some examples of using chmod with symbolic notation to set these spe-
cial permissions. First assigning setuid to a program:
chmod u+s program
Next, assigning setgid to a directory:
chmod g+s dir
Finally, assigning the sticky bit to a directory:
chmod +t dir

98

Reading, Writing, And Executing

When viewing the output from ls, you can determine the special permissions.
Here are some examples. First, a program that is setuid:
-rwsr-xr-x
A directory that has the setgid attribute:
drwxrwsr-x
A directory with the sticky bit set:
drwxrwxrwt

Changing Identities

At various times, we may find it necessary to take on the identity of another user. Often
we want to gain superuser privileges to carry out some administrative task, but it is also
possible to “become” another regular user for such things as testing an account. There are
three ways to take on an alternate identity:

1. Log out and log back in as the alternate user.

2. Use the su command.

3. Use the sudo command.

We will skip the first technique since we know how to do it and it lacks the convenience
of the other two. From within our own shell session, the su command allows you to as-
sume the identity of another user, and either start a new shell session with that user's IDs,
or to issue a single command as that user. The sudo command allows an administrator to
set up a configuration file called /etc/sudoers, and define specific commands that
particular users are permitted to execute under an assumed identity. The choice of which
command to use is largely determined by which Linux distribution you use. Your distri-
bution probably includes both commands, but its configuration will favor either one or
the other. We'll start with su.

su – Run A Shell With Substitute User And Group IDs

The su command is used to start a shell as another user. The command syntax looks like
this:

su [-[l]] [user]

If the “-l” option is included, the resulting shell session is a login shell for the specified
user. This means that the user's environment is loaded and the working directory is

99

9 – Permissions

changed to the user's home directory. This is usually what we want. If the user is not
specified, the superuser is assumed. Notice that (strangely) the “-l” may be abbreviated
“-”, which is how it is most often used. To start a shell for the superuser, we would do
this:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]#

After entering the command, we are prompted for the superuser's password. If it is suc-
cessfully entered, a new shell prompt appears indicating that this shell has superuser priv-
ileges (the trailing “#” rather than a “$”) and the current working directory is now the
home directory for the superuser (normally /root.) Once in the new shell, we can carry
out commands as the superuser. When finished, enter “exit” to return to the previous
shell:

[root@linuxbox ~]# exit
[me@linuxbox ~]$

It is also possible to execute a single command rather than starting a new interactive com-
mand by using su this way:

su -c 'command'

Using this form, a single command line is passed to the new shell for execution. It is im-
portant to enclose the command in quotes, as we do not want expansion to occur in our
shell, but rather in the new shell:

[me@linuxbox ~]$ su -c 'ls -l /root/*'
Password:
-rw------- 1 root root 754 2007-08-11 03:19 /root/anaconda-ks.cfg

/root/Mail:
total 0
[me@linuxbox ~]$

100

Changing Identities

sudo – Execute A Command As Another User

The sudo command is like su in many ways, but has some important additional capabil-
ities. The administrator can configure sudo to allow an ordinary user to execute com-
mands as a different user (usually the superuser) in a very controlled way. In particular, a
user may be restricted to one or more specific commands and no others. Another impor-
tant difference is that the use of sudo does not require access to the superuser's pass-
word. To authenticate using sudo, the user uses his/her own password. Let's say, for ex-
ample, that sudo has been configured to allow us to run a fictitious backup program
called “backup_script”, which requires superuser privileges. With sudo it would be done
like this:

[me@linuxbox ~]$ sudo backup_script
Password:
System Backup Starting...

After entering the command, we are prompted for our password (not the superuser's) and
once the authentication is complete, the specified command is carried out. One important
difference between su and sudo is that sudo does not start a new shell, nor does it load
another user's environment. This means that commands do not need to be quoted any dif-
ferently than they would be without using sudo. Note that this behavior can be overrid-
den by specifying various options. See the sudo man page for details.

To see what privileges are granted by sudo, use the “-l” option to list them:

[me@linuxbox ~]$ sudo -l
User me may run the following commands on this host:
 (ALL) ALL

Ubuntu And sudo

One of the recurrent problems for regular users is how to perform certain tasks
that require superuser privileges. These tasks include installing and updating soft-
ware, editing system configuration files, and accessing devices. In the Windows
world, this is often done by giving users administrative privileges. This allows
users to perform these tasks. However, it also enables programs executed by the

101

9 – Permissions

user to have the same abilities. This is desirable in most cases, but it also permits
malware (malicious software) such as viruses to have free reign of the computer.
In the Unix world, there has always been a larger division between regular users
and administrators, owing to the multiuser heritage of Unix. The approach taken
in Unix is to grant superuser privileges only when needed. To do this, the su and
sudo commands are commonly used.
Up until a few of years ago, most Linux distributions relied on su for this pur-
pose. su didn't require the configuration that sudo required, and having a root
account is traditional in Unix. This introduced a problem. Users were tempted to
operate as root unnecessarily. In fact, some users operated their systems as the
root user exclusively, since it does away with all those annoying “permission de-
nied” messages. This is how you reduce the security of a Linux system to that of a
Windows system. Not a good idea.
When Ubuntu was introduced, its creators took a different tack. By default,
Ubuntu disables logins to the root account (by failing to set a password for the ac-
count), and instead uses sudo to grant superuser privileges. The initial user ac-
count is granted full access to superuser privileges via sudo and may grant simi-
lar powers to subsequent user accounts.

chown – Change File Owner And Group

The chown command is used to change the owner and group owner of a file or directory.
Superuser privileges are required to use this command. The syntax of chown looks like
this:

chown [owner][:[group]] file...

chown can change the file owner and/or the file group owner depending on the first ar-
gument of the command. Here are some examples:

Table 9-7: chown Argument Examples

Argument Results

bob Changes the ownership of the file from its current owner to user
bob.

bob:users Changes the ownership of the file from its current owner to user
bob and changes the file group owner to group users.

102

Changing Identities

:admins Changes the group owner to the group admins. The file owner is
unchanged.

bob: Change the file owner from the current owner to user bob and
changes the group owner to the login group of user bob.

Let's say that we have two users; janet, who has access to superuser privileges and
tony, who does not. User janet wants to copy a file from her home directory to the
home directory of user tony. Since user janet wants tony to be able to edit the file,
janet changes the ownership of the copied file from janet to tony:

[janet@linuxbox ~]$ sudo cp myfile.txt ~tony
Password:
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 root root 8031 2008-03-20 14:30 /home/tony/myfile.txt
[janet@linuxbox ~]$ sudo chown tony: ~tony/myfile.txt
[janet@linuxbox ~]$ sudo ls -l ~tony/myfile.txt
 -rw-r--r-- 1 tony tony 8031 2008-03-20 14:30 /home/tony/myfile.txt

Here we see user janet copy the file from her directory to the home directory of user
tony. Next, janet changes the ownership of the file from root (a result of using
sudo) to tony. Using the trailing colon in the first argument, janet also changed the
group ownership of the file to the login group of tony, which happens to be group
tony.

Notice that after the first use of sudo, janet was not prompted for her password? This
is because sudo, in most configurations, “trusts” you for several minutes until its timer
runs out.

chgrp – Change Group Ownership

In older versions of Unix, the chown command only changed file ownership, not group
ownership. For that purpose, a separate command, chgrp was used. It works much the
same way as chown, except for being more limited.

Exercising Our Privileges

Now that we have learned how this permissions thing works, it's time to show it off. We
are going to demonstrate the solution to a common problem—setting up a     shared direc-
tory. Let's imagine that we have two users named “bill” and “karen.” They both have mu-
sic CD collections and wish to set up a shared directory, where they will each store their

103

9 – Permissions

music files as Ogg Vorbis or MP3. User bill has access to superuser privileges via
sudo.

The first thing that needs to happen is creating a group that will have both bill and
karen as members. Using the graphical user management tool, bill creates a group
called music and adds users bill and karen to it:

Next, bill creates the directory for the music files:

[bill@linuxbox ~]$ sudo mkdir /usr/local/share/Music
Password:

Since bill is manipulating files outside his home directory, superuser privileges are re-
quired. After the directory is created, it has the following ownerships and permissions:

[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxr-xr-x 2 root root 4096 2008-03-21 18:05 /usr/local/share/Music

As we can see, the directory is owned by root and has 755 permissions. To make this
directory sharable, bill needs to change the group ownership and the group permissions
to allow writing:

104

Figure 3: Creating A New Group With GNOME

Exercising Our Privileges

[bill@linuxbox ~]$ sudo chown :music /usr/local/share/Music
[bill@linuxbox ~]$ sudo chmod 775 /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwxr-x 2 root music 4096 2008-03-21 18:05 /usr/local/share/Music

So what does this all mean? It means that we now have a directory,
/usr/local/share/Music that is owned by root and allows read and write ac-
cess to group music. Group music has members bill and karen, thus bill and
karen can create files in directory /usr/local/share/Music. Other users can list
the contents of the directory but cannot create files there.

But we still have a problem. With the current permissions, files and directories created
within the Music directory will have the normal permissions of the users bill and
karen:

[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
-rw-r--r-- 1 bill bill 0 2008-03-24 20:03 test_file

Actually there are two problems. First, the default umask on this system is 0022 which
prevents group members from writing files belonging to other members of the group.
This would not be a problem if the shared directory only contained files, but since this di-
rectory will store music, and music is usually organized in a hierarchy of artists and al-
bums, members of the group will need the ability to create files and directories inside di-
rectories created by other members. We need to change the umask used by bill and
karen to 0002 instead.

Second, each file and directory created by one member will be set to the primary group of
the user rather than the group music. This can be fixed by setting the setgid bit on the
directory:

[bill@linuxbox ~]$ sudo chmod g+s /usr/local/share/Music
[bill@linuxbox ~]$ ls -ld /usr/local/share/Music
drwxrwsr-x 2 root music 4096 2008-03-24 20:03 /usr/local/share/Music

Now we test to see if the new permissions fix the problem. bill sets his umask to
0002, removes the previous test file, and creates a new test file and directory:

[bill@linuxbox ~]$ umask 0002

105

9 – Permissions

[bill@linuxbox ~]$ rm /usr/local/share/Music/test_file
[bill@linuxbox ~]$ > /usr/local/share/Music/test_file
[bill@linuxbox ~]$ mkdir /usr/local/share/Music/test_dir
[bill@linuxbox ~]$ ls -l /usr/local/share/Music
drwxrwsr-x 2 bill music 4096 2008-03-24 20:24 test_dir
-rw-rw-r-- 1 bill music 0 2008-03-24 20:22 test_file
[bill@linuxbox ~]$

Both files and directories are now created with the correct permissions to allow all mem-
bers of the group music to create files and directories inside the Music directory.

The one remaining issue is umask. The necessary setting only lasts until the end of ses-
sion and must be reset. In Chapter 11, we'll look at making the change to umask perma-
nent.

Changing Your Password

The last topic we'll cover in this chapter is setting passwords for yourself (and for other
users if you have access to superuser privileges.) To set or change a password, the
passwd command is used. The command syntax looks like this:

passwd [user]

To change your password, just enter the passwd command. You will be prompted for
your old password and your new password:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:

The passwd command will try to enforce use of “strong” passwords. This means it will
refuse to accept passwords that are too short, too similar to previous passwords, are dic-
tionary words, or are too easily guessed:

[me@linuxbox ~]$ passwd
(current) UNIX password:
New UNIX password:
BAD PASSWORD: is too similar to the old one
New UNIX password:
BAD PASSWORD: it is WAY too short

106

http://en.wikipedia.org/wiki/Malware

10 – Processes

10 – Processes

Modern operating systems are usually multitasking, meaning that they create the illusion
of doing more than one thing at once by rapidly switching from one executing program to
another. The Linux kernel manages this through the use of processes. Processes are how
Linux organizes the different programs waiting for their turn at the CPU.

Sometimes a computer will become sluggish or an application will stop responding. In
this chapter, we will look at some of the tools available at the command line that let us
examine what programs are doing, and how to terminate processes that are misbehaving.

This chapter will introduce the following commands:

● ps – Report a snapshot of current processes

● top – Display tasks

● jobs – List active jobs

● bg – Place a job in the background

● fg – Place a job in the foreground

● kill – Send a signal to a process

● killall – Kill processes by name

● shutdown – Shutdown or reboot the system

How A Process Works

When a system starts up, the kernel initiates a few of its own activities as processes and
launches a program called init. init, in turn, runs a series of shell scripts (located in
/etc) called init scripts, which start all the system services. Many of these services are
implemented as daemon programs, programs that just sit in the background and do their
thing without having any user interface. So even if we are not logged in, the system is at
least a little busy performing routine stuff.

The fact that a program can launch other programs is expressed in the process scheme as
a parent process producing a child process.

108

How A Process Works

The kernel maintains information about each process to help keep things organized. For
example, each process is assigned a number called a process ID or PID. PIDs are as-
signed in ascending order, with init always getting PID 1. The kernel also keeps track
of the memory assigned to each process, as well as the processes' readiness to resume ex-
ecution. Like files, processes also have owners and user IDs, effective user IDs, etc.

Viewing Processes

The most commonly used command to view processes (there are several) is ps. The ps
program has a lot of options, but in it simplest form it is used like this:

[me@linuxbox ~]$ ps
 PID TTY TIME CMD
 5198 pts/1 00:00:00 bash
10129 pts/1 00:00:00 ps

The result in this example lists two processes, process 5198 and process 10129, which are
bash and ps respectively. As we can see, by default, ps doesn't show us very much, just
the processes associated with the current terminal session. To see more, we need to add
some options, but before we do that, let's look at the other fields produced by ps. TTY is
short for “Teletype,” and refers to the controlling terminal for the process. Unix is show-
ing its age here. The TIME field is the amount of CPU time consumed by the process. As
we can see, neither process makes the computer work very hard.

If we add an option, we can get a bigger picture of what the system is doing:

[me@linuxbox ~]$ ps x
 PID TTY STAT TIME COMMAND
 2799 ? Ssl 0:00 /usr/libexec/bonobo-activation-server –ac
 2820 ? Sl 0:01 /usr/libexec/evolution-data-server-1.10 --
15647 ? Ss 0:00 /bin/sh /usr/bin/startkde
15751 ? Ss 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --
15754 ? S 0:00 /usr/bin/dbus-launch --exit-with-session
15755 ? Ss 0:01 /bin/dbus-daemon --fork --print-pid 4 –pr
15774 ? Ss 0:02 /usr/bin/gpg-agent -s –daemon
15793 ? S 0:00 start_kdeinit --new-startup +kcminit_start
15794 ? Ss 0:00 kdeinit Running...
15797 ? S 0:00 dcopserver –nosid

and many more...

109

10 – Processes

Adding the “x” option (note that there is no leading dash) tells ps to show all of our pro-
cesses regardless of what terminal (if any) they are controlled by. The presence of a “?” in
the TTY column indicates no controlling terminal. Using this option, we see a list of ev-
ery process that we own.

Since the system is running a lot of processes, ps produces a long list. It is often helpful
to pipe the output from ps into less for easier viewing. Some option combinations also
produce long lines of output, so maximizing the terminal emulator window may be a
good idea, too.

A new column titled STAT has been added to the output. STAT is short for “state” and re-
veals the current status of the process:

Table 10-1: Process States

State Meaning

R Running. This means that the process is running or ready to run.

S Sleeping. The process is not running; rather, it is waiting for an
event, such as a keystroke or network packet.

D Uninterruptible Sleep. Process is waiting for I/O such as a disk
drive.

T Stopped. Process has been instructed to stop. More on this later.

Z A defunct or “zombie” process. This is a child process that has
terminated, but has not been cleaned up by its parent.

< A high priority process. It's possible to grant more importance to a
process, giving it more time on the CPU. This property of a process
is called niceness. A process with high priority is said to be less nice
because it's taking more of the CPU's time, which leaves less for
everybody else.

N A low priority process. A process with low priority (a “nice”
process) will only get processor time after other processes with
higher priority have been serviced.

The process state may be followed by other characters. These indicate various exotic
process characteristics. See the ps man page for more detail.

Another popular set of options is “aux” (without a leading dash). This gives us even more
information:

110

Viewing Processes

[me@linuxbox ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 2136 644 ? Ss Mar05 0:31 init
root 2 0.0 0.0 0 0 ? S< Mar05 0:00 [kt]
root 3 0.0 0.0 0 0 ? S< Mar05 0:00 [mi]
root 4 0.0 0.0 0 0 ? S< Mar05 0:00 [ks]
root 5 0.0 0.0 0 0 ? S< Mar05 0:06 [wa]
root 6 0.0 0.0 0 0 ? S< Mar05 0:36 [ev]
root 7 0.0 0.0 0 0 ? S< Mar05 0:00 [kh]

and many more...

This set of options displays the processes belonging to every user. Using the options
without the leading dash invokes the command with “BSD style” behavior. The Linux
version of ps can emulate the behavior of the ps program found in several different
Unix implementations. With these options, we get these additional columns:

Table 10-2: BSD Style ps Column Headers

Header Meaning

USER User ID. This is the owner of the process.

%CPU CPU usage in percent.

%MEM Memory usage in percent.

VSZ Virtual memory size.

RSS Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.

START Time when the process started. For values over 24 hours, a date is
used.

Viewing Processes Dynamically With top

While the ps command can reveal a lot about what the machine is doing, it provides only
a snapshot of the machine's state at the moment the ps command is executed. To see a
more dynamic view of the machine's activity, we use the top command:

[me@linuxbox ~]$ top

111

10 – Processes

The top program displays a continuously updating (by default, every 3 seconds) display
of the system processes listed in order of process activity. The name “top” comes from
the fact that the top program is used to see the “top” processes on the system. The top
display consists of two parts: a system summary at the top of the display, followed by a
table of processes sorted by CPU activity:

top - 14:59:20 up 6:30, 2 users, load average: 0.07, 0.02, 0.00
Tasks: 109 total, 1 running, 106 sleeping, 0 stopped, 2 zombie
Cpu(s): 0.7%us, 1.0%sy, 0.0%ni, 98.3%id, 0.0%wa, 0.0%hi, 0.0%si
Mem: 319496k total, 314860k used, 4636k free, 19392k buff
Swap: 875500k total, 149128k used, 726372k free, 114676k cach

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 6244 me 39 19 31752 3124 2188 S 6.3 1.0 16:24.42 trackerd
11071 me 20 0 2304 1092 840 R 1.3 0.3 0:00.14 top
 6180 me 20 0 2700 1100 772 S 0.7 0.3 0:03.66 dbus-dae
 6321 me 20 0 20944 7248 6560 S 0.7 2.3 2:51.38 multiloa
 4955 root 20 0 104m 9668 5776 S 0.3 3.0 2:19.39 Xorg
 1 root 20 0 2976 528 476 S 0.0 0.2 0:03.14 init
 2 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kthreadd
 3 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migratio
 4 root 15 -5 0 0 0 S 0.0 0.0 0:00.72 ksoftirq
 5 root RT -5 0 0 0 S 0.0 0.0 0:00.04 watchdog
 6 root 15 -5 0 0 0 S 0.0 0.0 0:00.42 events/0
 7 root 15 -5 0 0 0 S 0.0 0.0 0:00.06 khelper
 41 root 15 -5 0 0 0 S 0.0 0.0 0:01.08 kblockd/
 67 root 15 -5 0 0 0 S 0.0 0.0 0:00.00 kseriod
 114 root 20 0 0 0 0 S 0.0 0.0 0:01.62 pdflush
 116 root 15 -5 0 0 0 S 0.0 0.0 0:02.44 kswapd0

The system summary contains a lot of good stuff. Here's a rundown:

Table 10-3: top Information Fields

Row Field Meaning

1 top Name of the program.

14:59:20 Current time of day.

up 6:30 This is called uptime. It is the amount of time
since the machine was last booted. In this
example, the system has been up for six and a
half hours.

2 users There are two users logged in.

load average: Load average refers to the number of processes

112

Viewing Processes

that are waiting to run, that is, the number of
processes that are in a runnable state and are
sharing the CPU. Three values are shown, each
for a different period of time. The first is the
average for the last 60 seconds, the next the
previous 5 minutes, and finally the previous 15
minutes. Values under 1.0 indicate that the
machine is not busy.

2 Tasks: This summarizes the number of processes and
their various process states.

3 Cpu(s): This row describes the character of the
activities that the CPU is performing.

0.7%us 0.7% of the CPU is being used for user
processes. This means processes outside of the
kernel itself.

1.0%sy 1.0% of the CPU is being used for system
(kernel) processes.

0.0%ni 0.0% of the CPU is being used by “nice” (low
priority) processes.

98.3%id 98.3% of the CPU is idle.

0.0%wa 0.0% of the CPU is waiting for I/O.

4 Mem: Shows how physical RAM is being used.

5 Swap: Shows how swap space (virtual memory) is
being used.

The top program accepts a number of keyboard commands. The two most interesting are
h, which displays the program's help screen, and q, which quits top.

Both major desktop environments provide graphical applications that display information
similar to top (in much the same way that Task Manager in Windows works), but I find
that top is better than the graphical versions because it is faster and it consumes far
fewer system resources. After all, our system monitor program shouldn't be the source of
the system slowdown that we are trying to track.

Controlling Processes

Now that we can see and monitor processes, let's gain some control over them. For our

113

10 – Processes

experiments, we're going to use a little program called xlogo as our guinea pig. The
xlogo program is a sample program supplied with the X Window System (the underly-
ing engine that makes the graphics on our display go) which simply displays a re-sizable
window containing the X logo. First, we'll get to know our test subject:

[me@linuxbox ~]$ xlogo

After entering the command, a small window containing the logo should appear some-
where on the screen. On some systems, xlogo may print a warning message, but it may
be safely ignored.

Tip: If your system does not include the xlogo program, try using gedit or
kwrite instead.

We can verify that xlogo is running by resizing its window. If the logo is redrawn in the
new size, the program is running.

Notice how our shell prompt has not returned? This is because the shell is waiting for the
program to finish, just like all the other programs we have used so far. If we close the
xlogo window, the prompt returns.

Interrupting A Process

Let's observe what happens when we run xlogo again. First, enter the xlogo command
and verify that the program is running. Next, return to the terminal window and press
Ctrl-c.

[me@linuxbox ~]$ xlogo
[me@linuxbox ~]$

In a terminal, pressing Ctrl-c, interrupts a program. This means that we politely asked
the program to terminate. After we pressed Ctrl-c, the xlogo window closed and the
shell prompt returned.

Many (but not all) command-line programs can be interrupted by using this technique.

Putting A Process In The Background

Let's say we wanted to get the shell prompt back without terminating the xlogo pro-

114

Controlling Processes

gram. We’ll do this by placing the program in the background. Think of the terminal as
having a foreground (with stuff visible on the surface like the shell prompt) and a back-
ground (with hidden stuff behind the surface.) To launch a program so that it is immedi-
ately placed in the background, we follow the command with an- “&” character:

[me@linuxbox ~]$ xlogo &
[1] 28236
[me@linuxbox ~]$

After entering the command, the xlogo window appeared and the shell prompt returned,
but some funny numbers were printed too. This message is part of a shell feature called
job control. With this message, the shell is telling us that we have started job number 1
(“[1]”) and that it has PID 28236. If we run ps, we can see our process:

[me@linuxbox ~]$ ps
 PID TTY TIME CMD
10603 pts/1 00:00:00 bash
28236 pts/1 00:00:00 xlogo
28239 pts/1 00:00:00 ps

The shell's job control facility also gives us a way to list the jobs that have been launched
from our terminal. Using the jobs command, we can see this list:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &

The results show that we have one job, numbered “1”, that it is running, and that the com-
mand was xlogo &.

Returning A Process To The Foreground

A process in the background is immune from keyboard input, including any attempt inter-
rupt it with a Ctrl-c. To return a process to the foreground, use the fg command, this
way:

[me@linuxbox ~]$ jobs
[1]+ Running xlogo &
[me@linuxbox ~]$ fg %1

115

10 – Processes

xlogo

The command fg followed by a percent sign and the job number (called a jobspec) does
the trick. If we only have one background job, the jobspec is optional. To terminate xl-
ogo, press Ctrl-c.

Stopping (Pausing) A Process

Sometimes we'll want to stop a process without terminating it. This is often done to allow
a foreground process to be moved to the background. To stop a foreground process, press
Ctrl-z. Let's try it. At the command prompt, type xlogo, the Enter key, then Ctrl-
z:

[me@linuxbox ~]$ xlogo
[1]+ Stopped xlogo
[me@linuxbox ~]$

After stopping xlogo, we can verify that the program has stopped by attempting to re-
size the xlogo window. We will see that it appears quite dead. We can either restore the
program to the foreground, using the fg command, or move the program to the back-
ground with the bg command:

[me@linuxbox ~]$ bg %1
[1]+ xlogo &
[me@linuxbox ~]$

As with the fg command, the jobspec is optional if there is only one job.

Moving a process from the foreground to the background is handy if we launch a graphi-
cal program from the command, but forget to place it in the background by appending the
trailing “&”.

Why would you want to launch a graphical program from the command line? There are
two reasons. First, the program you wish to run might not be listed on the window man-
ager's menus (such as xlogo). Secondly, by launching a program from the command
line, you might be able to see error messages that would otherwise be invisible if the pro-
gram were launched graphically. Sometimes, a program will fail to start up when
launched from the graphical menu. By launching it from the command line instead, we
may see an error message that will reveal the problem. Also, some graphical programs
have many interesting and useful command line options.

116

Signals

Signals

The kill command is used to “kill” processes. This allows us to terminate programs
that need killing. Here's an example:

[me@linuxbox ~]$ xlogo &
[1] 28401
[me@linuxbox ~]$ kill 28401
[1]+ Terminated xlogo

We first launch xlogo in the background. The shell prints the jobspec and the PID of the
background process. Next, we use the kill command and specify the PID of the process
we want to terminate. We could have also specified the process using a jobspec (for ex-
ample, “%1”) instead of a PID.

While this is all very straightforward, there is more to it than that. The kill command
doesn't exactly “kill” processes, rather it sends them signals. Signals are one of several
ways that the operating system communicates with programs. We have already seen sig-
nals in action with the use of Ctrl-c and Ctrl-z. When the terminal receives one of
these keystrokes, it sends a signal to the program in the foreground. In the case of Ctrl-
c, a signal called INT (Interrupt) is sent; with Ctrl-z, a signal called TSTP (Terminal
Stop). Programs, in turn, “listen” for signals and may act upon them as they are received.
The fact that a program can listen and act upon signals allows a program to do things like
save work in progress when it is sent a termination signal.

Sending Signals To Processes With kill

The kill command is used to send signals to programs. Its most common syntax looks
like this:

kill [-signal] PID...

If no signal is specified on the command line, then the TERM (Terminate) signal is sent by
default. The kill command is most often used to send the following signals:

Table 10-4: Common Signals

Number Name Meaning

1 HUP Hangup. This is a vestige of the good old days
when terminals were attached to remote

117

10 – Processes

computers with phone lines and modems. The
signal is used to indicate to programs that the
controlling terminal has “hung up.” The effect of
this signal can be demonstrated by closing a
terminal session. The foreground program
running on the terminal will be sent the signal and
will terminate.

This signal is also used by many daemon
programs to cause a reinitialization. This means
that when a daemon is sent this signal, it will
restart and re-read its configuration file. The
Apache web server is an example of a daemon
that uses the HUP signal in this way.

2 INT Interrupt. Performs the same function as the
Ctrl-c key sent from the terminal. It will
usually terminate a program.

9 KILL Kill. This signal is special. Whereas programs
may choose to handle signals sent to them in
different ways, including ignoring them all
together, the KILL signal is never actually sent to
the target program. Rather, the kernel
immediately terminates the process. When a
process is terminated in this manner, it is given no
opportunity to “clean up” after itself or save its
work. For this reason, the KILL signal should
only be used as a last resort when other
termination signals fail.

15 TERM Terminate. This is the default signal sent by the
kill command. If a program is still “alive”
enough to receive signals, it will terminate.

18 CONT Continue. This will restore a process after a STOP
signal.

19 STOP Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is
not sent to the target process, and thus it cannot be
ignored.

118

Signals

Let's try out the kill command:

[me@linuxbox ~]$ xlogo &
[1] 13546
[me@linuxbox ~]$ kill -1 13546
[1]+ Hangup xlogo

In this example, we start the xlogo program in the background and then send it a HUP
signal with kill. The xlogo program terminates and the shell indicates that the back-
ground process has received a hangup signal. You may need to press the enter key a cou-
ple of times before you see the message. Note that signals may be specified either by
number or by name, including the name prefixed with the letters “SIG”:

[me@linuxbox ~]$ xlogo &
[1] 13601
[me@linuxbox ~]$ kill -INT 13601
[1]+ Interrupt xlogo
[me@linuxbox ~]$ xlogo &
[1] 13608
[me@linuxbox ~]$ kill -SIGINT 13608
[1]+ Interrupt xlogo

Repeat the example above and try out the other signals. Remember, you can also use job-
specs in place of PIDs.

Processes, like files, have owners, and you must be the owner of a process (or the supe-
ruser) in order to send it signals with kill.

In addition to the list of signals above, which are most often used with kill, there are
other signals frequently used by the system. Here is a list of other common signals:

Table 10-5: Other Common Signals

Number Name Meaning

3 QUIT Quit.

11 SEGV Segmentation Violation. This signal is sent if a
program makes illegal use of memory, that is, it
tried to write somewhere it was not allowed to.

20 TSTP Terminal Stop. This is the signal sent by the
terminal when the Ctrl-z key is pressed. Unlike
the STOP signal, the TSTP signal is received by

119

10 – Processes

the program but the program may choose to
ignore it.

28 WINCH Window Change. This is a signal sent by the
system when a window changes size. Some
programs , like top and less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

For the curious, a complete list of signals can be seen with the following command:

[me@linuxbox ~]$ kill -l

Sending Signals To Multiple Processes With killall

It's also possible to send signals to multiple processes matching a specified program or
username by using the killall command. Here is the syntax:

killall [-u user] [-signal] name...

To demonstrate, we will start a couple of instances of the xlogo program and then ter-
minate them:

[me@linuxbox ~]$ xlogo &
[1] 18801
[me@linuxbox ~]$ xlogo &
[2] 18802
[me@linuxbox ~]$ killall xlogo
[1]- Terminated xlogo
[2]+ Terminated xlogo

Remember, as with kill, you must have superuser privileges to send signals to pro-
cesses that do not belong to you.

More Process Related Commands

Since monitoring processes is an important system administration task, there are a lot of
commands for it. Here are some to play with:

120

More Process Related Commands

Table 10-6: Other Process Related Commands

Command Description

pstree Outputs a process list arranged in a tree-like pattern showing the
parent/child relationships between processes.

vmstat Outputs a snapshot of system resource usage including, memory,
swap and disk I/O. To see a continuous display, follow the
command with a time delay (in seconds) for updates. For example:
vmstat 5. Terminate the output with Ctrl-c.

xload A graphical program that draws a graph showing system load over
time.

tload Similar to the xload program, but draws the graph in the terminal.
Terminate the output with Ctrl-c.

Summing Up

Most modern systems feature a mechanism for managing multiple processes. Linux pro-
vides a rich set of tools for this purpose. Given that Linux is the world's most deployed
server operating system, this makes a lot of sense. However, unlike some other systems,
Linux relies primarily on command line tools for process management. Though there are
graphical process tools for Linux, the command line tools are greatly preferred because of
their speed and light footprint. While the GUI tools may look pretty, they often create a
lot of system load themselves, which somewhat defeats the purpose.

121

Part 2 – Configuration And The Environment

Part 2 – Configuration And The
Environment

123

11 – The Environment

11 – The Environment

As we discussed earlier, the shell maintains a body of information during our shell ses-
sion called the environment. Data stored in the environment is used by programs to deter-
mine facts about our configuration. While most programs use configuration files to store
program settings, some programs will also look for values stored in the environment to
adjust their behavior. Knowing this, we can use the environment to customize our shell
experience.

In this chapter, we will work with the following commands:

● printenv – Print part or all of the environment

● set – Set shell options

● export – Export environment to subsequently executed programs

● alias – Create an alias for a command

What Is Stored In The Environment?

The shell stores two basic types of data in the environment, though, with bash, the
types are largely indistinguishable. They are environment variables and shell variables.
Shell variables are bits of data placed there by bash, and environment variables are basi-
cally everything else. In addition to variables, the shell also stores some programmatic
data, namely aliases and shell functions. We covered aliases in Chapter 5, and shell func-
tions (which are related to shell scripting) will be covered in Part 4.

Examining The Environment

To see what is stored in the environment, we can use either the set builtin in bash or
the printenv program. The set command will show both the shell and environment
variables, while printenv will only display the latter. Since the list of environment
contents will be fairly long, it is best to pipe the output of either command into less:

[me@linuxbox ~]$ printenv | less

124

What Is Stored In The Environment?

Doing so, we should get something that looks like this:

KDE_MULTIHEAD=false
SSH_AGENT_PID=6666
HOSTNAME=linuxbox
GPG_AGENT_INFO=/tmp/gpg-PdOt7g/S.gpg-agent:6689:1
SHELL=/bin/bash
TERM=xterm
XDG_MENU_PREFIX=kde-
HISTSIZE=1000
XDG_SESSION_COOKIE=6d7b05c65846c3eaf3101b0046bd2b00-
1208521990.996705-1177056199
GTK2_RC_FILES=/etc/gtk-2.0/gtkrc:/home/me/.gtkrc-
2.0:/home/me/.kde/share/config/gtkrc-2.0
GTK_RC_FILES=/etc/gtk/gtkrc:/home/me/.gtkrc:/home/me/.kde/share/confi
g/gtkrc
GS_LIB=/home/me/.fonts
WINDOWID=29360136
QTDIR=/usr/lib/qt-3.3
QTINC=/usr/lib/qt-3.3/include
KDE_FULL_SESSION=true
USER=me
LS_COLORS=no=00:fi=00:di=00;34:ln=00;36:pi=40;33:so=00;35:bd=40;33;01
:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=00;32:*.cmd=00;32:*.exe
:

What we see is a list of environment variables and their values. For example, we see a
variable called USER, which contains the value “me”. The printenv command can
also list the value of a specific variable:

[me@linuxbox ~]$ printenv USER
me

The set command, when used without options or arguments, will display both the shell
and environment variables, as well as any defined shell functions. Unlike printenv, its
output is courteously sorted in alphabetical order:

[me@linuxbox ~]$ set | less

It is also possible to view the contents of a variable using the echo command, like this:

125

11 – The Environment

[me@linuxbox ~]$ echo $HOME
/home/me

One element of the environment that neither set nor printenv displays is aliases. To
see them, enter the alias command without arguments:

[me@linuxbox ~]$ alias
alias l.='ls -d .* --color=tty'
alias ll='ls -l --color=tty'
alias ls='ls --color=tty'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-
dot --show-tilde'

Some Interesting Variables

The environment contains quite a few variables, and though your environment may differ
from the one presented here, you will likely see the following variables in your environ-
ment:

Table 11-1: Environment Variables

Variable Contents

DISPLAY The name of your display if you are running a graphical
environment. Usually this is “:0”, meaning the first display
generated by the X server.

EDITOR The name of the program to be used for text editing.

SHELL The name of your shell program.

HOME The pathname of your home directory.

LANG Defines the character set and collation order of your language.

OLD_PWD The previous working directory.

PAGER The name of the program to be used for paging output. This is often
set to /usr/bin/less.

PATH A colon-separated list of directories that are searched when you
enter the name of a executable program.

PS1 Prompt String 1. This defines the contents of your shell prompt. As
we will later see, this can be extensively customized.

126

What Is Stored In The Environment?

PWD The current working directory.

TERM The name of your terminal type. Unix-like systems support many
terminal protocols; this variable sets the protocol to be used with
your terminal emulator.

TZ Specifies your timezone. Most Unix-like systems maintain the
computer’s internal clock in Coordinated Universal Time (UTC)
and then displays the local time by applying an offset specified by
this variable.

USER Your username.

Don't worry if some of these values are missing. They vary by distribution.

How Is The Environment Established?

When we log on to the system, the bash program starts, and reads a series of configura-
tion scripts called startup files, which define the default environment shared by all users.
This is followed by more startup files in our home directory that define our personal envi-
ronment. The exact sequence depends on the type of shell session being started. There are
two kinds: a login shell session and a non-login shell session.

A login shell session is one in which we are prompted for our username and password;
when we start a virtual console session, for example. A non-login shell session typically
occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files as shown in Table 11-2:

Table 11-2: Startup Files For Login Shell Sessions

File Contents

/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user's personal startup file. Can be used to extend or
override settings in the global configuration script.

~/.bash_login If ~/.bash_profile is not found, bash attempts to
read this script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login
is found, bash attempts to read this file. This is the
default in Debian-based distributions, such as Ubuntu.

Non-login shell sessions read the following startup files:

127

11 – The Environment

Table 11-3: Startup Files For Non-Login Shell Sessions

File Contents

/etc/bash.bashrc A global configuration script that applies to all users.

~/.bashrc A user's personal startup file. Can be used to extend or
override settings in the global configuration script.

In addition to reading the startup files above, non-login shells also inherit the environ-
ment from their parent process, usually a login shell.

Take a look at your system and see which of these startup files you have. Remember—   
since most of the filenames listed above start with a period (meaning that they are hid-
den), you will need to use the “-a” option when using ls.

The ~/.bashrc file is probably the most important startup file from the ordinary user’s
point of view, since it is almost always read. Non-login shells read it by default and most
startup files for login shells are written in such a way as to read the ~/.bashrc file as
well.

What's In A Startup File?

If we take a look inside a typical .bash_profile (taken from a CentOS 4 system), it
looks something like this:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
export PATH

Lines that begin with a “#” are comments and are not read by the shell. These are there
for human readability. The first interesting thing occurs on the fourth line, with the fol-
lowing code:

if [-f ~/.bashrc]; then

128

How Is The Environment Established?

 . ~/.bashrc
fi

This is called an if compound command, which we will cover fully when we get to shell
scripting in Part 4, but for now we will translate:

If the file "~/.bashrc" exists, then
read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of .bashrc. The
next thing in our startup file has to do with the PATH variable.

Ever wonder how the shell knows where to find commands when we enter them on the
command line? For example, when we enter ls, the shell does not search the entire com-
puter to find /bin/ls (the full pathname of the ls command), rather, it searches a list
of directories that are contained in the PATH variable.

The PATH variable is often (but not always, depending on the distribution) set by the
/etc/profile startup file and with this code:

PATH=$PATH:$HOME/bin

PATH is modified to add the directory $HOME/bin to the end of the list. This is an ex-
ample of parameter expansion, which we touched on in Chapter 7. To demonstrate how
this works, try the following:

[me@linuxbox ~]$ foo="This is some "
[me@linuxbox ~]$ echo $foo
This is some
[me@linuxbox ~]$ foo=$foo"text."
[me@linuxbox ~]$ echo $foo
This is some text.

Using this technique, we can append text to the end of a variable's contents.

By adding the string $HOME/bin to the end of the PATH variable's contents, the direc-
tory $HOME/bin is added to the list of directories searched when a command is entered.
This means that when we want to create a directory within our home directory for storing
our own private programs, the shell is ready to accommodate us. All we have to do is call

129

11 – The Environment

it bin, and we’re ready to go.

Note: Many distributions provide this PATH setting by default. Some Debian based
distributions, such as Ubuntu, test for the existence of the ~/bin directory at lo-
gin, and dynamically add it to the PATH variable if the directory is found.

Lastly, we have:

export PATH

The export command tells the shell to make the contents of PATH available to child
processes of this shell.

Modifying The Environment

Since we know where the startup files are and what they contain, we can modify them to
customize our environment.

Which Files Should We Modify?

As a general rule, to add directories to your PATH, or define additional environment vari-
ables, place those changes in .bash_profile (or equivalent, according to your distri-
bution. For example, Ubuntu uses .profile.) For everything else, place the changes in
.bashrc. Unless you are the system administrator and need to change the defaults for
all users of the system, restrict your modifications to the files in your home directory. It is
certainly possible to change the files in /etc such as profile, and in many cases it
would be sensible to do so, but for now, let's play it safe.

Text Editors

To edit (i.e., modify) the shell's startup files, as well as most of the other configuration
files on the system, we use a program called a text editor. A text editor is a program that
is, in some ways, like a word processor in that it allows you to edit the words on the
screen with a moving cursor. It differs from a word processor by only supporting pure
text, and often contains features designed for writing programs. Text editors are the cen-
tral tool used by software developers to write code, and by system administrators to man-
age the configuration files that control the system.

There are a lot of different text editors available for Linux; your system probably has sev-
eral installed. Why so many different ones? Probably because programmers like writing

130

11 – The Environment

Now that we have a backup file, we'll start the editor:

[me@linuxbox ~]$ nano .bashrc

Once nano starts, we’ll get a screen like this:

 GNU nano 2.0.3 File: .bashrc

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions

 [Read 8 lines]
^G Get Help^O WriteOut^R Read Fil^Y Prev Pag^K Cut Text^C Cur Pos
^X Exit ^J Justify ^W Where Is^V Next Pag^U UnCut Te^T To Spell

Note: If your system does not have nano installed, you may use a graphical editor
instead.

The screen consists of a header at the top, the text of the file being edited in the middle
and a menu of commands at the bottom. Since nano was designed to replace the text edi-
tor supplied with an email client, it is rather short on editing features.

The first command you should learn in any text editor is how to exit the program. In the
case of nano, you type Ctrl-x to exit. This is indicated in the menu at the bottom of
the screen. The notation “^X” means Ctrl-x. This is a common notation for control
characters used by many programs.

The second command we need to know is how to save our work. With nano it's Ctrl-

132

Modifying The Environment

o. With this knowledge under our belts, we're ready to do some editing. Using the down
arrow key and/or the PageDown key, move the cursor to the end of the file, then add the
following lines to the .bashrc file:

umask 0002
export HISTCONTROL=ignoredups
export HISTSIZE=1000
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Note: Your distribution may already include some of these, but duplicates won't
hurt anything.

Here is the meaning of our additions:

Table 11-4: Additions to our .bashrc

Line Meaning

umask 0002 Sets the umask to solve the
problem with shared directories
we discussed in Chapter 9.

export HISTCONTROL=ignoredups Causes the shell's history
recording feature to ignore a
command if the same command
was just recorded.

export HISTSIZE=1000 Increases the size of the command
history from the default of 500
lines to 1000 lines.

alias l.='ls -d .* --color=auto' Creates a new command called
“l.” which displays all directory
entries that begin with a dot.

alias ll='ls -l --color=auto' Creates a new command called
“ll” which displays a long
format directory listing.

As we can see, many of our additions are not intuitively obvious, so it would be a good
idea to add some comments to our .bashrc file to help explain things to the humans.

133

11 – The Environment

Using the editor, change our additions to look like this:

Change umask to make directory sharing easier
umask 0002

Ignore duplicates in command history and increase
history size to 1000 lines
export HISTCONTROL=ignoredups
export HISTSIZE=1000

Add some helpful aliases
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'

Ah, much better! With our changes complete, press Ctrl-o to save our modified
.bashrc file, and Ctrl-x to exit nano.

Why Comments Are Important

Whenever you modify configuration files it's a good idea to add some comments
to document your changes. Sure, you will remember what you changed tomorrow,
but what about six months from now? Do yourself a favor and add some com-
ments. While you're at it, it’s not a bad idea to keep a log of what changes you
make.
Shell scripts and bash startup files use a “#” symbol to begin a comment. Other
configuration files may use other symbols. Most configuration files will have
comments. Use them as a guide.
You will often see lines in configuration files that are commented out to prevent
them from being used by the affected program. This is done to give the reader
suggestions for possible configuration choices or examples of correct configura-
tion syntax. For example, the .bashrc file of Ubuntu 8.04 contains these lines:
some more ls aliases
#alias ll='ls -l'
#alias la='ls -A'
#alias l='ls -CF'
The last three lines are valid alias definitions that have been commented out. If
you remove the leading “#” symbols from these three lines, a technique called un-
commenting, you will activate the aliases. Conversely, if you add a “#” symbol to
the beginning of a line, you can deactivate a configuration line while preserving
the information it contains.

134

Modifying The Environment

Activating Our Changes

The changes we have made to our .bashrc will not take affect until we close our termi-
nal session and start a new one, since the .bashrc file is only read at the beginning of a
session. However, we can force bash to re-read the modified .bashrc file with the fol-
lowing command:

[me@linuxbox ~]$ source .bashrc

After doing this, we should be able to see the effect of our changes. Try out one of the
new aliases:

[me@linuxbox ~]$ ll

Summing Up

In this chapter we learned an essential skill—editing configuration files with a text edi    -
tor. Moving forward, as we read man pages for commands, take note of the environment
variables that commands support. There may be a gem or two. In later chapters, we will
learn about shell functions, a powerful feature that you can also include in the bash
startup files to add to your arsenal of custom commands.

Further Reading

● The INVOCATION section of the bash man page covers the bash startup files
in gory detail.

135

12 – A Gentle Introduction To vi

12 – A Gentle Introduction To vi

There is an old joke about a visitor to New York City asking a passerby for directions to
the city's famous classical music venue:

Visitor: Excuse me, how do I get to Carnegie Hall?

Passerby: Practice, practice, practice!

Learning the Linux command line, like becoming an accomplished pianist, is not some-
thing that we pick up in an afternoon. It takes years of practice. In this chapter, we will
introduce the vi (pronounced “vee eye”) text editor, one of the core programs in the
Unix tradition. vi is somewhat notorious for its difficult user interface, but when we see
a master sit down at the keyboard and begin to “play,” we will indeed be witness to some
great art. We won't become masters in this chapter, but when we are done, we will know
how to play “chopsticks” in vi.

Why We Should Learn vi

In this modern age of graphical editors and easy-to-use text-based editors such as nano,
why should we learn vi? There are three good reasons:

● vi is always available. This can be a lifesaver if we have a system with no graph-
ical interface, such as a remote server or a local system with a broken X configu-
ration. nano, while increasingly popular is still not universal. POSIX, a standard
for program compatibility on Unix systems, requires that vi be present.

● vi is lightweight and fast. For many tasks, it's easier to bring up vi than it is to
find the graphical text editor in the menus and wait for its multiple megabytes to
load. In addition, vi is designed for typing speed. As we shall see, a skilled vi
user never has to lift his or her fingers from the keyboard while editing.

● We don't want other Linux and Unix users to think we are sissies.

Okay, maybe two good reasons.

136

A Little Background

A Little Background

The first version of

12 – A Gentle Introduction To vi

~ type :help cp-default<Enter> for info on this
~
~
~

Just as we did with nano earlier, the first thing to learn is how to exit. To exit, we enter
the following command (note that the colon character is part of the command):

:q

The shell prompt should return. If, for some reason, vi will not quit (usually because we
made a change to a file that has not yet been saved), we can tell vi that we really mean it
by adding an exclamation point to the command:

:q!

Tip: If you get “lost” in vi, try pressing the Esc key twice to find your way again.

Compatibility Mode

In the example startup screen above (taken from Ubuntu 8.04), we see the text
“Running in Vi compatible mode.” This means that vim will run in a mode that is
closer to the normal behavior of vi rather than the enhanced behavior of vim.
For purposes of this chapter, we will want to run vim with its enhanced behavior.
To do this, you have a few options:
Try running vim instead of vi.
If that works, consider adding alias vi='vim' to your .bashrc file.
Alternatively, use this command to add a line to your vim configuration file:
echo "set nocp" >> ~/.vimrc
Different Linux distributions package vim in different ways. Some distributions
install a minimal version of vim by default that only supports a limited set of
vim features. While preforming the lessons that follow, you may encounter miss-
ing features. If this is the case, install the full version of vim.

138

Editing Modes

Editing Modes

Let's start up vi again, this time passing to it the name of a nonexistent file. This is how
we can create a new file with vi:

[me@linuxbox ~]$ rm -f foo.txt
[me@linuxbox ~]$ vi foo.txt

If all goes well, we should get a screen like this:

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"foo.txt" [New File]

The leading tilde characters (”~”) indicate that no text exists on that line. This shows that
we have an empty file. Do not type anything yet!

The second most important thing to learn about vi (after learning how to exit) is that vi
is a modal editor. When vi starts up, it begins in command mode. In this mode, almost
every key is a command, so if we were to start typing, vi would basically go crazy and
make a big mess.

139

12 – A Gentle Introduction To vi

Entering Insert Mode

In order to add some text to our file, we must first enter insert mode. To do this, we press
the “i” key. Afterward, we should see the following at the bottom of the screen if vim is
running in its usual enhanced mode (this will not appear in vi compatible mode):

-- INSERT --

Now we can enter some text. Try this:

The quick brown fox jumped over the lazy dog.

To exit insert mode and return to command mode, press the Esc key.

Saving Our Work

To save the change we just made to our file, we must enter an ex command while in com-
mand mode. This is easily done by pressing the “:” key. After doing this, a colon charac-
ter should appear at the bottom of the screen:

:

To write our modified file, we follow the colon with a “w” then Enter:

:w

The file will be written to the hard drive and we should get a confirmation message at the
bottom of the screen, like this:

"foo.txt" [New] 1L, 46C written

Tip: If you read the vim documentation, you will notice that (confusingly) com

Editing Modes

Beware.

Moving The Cursor Around

While in command mode, vi offers a large number of movement commands, some of
which it shares with less. Here is a subset:

Table 12-1: Cursor Movement Keys

Key Moves The Cursor

l or Right Arrow Right one character.

h or Left Arrow Left one character.

j or Down Arrow Down one line.

k or Up Arrow Up one line.

0 (zero) To the beginning of the current line.

^ To the first non-whitespace character on the current
line.

$ To the end of the current line.

w To the beginning of the next word or punctuation
character.

W To the beginning of the next word, ignoring
punctuation characters.

b To the beginning of the previous word or punctuation
character.

B To the beginning of the previous word, ignoring
punctuation characters.

Ctrl-f or Page Down Down one page.

Ctrl-b or Page Up Up one page.

numberG To line number. For example, 1G moves to the first
line of the file.

G To the last line of the file.

Why are the h, j, k, and l keys used for cursor movement? Because when vi was origi-

141

12 – A Gentle Introduction To vi

nally written, not all video terminals had arrow keys, and skilled typists could use regular
keyboard keys to move the cursor without ever having to lift their fingers from the key-
board.

Many commands in vi can be prefixed with a number, as with the “G” command listed
above. By prefixing a command with a number, we may specify the number of times a
command is to be carried out. For example, the command “5j” causes vi to move the
cursor down five lines.

Basic Editing

Most editing consists of a few basic operations such as inserting text, deleting text, and
moving text around by cutting and pasting. vi, of course, supports all of these operations
in its own unique way. vi also provides a limited form of undo. If we press the “u” key
while in command mode, vi will undo the last change that you made. This will come in
handy as we try out some of the basic editing commands.

Appending Text

vi has several different ways of entering insert mode. We have already used the i com-
mand to insert text.

Let's go back to our foo.txt file for a moment:

The quick brown fox jumped over the lazy dog.

If we wanted to add some text to the end of this sentence, we would discover that the i
command will not do it, since we can't move the cursor beyond the end of the line. vi
provides a command to append text, the sensibly named “a” command. If we move the
cursor to the end of the line and type “a”, the cursor will move past the end of the line
and vi will enter insert mode. This will allow us to add some more text:

The quick brown fox jumped over the lazy dog. It was cool.

Remember to press the Esc key to exit insert mode.

Since we will almost always want to append text to the end of a line, vi offers a shortcut
to move to the end of the current line and start appending. It's the “A” command. Let's try
it and add some more lines to our file.

First, we'll move the cursor to the beginning of the line using the “0” (zero) command.

142

Basic Editing

Now we type “A” and add the following lines of text:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Again, press the Esc key to exit insert mode.

As we can see, the “A” command is more useful as it moves the cursor to the end of the
line before starting insert mode.

Opening A Line

Another way we can insert text is by “opening” a line. This inserts a blank line between
two existing lines and enters insert mode. This has two variants:

Table 12-2: Line Opening Keys

Command Opens

o The line below the current line.

O The line above the current line.

We can demonstrate this as follows: place the cursor on “Line 3” then press the o key.

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3

Line 4
Line 5

A new line was opened below the third line and we entered insert mode. Exit insert mode
by pressing the Esc key. Press the u key to undo our change.

Press the O key to open the line above the cursor:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2

143

12 – A Gentle Introduction To vi

Line 3
Line 4
Line 5

Exit insert mode by pressing the Esc key and undo our change by pressing u.

Deleting Text

As we might expect, vi offers a variety of ways to delete text, all of which contain one
of two keystrokes. First, the x key will delete a character at the cursor location. x may be
preceded by a number specifying how many characters are to be deleted. The d key is
more general purpose. Like x, it may be preceded by a number specifying the number of
times the deletion is to be performed. In addition, d is always followed by a movement
command that controls the size of the deletion. Here are some examples:

Table 12-3: Text Deletion Commands

Command Deletes

x The current character.

3x The current character and the next two characters.

dd The current line.

5dd The current line and the next four lines.

dW From the current cursor position to the beginning of
the next word.

d$ From the current cursor location to the end of the
current line.

d0 From the current cursor location to the beginning of
the line.

d^ From the current cursor location to the first non-
whitespace character in the line.

dG From the current line to the end of the file.

d20G From the current line to the twentieth line of the file.

Place the cursor on the word “It” on the first line of our text. Press the x key repeatedly
until the rest of the sentence is deleted. Next, press the u key repeatedly until the deletion

144

Basic Editing

is undone.

Note: Real vi only supports a single level of undo. vim supports multiple levels.

Let's try the deletion again, this time using the d command. Again, move the cursor to the
word “It” and press dW to delete the word:

The quick brown fox jumped over the lazy dog. was cool.
Line 2
Line 3
Line 4
Line 5

Press d$ to delete from the cursor position to the end of the line:

The quick brown fox jumped over the lazy dog.
Line 2
Line 3
Line 4
Line 5

Press dG to delete from the current line to the end of the file:

~
~
~
~
~

Press u three times to undo the deletion.

Cutting, Copying, And Pasting Text

The d command not only deletes text, it also “cuts” text. Each time we use the d com-
mand the deletion is copied into a paste buffer (think clipboard) that we can later recall
with the p command to paste the contents of the buffer after the cursor or the P command
to paste the contents before the cursor.

The y command is used to “yank” (copy) text in much the same way the d command is

145

12 – A Gentle Introduction To vi

used to cut text. Here are some examples combining the y command with various move-
ment commands:

Table13- 4: Yanking Commands

Command Copies

yy The current line.

5yy The current line and the next four lines.

yW From the current cursor position to the beginning of
the next word.

y$ From the current cursor location to the end of the
current line.

y0 From the current cursor location to the beginning of
the line.

y^ From the current cursor location to the first non-
whitespace character in the line.

yG From the current line to the end of the file.

y20G From the current line to the twentieth line of the file.

Let's try some copy and paste. Place the cursor on the first line of the text and type yy to
copy the current line. Next, move the cursor to the last line (G) and type p to paste the
line below the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5
The quick brown fox jumped over the lazy dog. It was cool.

Just as before, the u command will undo our change. With the cursor still positioned on
the last line of the file, type P to paste the text above the current line:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4

146

Basic Editing

The quick brown fox jumped over the lazy dog. It was cool.
Line 5

Try out some of the other y commands in the table above and get to know the behavior of
both the p and P commands. When you are done, return the file to its original state.

Joining Lines

vi is rather strict about its idea of a line. Normally, it is not possible to move the cursor
to the end of a line and delete the end-of-line character to join one line with the one be-
low it. Because of this, vi provides a specific command, J (not to be confused with j,
which is for cursor movement) to join lines together.

If we place the cursor on line 3 and type the J command, here's what happens:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3 Line 4
Line 5

Search-And-Replace

vi has the ability to move the cursor to locations based on searches. It can do this on ei-
ther a single line or over an entire file. It can also perform text replacements with or with-
out confirmation from the user.

Searching Within A Line

The f command searches a line and moves the cursor to the next instance of a specified
character. For example, the command fa would move the cursor to the next occurrence
of the character “a” within the current line. After performing a character search within a
line, the search may be repeated by typing a semicolon.

Searching The Entire File

To move the cursor to the next occurrence of a word or phrase, the / command is used.
This works the same way as we learned earlier in the less program. When you type the
/ command a “/” will appear at the bottom of the screen. Next, type the word or phrase to
be searched for, followed by the Enter key. The cursor will move to the next location
containing the search string. A search may be repeated using the previous search string

147

12 – A Gentle Introduction To vi

with the n command. Here's an example:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Place the cursor on the first line of the file. Type:

 /Line

followed by the Enter key. The cursor will move to line 2. Next, type n and the cursor
will move to line 3. Repeating the n command will move the cursor down the file until it
runs out of matches. While we have so far only used words and phrases for our search
patterns, vi allows the use of regular expressions, a powerful method of expressing com-
plex text patterns. We will cover regular expressions in some detail in a later chapter.

Global Search-And-Replace

vi uses an ex command to perform search-and-replace operations (called “substitution”
in vi) over a range of lines or the entire file. To change the word “Line” to “line” for the
entire file, we would enter the following command:

:%s/Line/line/g

Let's break this command down into separate items and see what each one does:

Table12- 5:An example of global search-and-replace syntax

Item Meaning

: The colon character starts an ex command.

% Specifies the range of lines for the operation. % is a shortcut
meaning from the first line to the last line. Alternately, the
range could have been specified 1,5 (since our file is five
lines long), or 1,$ which means “from line 1 to the last line in
the file.” If the range of lines is omitted, the operation is only
performed on the current line.

148

Search-And-Replace

s Specifies the operation. In this case, substitution (search-and-
replace).

/Line/line/ The search pattern and the replacement text.

g This means “global” in the sense that the search-and-replace is
performed on every instance of the search string in the line. If
omitted, only the first instance of the search string on each line
is replaced.

After executing our search-and-replace command our file looks like this:

The quick brown fox jumped over the lazy dog. It was cool.
line 2
line 3
line 4
line 5

We can also specify a substitution command with user confirmation. This is done by
adding a “c” to the end of the command. For example:

:%s/line/Line/gc

This command will change our file back to its previous form; however, before each sub-
stitution, vi stops and asks us to confirm the substitution with this message:

replace with Line (y/n/a/q/l/^E/^Y)?

Each of the characters within the parentheses is a possible choice as follows:

Table 12-6: Replace Confirmation Keys

Key Action

y Perform the substitution.

n Skip this instance of the pattern.

a Perform the substitution on this and all subsequent instances
of the pattern.

149

12 – A Gentle Introduction To vi

q or Esc Quit substituting.

l Perform this substitution and then quit. Short for “last.”

Ctrl-e, Ctrl-y Scroll down and scroll up, respectively. Useful for viewing
the context of the proposed substitution.

If you type y, the substitution will be performed, n will cause vi to skip this instance and
move on to the next one.

Editing Multiple Files

It's often useful to edit more than one file at a time. You might need to make changes to
multiple files or you may need to copy content from one file into another. With vi we
can open multiple files for editing by specifying them on the command line:

vi file1 file2 file3...

Let's exit our existing vi session and create a new file for editing. Type :wq to exit vi,
saving our modified text. Next, we'll create an additional file in our home directory that
we can play with. We'll create the file by capturing some output from the ls command:

[me@linuxbox ~]$ ls -l /usr/bin > ls-output.txt

Let's edit our old file and our new one with vi:

[me@linuxbox ~]$ vi foo.txt ls-output.txt

vi will start up and we will see the first file on the screen:

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

150

Editing Multiple Files

Switching Between Files

To switch from one file to the next, use this ex command:

:n

To move back to the previous file use:

:N

While we can move from one file to another, vi enforces a policy that prevents us from
switching files if the current file has unsaved changes. To force vi to switch files and
abandon your changes, add an exclamation point (!) to the command.

In addition to the switching method described above, vim (and some versions of vi) also
provide some ex commands that make multiple files easier to manage. We can view a list
of files being edited with the :buffers command. Doing so will display a list of the
files at the bottom of the display:

:buffers
 1 %a "foo.txt" line 1
 2 "ls-output.txt" line 0
Press ENTER or type command to continue

To switch to another buffer (file), type :buffer followed by the number of the buffer
you wish to edit. For example, to switch from buffer 1 which contains the file foo.txt
to buffer 2 containing the file ls-output.txt we would type this:

:buffer 2

and our screen now displays the second file.

Opening Additional Files For Editing

It's also possible to add files to our current editing session. The ex command :e (short for
“edit”) followed by a filename will open an additional file. Let's end our current editing
session and return to the command line.

151

12 – A Gentle Introduction To vi

Start vi again with just one file:

[me@linuxbox ~]$ vi foo.txt

To add our second file, enter:

:e ls-output.txt

And it should appear on the screen. The first file is still present as we can verify:

:buffers
 1 # "foo.txt" line 1
 2 %a "ls-output.txt" line 0
Press ENTER or type command to continue

Note: You cannot switch to files loaded with the :e command using either the :n
or :N command. To switch files, use the :buffer command followed by the buf-
fer number.

Copying Content From One File Into Another

Often while editing multiple files, we will want to copy a portion of one file into another
file that we are editing. This is easily done using the usual yank and paste commands we
used earlier. We can demonstrate as follows. First, using our two files, switch to buffer 1
(foo.txt) by entering:

:buffer 1

which should give us this:

152

Editing Multiple Files

The quick brown fox jumped over the lazy dog. It was cool.
Line 2
Line 3
Line 4
Line 5

Next, move the cursor to the first line, and type yy to yank (copy) the line.

Switch to the second buffer by entering:

:buffer 2

The screen will now contain some file listings like this (only a portion is shown here):

total 343700
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Move the cursor to the first line and paste the line we copied from the preceding file by
typing the p command:

total 343700
The quick brown fox jumped over the lazy dog. It was cool.
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Inserting An Entire File Into Another

It's also possible to insert an entire file into one that we are editing. To see this in action,
let's end our vi session and start a new one with just a single file:

153

12 – A Gentle Introduction To vi

[me@linuxbox ~]$ vi ls-output.txt

We will see our file listing again:

total 343700
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
-rwxr-xr-x 1 root root 111276 2008-01-31 13:36 a2p
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a52dec
-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aafire
-rwxr-xr-x 1 root root 7292 2007-05-04 17:43 aainfo

Move the cursor to the third line, then enter the following ex command:

:r foo.txt

The :r command (short for “read”) inserts the specified file before the cursor position.
Our screen should now look like this:

total 343700
-rwxr-xr-x 1 root root 31316 2007-12-05 08:58 [
-rwxr-xr-x 1 root root 8240 2007-12-09 13:39 411toppm
The quick brown fox jumped over the lazy dog. It was cool.
ipn

-rwxr-xr-x 1 root root 111276 2008-01-31 13:36ugfo
-rwxr-xr-x 1 root root 25368 2006-10-06 20:16 a55Y00

-rwxr-xr-x 1 root root 11532 2007-05-04 17:43 aau>y°

Saving Our Work

file and exit.

The :w command may also specify an optional filename. This acts like “Save As...” For
example, if we were editing foo.txt and wanted to save an alternate version called
foo1.txt, we would enter the following:

:w foo1.txt

Note: While the command above saves the file under a new name, it does not
change the name of the file you are editing. As you continue to edit, you will still
be editing foo.txt, not foo1.txt.

Summing Up

With this basic set of skills we can now perform most of the text editing needed to main-
tain a typical Linux system. Learning to use vim on a regular basis will pay off in the
long run. Since vi-style editors are so deeply embedded in Unix culture, we will see many
other programs that have been influenced by its design. less is a good example of this
influence.

Further Reading

Even with all that we have covered in this chapter, we have barely scratched the surface
of what vi and vim can do. Here are a couple of on-line resources you can use to con-
tinue your journey towards vi mastery:

● Learning The vi Editor – A Wikibook from Wikipedia that offers a concise guide
to vi and several of its work-a-likes including vim. It's available at:
http://en.wikibooks.org/wiki/Vi

● The Vim Book - The vim project has a 570-page book that covers (almost) all of
the features in vim. You can find it at:
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf .

● A Wikipedia article on Bill Joy, the creator of vi.:
http://en.wikipedia.org/wiki/Bill_Joy

● A Wikipedia article on Bram Moolenaar, the author of vim:
http://en.wikipedia.org/wiki/Bram_Moolenaar

155

http://en.wikipedia.org/wiki/Bram_Moolenaar
http://en.wikipedia.org/wiki/Bill_Joy
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf
http://en.wikibooks.org/wiki/Vi

13 – Customizing The Prompt

13 – Customizing The Prompt

In this chapter we will look at a seemingly trivial detail —   our shell prompt. This exami-
nation will reveal some of the inner workings of the shell and the terminal emulator pro-
gram itself.

Like so many things in Linux, the shell prompt is highly configurable, and while we have
pretty much taken it for granted, the prompt is a really useful device once we learn how
to control it.

Anatomy Of A Prompt

Our default prompt looks something like this:

[me@linuxbox ~]$

Notice that it contains our username, our hostname and our current working directory, but
how did it get that way? Very simply, it turns out. The prompt is defined by an environ-
ment variable named PS1 (short for “prompt string one”). We can view the contents of
PS1 with the echo command:

[me@linuxbox ~]$ echo $PS1
[\u@\h \W]\$

Note: Don't worry if your results are not exactly the same as the example above.
Every Linux distribution defines the prompt string a little differently, some quite
exotically.

From the results, we can see that PS1 contains a few of the characters we see in our
prompt such as the brackets, the at-sign, and the dollar sign, but the rest are a mystery.
The astute among us will recognize these as backslash-escaped special characters like

156

Anatomy Of A Prompt

those we saw in Chapter 7. Here is a partial list of the characters that the shell treats spe-
cially in the prompt string:

Table 13-1: Escape Codes Used In Shell Prompts

Sequence Value Displayed

\a ASCII bell. This makes the computer beep when it is encountered.

\d Current date in day, month, date format. For example, “Mon May
26.”

\h Hostname of the local machine minus the trailing domain name.

\H Full hostname.

\j Number of jobs running in the current shell session.

\l Name of the current terminal device.

\n A newline character.

\r A carriage return.

\s Name of the shell program.

\t Current time in 24 hour hours:minutes:seconds format.

\T Current time in 12 hour format.

\@ Current time in 12 hour AM/PM format.

\A Current time in 24 hour hours:minutes format.

\u username of the current user.

\v Version number of the shell.

\V Version and release numbers of the shell.

\w Name of the current working directory.

\W Last part of the current working directory name.

\! History number of the current command.

\# Number of commands entered during this shell session.

\$ This displays a “$” character unless you have superuser privileges.
In that case, it displays a “#” instead.

\[Signals the start of a series of one or more non-printing characters.
This is used to embed non-printing control characters which
manipulate the terminal emulator in some way, such as moving the

157

13 – Customizing The Prompt

cursor or changing text colors.

\] Signals the end of a non-printing character sequence.

Trying Some Alternative Prompt Designs

With this list of special characters, we can change the prompt to see the effect. First, we'll
back up the existing string so we can restore it later. To do this, we will copy the existing
string into another shell variable that we create ourselves:

[me@linuxbox ~]$ ps1_old="$PS1"

We create a new variable called ps1_old and assign the value of PS1 to it. We can ver-
ify that the string has been copied by using the echo command:

[me@linuxbox ~]$ echo $ps1_old
[\u@\h \W]\$

We can restore the original prompt at any time during our terminal session by simply re-
versing the process:

[me@linuxbox ~]$ PS1="$ps1_old"

Now that we are ready to proceed, let's see what happens if we have an empty prompt
string:

[me@linuxbox ~]$ PS1=

If we assign nothing to the prompt string, we get nothing. No prompt string at all! The
prompt is still there, but displays nothing, just as we asked it to. Since this is kind of dis-
concerting to look at, we'll replace it with a minimal prompt:

PS1="\$ "

That's better. At least now we can see what we are doing. Notice the trailing space within
the double quotes. This provides the space between the dollar sign and the cursor when

158

Trying Some Alternative Prompt Designs

the prompt is displayed.

Let's add a bell to our prompt:

$ PS1="\[\a\]\$ "

Now we should hear a beep each time the prompt is displayed. This could get annoying,
but it might be useful if we needed notification when an especially long-running com-
mand has been executed. Note that we included the \[and \] sequences. Since the
ASCII bell (\a) does not “print,” that is, it does not move the cursor, we need to tell
bash so it can correctly determine the length of the prompt.

Next, let's try to make an informative prompt with some hostname and time-of-day infor-
mation:

$ PS1="\A \h \$ "
17:33 linuxbox $

Adding time-of-day to our prompt will be useful if we need to keep track of when we
perform certain tasks. Finally, we'll make a new prompt that is similar to our original:

17:37 linuxbox $ PS1="<\u@\h \W>\$ "
<me@linuxbox ~>$

Try out the other sequences listed in the table above and see if you can come up with a
brilliant new prompt.

Adding Color

Most terminal emulator programs respond to certain non-printing character sequences to
control such things as character attributes (like color, bold text, and the dreaded blinking
text) and cursor position. We'll cover cursor position in a little bit, but first we'll look at
color.

159

13 – Customizing The Prompt

Terminal Confusion

Back in ancient times, when terminals were hooked to remote computers, there
were many competing brands of terminals and they all worked differently. They
had different keyboards and they all had different ways of interpreting control in-
formation. Unix and Unix-like systems have two rather complex subsystems to
deal with the babel of terminal control (called termcap and terminfo). If you
look in the deepest recesses of your terminal emulator settings you may find a set-
ting for the type of terminal emulation.
In an effort to make terminals speak some sort of common language, the Ameri-
can National Standards Institute (ANSI) developed a standard set of character se-
quences to control video terminals. Old time DOS users will remember the AN-
SI.SYS file that was used to enable interpretation of these codes.

Character color is controlled by sending the terminal emulator an ANSI escape code em-
bedded in the stream of characters to be displayed. The control code does not “print out”
on the display, rather it is interpreted by the terminal as an instruction. As we saw in the
table above, the \[and \] sequences are used to encapsulate non-printing characters. An
ANSI escape code begins with an octal 033 (the code generated by the escape key), fol-
lowed by an optional character attribute, followed by an instruction. For example, the
code to set the text color to normal (attribute = 0), black text is:

\033[0;30m

Here is a table of available text colors. Notice that the colors are divided into two groups,
differentiated by the application of the bold character attribute (1) which creates the ap-
pearance of “light” colors:

Table14- 2: Escape Sequences Used To Set Text Colors

Sequence Text Color Sequence Text Color

\033[0;30m Black \033[1;30m Dark Gray

\033[0;31m Red \033[1;31m Light Red

\033[0;32m Green \033[1;32m Light Green

\033[0;33m Brown \033[1;33m Yellow

\033[0;34m Blue \033[1;34m Light Blue

\033[0;35m Purple \033[1;35m Light Purple

160

Adding Color

\033[0;36m Cyan \033[1;36m Light Cyan

\033[0;37m Light Grey \033[1;37m White

Let's try to make a red prompt. We'll insert the escape code at the beginning:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$ "
<me@linuxbox ~>$

That works, but notice that all the text that we type after the prompt is also red. To fix
this, we will add another escape code to the end of the prompt that tells the terminal emu-
lator to return to the previous color:

<me@linuxbox ~>$ PS1="\[\033[0;31m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

That's better!

It's also possible to set the text background color using the codes listed below. The back-
ground colors do not support the bold attribute.

Table 13-3: Escape Sequences Used To Set Background Color

Sequence Background Color Sequence Background Color

\033[0;40m Black \033[0;44m Blue

\033[0;41m Red \033[0;45m Purple

\033[0;42m Green \033[0;46m Cyan

\033[0;43m Brown \033[0;47m Light Grey

We can create a prompt with a red background by applying a simple change to the first
escape code:

<me@linuxbox ~>$ PS1="\[\033[0;41m\]<\u@\h \W>\$\[\033[0m\] "
<me@linuxbox ~>$

Try out the color codes and see what you can create!

161

13 – Customizing The Prompt

Note: Besides the normal (0) and bold (1) character attributes, text may also be
given underscore (4), blinking (5), and inverse (7) attributes as well. In the interests
of good taste, many terminal emulators refuse to honor the blinking attribute, how-
ever.

Moving The Cursor

Escape codes can be used to position the cursor. This is commonly used to provide a
clock or some other kind of information at a different location on the screen, such as an
upper corner each time the prompt is drawn. Here is a list of the escape codes that posi-
tion the cursor:

Table 13-4: Cursor Movement Escape Sequences

Escape Code Action

\033[l;cH Move the cursor to line l and column c

\033[nA Move the cursor up n lines

\033[nB Move the cursor down n lines

\033[nC Move the cursor forward n characters

\033[nD Move the cursor backward n characters

\033[2J Clear the screen and move the cursor to the upper left corner (line
0, column 0)

\033[K Clear from the cursor position to the end of the current line

\033[s Store the current cursor position

\033[u Recall the stored cursor position

Using the codes above, we'll construct a prompt that draws a red bar at the top of the
screen containing a clock (rendered in yellow text) each time the prompt is displayed.
The code for the prompt is this formidable looking string:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]
<\u@\h \W>\$ "

Let's take a look at each part of the string to see what it does:

162

Moving The Cursor

Table 13-5: Breakdown Of Complex Prompt String

Sequence Action

\[Begins a non-printing character sequence. The purpose of this
is to allow bash to properly calculate the size of the visible
prompt. Without an accurate calculation, command line editing
features cannot position the cursor correctly.

\033[s Store the cursor position. This is needed to return to the prompt
location after the bar and clock have been drawn at the top of
the screen. Be aware that some terminal emulators do not
honor this code.

\033[0;0H Move the cursor to the upper left corner, which is line 0,
column 0.

\033[0;41m Set the background color to red.

\033[K Clear from the current cursor location (the top left corner) to
the end of the line. Since the background color is now red, the
line is cleared to that color creating our bar. Note that clearing
to the end of the line does not change the cursor position, which
remains at the upper left corner.

\033[1;33m Set the text color to yellow.

\t Display the current time. While this is a “printing” element, we
still include it in the non-printing portion of the prompt, since
we don't want bash to include the clock when calculating the
true size of the displayed prompt.

\033[0m Turn off color. This affects both the text and background.

\033[u Restore the cursor position saved earlier.

\] End the non-printing characters sequence.

<\u@\h \W>\$ Prompt string.

Saving The Prompt

Obviously, we don't want to be typing that monster all the time, so we'll want to store our
prompt someplace. We can make the prompt permanent by adding it to our .bashrc
file. To do so, add these two lines to the file:

PS1="\[\033[s\033[0;0H\033[0;41m\033[K\033[1;33m\t\033[0m\033[u\]

163

13 – Customizing The Prompt

<\u@\h \W>\$ "

export PS1

Summing Up

Believe it or not, there is much more that can be done with prompts involving shell func-
tions and scripts that we haven't covered here, but this is a good start. Not everyone will
care enough to change the prompt, since the default prompt is usually satisfactory. But for
those of us who like to tinker, the shell provides the opportunity for many hours of trivial
fun.

Further Reading

● The Bash Prompt HOWTO from the Linux Documentation Project provides a
pretty complete discussion of what the shell prompt can be made to do. It is avail-
able at:
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/

● Wikipedia has a good article on the ANSI Escape Codes:
http://en.wikipedia.org/wiki/ANSI_escape_code

164

http://en.wikipedia.org/wiki/ANSI_escape_code
http://tldp.org/HOWTO/Bash-Prompt-HOWTO/
http://tldp.org/

Part 3 – Common Tasks And Essential Tools

Part 3 – Common Tasks And Essential
Tools

165

14 – Package Management

14 – Package Management

If we spend any time in the Linux community, we hear many opinions as to which of the
many Linux distributions is “best.” Often, these discussions get really silly, focusing on
such things as the prettiness of the desktop background (some people won't use Ubuntu
because of its default color scheme!) and other trivial matters.

The most important determinant of distribution quality is the packaging system and the
vitality of the distribution's support community. As we spend more time with Linux, we
see that its software landscape is extremely dynamic. Things are constantly changing.
Most of the top-tier Linux distributions release new versions every six months and many
individual program updates every day. To keep up with this blizzard of software, we need
good tools for package management.

Package management is a method of installing and maintaining software on the system.
Today, most people can satisfy all of their software needs by installing packages from
their Linux distributor. This contrasts with the early days of Linux, when one had to
download and compile source code in order to install software. Not that there is anything
wrong with compiling source code; in fact, having access to source code is the great won-
der of Linux. It gives us (and everybody else) the ability to examine and improve the sys-
tem. It's just that having a precompiled package is faster and easier to deal with.

In this chapter, we will look at some of the command line tools used for package manage-
ment. While all of the major distributions provide powerful and sophisticated graphical
programs for maintaining the system, it is important to learn about the command line pro-
grams, too. They can perform many tasks that are difficult (or impossible) to do with their
graphical counterparts.

Packaging Systems

Different distributions use different packaging systems and as a general rule, a package
intended for one distribution is not compatible with another distribution. Most distribu-
tions fall into one of two camps of packaging technologies: the Debian “.deb” camp and
the Red Hat “.rpm” camp. There are some important exceptions such as Gentoo, Slack-
ware, and Foresight, but most others use one of these two basic systems.

166

Packaging Systems

Table 14-1: Major Packaging System Families

Packaging System Distributions (Partial Listing)

Debian Style (.deb) Debian, Ubuntu, Xandros, Linspire

Red Hat Style (.rpm) Fedora, CentOS, Red Hat Enterprise Linux, OpenSUSE,
Mandriva, PCLinuxOS

How A Package System Works

The method of software distribution found in the proprietary software industry usually
entails buying a piece of installation media such as an “install disk” and then running an
“installation wizard” to install a new application on the system.

Linux doesn't work that way. Virtually all software for a Linux system will be found on
the Internet. Most of it will be provided by the distribution vendor in the form of package
files and the rest will be available in source code form that can be installed manually.
We'll talk a little about how to install software by compiling source code in a later chap-
ter.

Package Files

The basic unit of software in a packaging system is the package file. A package file is a
compressed collection of files that comprise the software package. A package may consist
of numerous programs and data files that support the programs. In addition to the files to
be installed, the package file also includes metadata about the package, such as a text de-
scription of the package and its contents. Additionally, many packages contain pre- and
post-installation scripts that perform configuration tasks before and after the package in-
stallation.

Package files are created by a person known as a package maintainer, often (but not al-
ways) an employee of the distribution vendor. The package maintainer gets the software
in source code form from the upstream provider (the author of the program), compiles it,
and creates the package metadata and any necessary installation scripts. Often, the pack-
age maintainer will apply modifications to the original source code to improve the pro-
gram's integration with the other parts of the Linux distribution.

Repositories

While some software projects choose to perform their own packaging and distribution,
most packages today are created by the distribution vendors and interested third parties.
Packages are made available to the users of a distribution in central repositories that may
contain many thousands of packages, each specially built and maintained for the distribu-
tion.

167

14 – Package Management

A distribution may maintain several different repositories for different stages of the soft-
ware development life cycle. For example, there will usually be a “testing” repository
that contains packages that have just been built and are intended for use by brave souls
who are looking for bugs before they are released for general distribution. A distribution
will often have a “development” repository where work-in-progress packages destined
for inclusion in the distribution's next major release are kept.

A distribution may also have related third-party repositories. These are often needed to
supply software that, for legal reasons such as patents or DRM anti-circumvention issues,
cannot be included with the distribution. Perhaps the best known case is that of encrypted
DVD support, which is not legal in the United States. The third-party repositories operate
in countries where software patents and anti-circumvention laws do not apply. These
repositories are usually wholly independent of the distribution they support and to use
them, one must know about them and manually include them in the configuration files for
the package management system.

Dependencies

Programs seldom “standalone”; rather they rely on the presence of other software compo-
nents to get their work done. Common activities, such as input/output for example, are
handled by routines shared by many programs. These routines are stored in what are
called shared libraries, which provide essential services to more than one program. If a
package requires a shared resource such as a shared library, it is said to have a depen-
dency. Modern package management systems all provide some method of dependency
resolution to ensure that when a package is installed, all of its dependencies are installed,
too.

High And Low-level Package Tools

Package management systems usually consist of two types of tools: low-level tools which
handle tasks such as installing and removing package files, and high-level tools that per-
form metadata searching and dependency resolution. In this chapter, we will look at the
tools supplied with Debian-style systems (such as Ubuntu and many others) and those
used by recent Red Hat products. While all Red Hat-style distributions rely on the same
low-level program (rpm), they use different high-level tools. For our discussion, we will
cover the high-level program yum, used by Fedora, Red Hat Enterprise Linux, and Cen-
tOS. Other Red Hat-style distributions provide high-level tools with comparable features.

Table14- 2: Packaging System Tools

Distributions Low-Level Tools High-Level Tools

Debian-Style dpkg apt-get, aptitude

168

How A Package System Works

Fedora, Red Hat
Enterprise Linux, CentOS

rpm yum

Common Package Management Tasks

There are many operations that can be performed with the command line package man-
agement tools. We will look at the most common. Be aware that the low-level tools also
support creation of package files, an activity outside the scope of this book.

In the discussion below, the term “package_name” refers to the actual name of a pack-
age rather than the term “package_file,” which is the name of the file that contains
the package.

Finding A Package In A Repository

Using the high-level tools to search repository metadata, a package can be located based
on its name or description.

Table 14-3: Package Search Commands

Style Command(s)

Debian apt-get update
apt-cache search search_string

Red Hat yum search search_string

Example: To search a yum repository for the emacs text editor, this command could be
used:

yum search emacs

Installing A Package From A Repository

High-level tools permit a package to be downloaded from a repository and installed with
full dependency resolution.

Table 14-4: Package Installation Commands

Style Command(s)

Debian apt-get update

169

14 – Package Management

apt-get install package_name

Red Hat yum install package_name

Example: To install the emacs text editor from an apt repository:

apt-get update; apt-get install emacs

Installing A Package From A Package File

If a package file has been downloaded from a source other than a repository, it can be in-
stalled directly (though without dependency resolution) using a low-level tool.

Table 14-5: Low-Level Package Installation Commands

Style Command(s)

Debian dpkg --install package_file

Red Hat rpm -i package_file

Example: If the emacs-22.1-7.fc7-i386.rpm package file had been downloaded
from a non-repository site, it would be installed this way:

rpm -i emacs-22.1-7.fc7-i386.rpm

Note: Since this technique uses the low-level rpm program to perform the installa-
tion, no dependency resolution is performed. If rpm discovers a missing depen-
dency, rpm will exit with an error.

Removing A Package

Packages can be uninstalled using either the high-level or low-level tools. The high-level
tools are shown below.

170

Common Package Management Tasks

Table15- 6: Package Removal Commands

Style Command(s)

Debian apt-get remove package_name

Red Hat yum erase package_name

Example: To uninstall the emacs package from a Debian-style system:

apt-get remove emacs

Updating Packages From A Repository

The most common package management task is keeping the system up-to-date with the
latest packages. The high-level tools can perform this vital task in one single step.

Table 14-7: Package Update Commands

Style Command(s)

Debian apt-get update; apt-get upgrade

Red Hat yum update

Example: To apply any available updates to the installed packages on a Debian-style sys-
tem:

apt-get update; apt-get upgrade

Upgrading A Package From A Package File

If an updated version of a package has been downloaded from a non-repository source, it
can be installed, replacing the previous version:

Table 14-8: Low-Level Package Upgrade Commands

Style Command(s)

Debian dpkg --install package_file

171

14 – Package Management

Red Hat rpm -U package_file

Example: Updating an existing installation of emacs to the version contained in the pack-
age file emacs-22.1-7.fc7-i386.rpm on a Red Hat system:

rpm -U emacs-22.1-7.fc7-i386.rpm

Note: dpkg does not have a specific option for upgrading a package versus in-
stalling one as rpm does.

Listing Installed Packages

These commands can be used to display a list of all the packages installed on the system:

Table 14-9: Package Listing Commands

Style Command(s)

Debian dpkg --list

Red Hat rpm -qa

Determining If A Package Is Installed

These low-level tools can be used to display whether a specified package is installed:

Table 14-10: Package Status Commands

Style Command(s)

Debian dpkg --status package_name

Red Hat rpm -q package_name

Example: To determine if the emacs package is installed on a Debian style system:

dpkg --status emacs

172

Common Package Management Tasks

Displaying Info About An Installed Package

If the name of an installed package is known, the following commands can be used to
display a description of the package:

Table 14-11: Package Information Commands

Style Command(s)

Debian apt-cache show package_name

Red Hat yum info package_name

Example: To see a description of the emacs package on a Debian-style system:

apt-cache show emacs

Finding Which Package Installed A File

To determine what package is responsible for the installation of a particular file, the fol-
lowing commands can be used:

Table 14-12: Package File Identification Commands

Style Command(s)

Debian dpkg --search file_name

Red Hat rpm -qf file_name

Example: To see what package installed the /usr/bin/vim file on a Red Hat system:

rpm -qf /usr/bin/vim

Summing Up

In the chapters that follow, we will explore many different programs covering a wide
range of application areas. While most of these programs are commonly installed by de-
fault, we may need to install additional packages if necessary programs are not already
installed on our system. With our newfound knowledge (and appreciation) of package

173

14 – Package Management

management, we should have no problem installing and managing the programs we need.

The Linux Software Installation Myth

People migrating from other platforms sometimes fall victim to the myth that
software is somehow difficult to install under Linux and that the variety of pack-
aging schemes used by different distributions is a hindrance. Well, it is a hin-
drance, but only to proprietary software vendors who wish to distribute binary-
only versions of their secret software.
The Linux software ecosystem is based on the idea of open source code. If a pro-
gram developer releases source code for a product, it is likely that a person asso-
ciated with a distribution will package the product and include it in their reposi-
tory. This method ensures that the product is well integrated into the distribution
and the user is given the convenience of “one-stop shopping” for software, rather
than having to search for each product's web site.
Device drivers are handled in much the same way, except that instead of being
separate items in a distribution's repository, they become part of the Linux kernel
itself. Generally speaking, there is no such thing as a “driver disk” in Linux. Ei-
ther the kernel supports a device or it doesn't, and the Linux kernel supports a lot
of devices. Many more, in fact, than Windows does. Of course, this is of no con-
solation if the particular device you need is not supported. When that happens,
you need to look at the cause. A lack of driver support is usually caused by one of
three things:
1. The device is too new. Since many hardware vendors don't actively support
Linux development, it falls upon a member of the Linux community to write the
kernel driver code. This takes time.
2. The device is too exotic. Not all distributions include every possible device
driver. Each distribution builds their own kernels, and since kernels are very con-
figurable (which is what makes it possible to run Linux on everything from wrist-
watches to mainframes) they may have overlooked a particular device. By locat-
ing and downloading the source code for the driver, it is possible for you (yes,
you) to compile and install the driver yourself. This process is not overly difficult,
but it is rather involved. We'll talk about compiling software in a later chapter.
3. The hardware vendor is hiding something. They have neither released source
code for a Linux driver, nor have they released the technical documentation for
somebody to create one for them. This means that the hardware vendor is trying
to keep the programming interfaces to the device a secret. Since we don't want se-
cret devices in our computers, I suggest that you remove the offending hardware
and pitch it into the trash with your other useless items.

174

Further Reading

Further Reading

Spend some time getting to know the package management system for your distribution.
Each distribution provides documentation for its package management tools. In addition,
here are some more generic sources:

● The Debian GNU/Linux FAQ chapter on package management provides an over-
view of package management on Debian systems :
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

● The home page for the RPM project:
http://www.rpm.org

● The home page for the YUM project at Duke University:
http://linux.duke.edu/projects/yum/

● For a little background, the Wikipedia has an article on metadata:
http://en.wikipedia.org/wiki/Metadata

175

http://en.wikipedia.org/wiki/Metadata
http://linux.duke.edu/projects/yum/
http://www.rpm.org/
http://www.debian.org/doc/FAQ/ch-pkgtools.en.html

15 – Storage Media

15 – Storage Media

In previous chapters we’ve looked at manipulating data at the file level. In this chapter,
we will consider data at the device level. Linux has amazing capabilities for handling
storage devices, whether physical storage, such as hard disks, or network storage, or vir-
tual storage devices like RAID (Redundant Array of Independent Disks) and LVM (Logi-
cal Volume Manager).

However, since this is not a book about system administration, we will not try to cover
this entire topic in depth. What we will try to do is introduce some of the concepts and
key commands that are used to manage storage devices.

To carry out the exercises in this chapter, we will use a USB flash drive, a CD-RW disc
(for systems equipped with a CD-ROM burner) and a floppy disk (again, if the system is
so equipped.)

We will look at the following commands:

● mount – Mount a file system

● umount – Unmount a file system

● fsck – Check and repair a file system

● fdisk – Partition table manipulator

● mkfs – Create a file system

● fdformat – Format a floppy disk

● dd – Write block oriented data directly to a device

● genisoimage (mkisofs) – Create an ISO 9660 image file

● wodim (cdrecord) – Write data to optical storage media

● md5sum – Calculate an MD5 checksum

Mounting And Unmounting Storage Devices

Recent advances in the Linux desktop have made storage device management extremely

176

Mounting And Unmounting Storage Devices

easy for desktop users. For the most part, we attach a device to our system and it “just
works.” Back in the old days (say, 2004), this stuff had to be done manually. On non-
desktop systems (i.e., servers) this is still a largely manual procedure since servers often
have extreme storage needs and complex configuration requirements.

The first step in managing a storage device is attaching the device to the file system tree.
This process, called mounting, allows the device to participate with the operating system.
As we recall from Chapter 2, Unix-like operating systems, like Linux, maintain a single
file system tree with devices attached at various points. This contrasts with other operat-
ing systems such as MS-DOS and Windows that maintain separate file system trees for
each device (for example C:\, D:\, etc.).

A file named /etc/fstab lists the devices (typically hard disk partitions) that are to be
mounted at boot time. Here is an example /etc/fstab file from a Fedora 7 system:

LABEL=/12 / ext3 defaults 1 1
LABEL=/home /home ext3 defaults 1 2
LABEL=/boot /boot ext3 defaults 1 2
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
LABEL=SWAP-sda3 swap swap defaults 0 0

Most of the file systems listed in this example file are virtual and are not applicable to our
discussion. For our purposes, the interesting ones are the first three:

LABEL=/12 / ext3 defaults 1 1
LABEL=/home /home ext3 defaults 1 2
LABEL=/boot /boot ext3 defaults 1 2

These are the hard disk partitions. Each line of the file consists of six fields, as follows:

Table 15-1: /etc/fstab Fields

Field Contents Description

1 Device Traditionally, this field contains the actual name of a
device file associated with the physical device, such as
/dev/hda1 (the first partition of the master device
on the first IDE channel). But with today's computers,
which have many devices that are hot pluggable (like
USB drives), many modern Linux distributions

177

15 – Storage Media

associate a device with a text label instead. This label
(which is added to the storage media when it is
formatted) is read by the operating system when the
device is attached to the system. That way, no matter
which device file is assigned to the actual physical
device, it can still be correctly identified.

 2 Mount Point The directory where the device is attached to the file
system tree.

3 File System Type Linux allows many file system types to be mounted.
Most native Linux file systems are ext3, but many
others are supported, such as FAT16 (msdos), FAT32
(vfat), NTFS (ntfs), CD-ROM (iso9660), etc.

4 Options File systems can be mounted with various options. It is
possible, for example, to mount file systems as read-
only, or to prevent any programs from being executed
from them (a useful security feature for removable
media).

5 Frequency A single number that specifies if and when a file
system is to be backed up with the dump command.

6 Order A single number that specifies in what order file
systems should be checked with the fsck command.

Viewing A List Of Mounted File Systems

The mount command is used to mount file systems. Entering the command without ar-
guments will display a list of the file systems currently mounted:

[me@linuxbox ~]$ mount
/dev/sda2 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda5 on /home type ext3 (rw)
/dev/sda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
/dev/sdd1 on /media/disk type vfat (rw,nosuid,nodev,noatime,

178

Mounting And Unmounting Storage Devices

uhelper=hal,uid=500,utf8,shortname=lower)
twin4:/musicbox on /misc/musicbox type nfs4 (rw,addr=192.168.1.4)

The format of the listing is: device on mount_point type file_system_type (options). For
example, the first line shows that device /dev/sda2 is mounted as the root file system,
is of type ext3, and is both readable and writable (the option “rw”). This listing also has
two interesting entries at the bottom of the list. The next-to-last entry shows a 2 gigabyte
SD memory card in a card reader mounted at /media/disk, and the last entry is a net-
work drive mounted at /misc/musicbox.

For our first experiment, we will work with a CD-ROM. First, let's look at a system be-
fore a CD-ROM is inserted:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This listing is from a CentOS 5 system, which is using LVM (Logical Volume Manager)
to create its root file system. Like many modern Linux distributions, this system will at-
tempt to automatically mount the CD-ROM after insertion. After we insert the disc, we
see the following:

[me@linuxbox ~]$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/hda1 on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/hdc on /media/live-1.0.10-8 type iso9660 (ro,noexec,nosuid,
nodev,uid=500)

After we insert the disc, we see the same listing as before with one additional entry. At
the end of the listing we see that the CD-ROM (which is device /dev/hdc on this sys-

179

15 – Storage Media

tem) has been mounted on /media/live-1.0.10-8, and is type iso9660 (a CD-
ROM). For purposes of our experiment, we're interested in the name of the device. When
you conduct this experiment yourself, the device name will most likely be different.

Warning: In the examples that follow, it is vitally important that you pay close at-
tention to the actual device names in use on your system and do not use the names
used in this text!

Also note that audio CDs are not the same as CD-ROMs. Audio CDs do not contain
file systems and thus cannot be mounted in the usual sense.

Now that we have the device name of the CD-ROM drive, let's unmount the disc and re-
mount it at another location in the file system tree. To do this, we become the superuser
(using the command appropriate for our system) and unmount the disc with the umount
(notice the spelling) command:

[me@linuxbox ~]$ su -
Password:
[root@linuxbox ~]# umount /dev/hdc

The next step is to create a new mount point for the disk. A mount point is simply a direc-
tory somewhere on the file system tree. Nothing special about it. It doesn't even have to
be an empty directory, though if you mount a device on a non-empty directory, you will
not be able to see the directory's previous contents until you unmount the device. For our
purposes, we will create a new directory:

[root@linuxbox ~]# mkdir /mnt/cdrom

Finally, we mount the CD-ROM at the new mount point. The -t option is used to specify
the file system type:

[root@linuxbox ~]# mount -t iso9660 /dev/hdc /mnt/cdrom

Afterward, we can examine the contents of the CD-ROM via the new mount point:

[root@linuxbox ~]# cd /mnt/cdrom

180

Mounting And Unmounting Storage Devices

[root@linuxbox cdrom]# ls

Notice what happens when we try to unmount the CD-ROM:

[root@linuxbox cdrom]# umount /dev/hdc
umount: /mnt/cdrom: device is busy

Why is this? The reason is that we cannot unmount a device if the device is being used by
someone or some process. In this case, we changed our working directory to the mount
point for the CD-ROM, which causes the device to be busy. We can easily remedy the is-
sue by changing the working directory to something other than the mount point:

[root@linuxbox cdrom]# cd
[root@linuxbox ~]# umount /dev/hdc

Now the device unmounts successfully.

Why Unmounting Is Important

If you look at the output of the free command, which displays statistics about
memory usage, you will see a statistic called “buffers.” Computer systems are de-
signed to go as fast as possible. One of the impediments to system speed is slow
devices. Printers are a good example. Even the fastest printer is extremely slow
by computer standards. A computer would be very slow indeed if it had to stop
and wait for a printer to finish printing a page. In the early days of PCs (before
multi-tasking), this was a real problem. If you were working on a spreadsheet or
text document, the computer would stop and become unavailable every time you
printed. The computer would send the data to the printer as fast as the printer
could accept it, but it was very slow since printers don't print very fast. This prob-
lem was solved by the advent of the printer buffer, a device containing some
RAM memory that would sit between the computer and the printer. With the
printer buffer in place, the computer would send the printer output to the buffer
and it would quickly be stored in the fast RAM so the computer could go back to
work without waiting. Meanwhile, the printer buffer would slowly spool the data
to the printer from the buffer's memory at the speed at which the printer could ac-
cept it.

181

15 – Storage Media

This idea of buffering is used extensively in computers to make them faster. Don't
let the need to occasionally read or write data to or from slow devices impede the
speed of the system. Operating systems store data that has been read from, and is
to be written to storage devices in memory for as long as possible before actually
having to interact with the slower device. On a Linux system for example, you
will notice that the system seems to fill up memory the longer it is used. This does
not mean Linux is “using“ all the memory, it means that Linux is taking advan-
tage of all the available memory to do as much buffering as it can.
This buffering allows writing to storage devices to be done very quickly, because
the writing to the physical device is being deferred to a future time. In the mean-
time, the data destined for the device is piling up in memory. From time to time,
the operating system will write this data to the physical device.
Unmounting a device entails writing all the remaining data to the device so that it
can be safely removed. If the device is removed without unmounting it first, the
possibility exists that not all the data destined for the device has been transferred.
In some cases, this data may include vital directory updates, which will lead to
file system corruption, one of the worst things that can happen on a computer.

Determining Device Names

It's sometimes difficult to determine the name of a device. Back in the old days, it wasn't
very hard. A device was always in the same place and it didn't change. Unix-like systems
like it that way. Back when Unix was developed, “changing a disk drive” involved using
a forklift to remove a washing machine-sized device from the computer room. In recent
years, the typical desktop hardware configuration has become quite dynamic and Linux
has evolved to become more flexible than its ancestors.

In the examples above we took advantage of the modern Linux desktop's ability to “au-
tomagically” mount the device and then determine the name after the fact. But what if we
are managing a server or some other environment where this does not occur? How can
we figure it out?

First, let's look at how the system names devices. If we list the contents of the /dev di-
rectory (where all devices live), we can see that there are lots and lots of devices:

[me@linuxbox ~]$ ls /dev

The contents of this listing reveal some patterns of device naming. Here are a few:

182

Mounting And Unmounting Storage Devices

Table 15-2: Linux Storage Device Names

Pattern Device

/dev/fd* Floppy disk drives.

/dev/hd* IDE (PATA) disks on older systems. Typical motherboards
contain two IDE connectors or channels, each with a cable with
two attachment points for drives. The first drive on the cable is
called the master device and the second is called the slave
device. The device names are ordered such that /dev/hda
refers to the master device on the first channel, /dev/hdb is the
slave device on the first channel; /dev/hdc, the master device
on the second channel, and so on. A trailing digit indicates the
partition number on the device. For example, /dev/hda1 refers
to the first partition on the first hard drive on the system while
/dev/hda refers to the entire drive.

/dev/lp* Printers.

/dev/sd* SCSI disks. On recent Linux systems, the kernel treats all disk-
like devices (including PATA/SATA hard disks, flash drives, and
USB mass storage devices such as portable music players, and
digital cameras) as SCSI disks. The rest of the naming system is
similar to the older /dev/hd* naming scheme described above.

/dev/sr* Optical drives (CD/DVD readers and burners).

In addition, we often see symbolic links such as /dev/cdrom, /dev/dvd, and
/dev/floppy, which point to the actual device files, provided as a convenience.

If you are working on a system that does not automatically mount removable devices,
you can use the following technique to determine how the removable device is named
when it is attached. First, start a real-time view of the /var/log/messages or
/var/log/syslog file (you may require superuser privileges for this):

[me@linuxbox ~]$ sudo tail -f /var/log/messages

The last few lines of the file will be displayed and then pause. Next, plug in the remov-
able device. In this example, we will use a 16 MB flash drive. Almost immediately, the
kernel will notice the device and probe it:

183

15 – Storage Media

Jul 23 10:07:53 linuxbox kernel: usb 3-2: new full speed USB device
using uhci_hcd and address 2
Jul 23 10:07:53 linuxbox kernel: usb 3-2: configuration #1 chosen
from 1 choice
Jul 23 10:07:53 linuxbox kernel: scsi3 : SCSI emulation for USB Mass
Storage devices
Jul 23 10:07:58 linuxbox kernel: scsi scan: INQUIRY result too short
(5), using 36
Jul 23 10:07:58 linuxbox kernel: scsi 3:0:0:0: Direct-Access Easy
Disk 1.00 PQ: 0 ANSI: 2
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte
hardware sectors (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is
off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive
cache: write through
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] 31263 512-byte
hardware sectors (16 MB)
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Write Protect is
off
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Assuming drive
cache: write through
Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI
removable disk
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: Attached scsi generic
sg3 type 0

After the display pauses again, press Ctrl-c to get the prompt back. The interesting parts
of the output are the repeated references to “[sdb]” which matches our expectation of a
SCSI disk device name. Knowing this, two lines become particularly illuminating:

Jul 23 10:07:59 linuxbox kernel: sdb: sdb1
Jul 23 10:07:59 linuxbox kernel: sd 3:0:0:0: [sdb] Attached SCSI
removable disk

This tells us the device name is /dev/sdb for the entire device and /dev/sdb1 for
the first partition on the device. As we have seen, working with Linux is full of interest-
ing detective work!

Tip: Using the tail -f /var/log/messages technique is a great way to
watch what the system is doing in near real-time.

With our device name in hand, we can now mount the flash drive:

184

Mounting And Unmounting Storage Devices

[me@linuxbox ~]$ sudo mkdir /mnt/flash
[me@linuxbox ~]$ sudo mount /dev/sdb1 /mnt/flash
[me@linuxbox ~]$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 15115452 5186944 9775164 35% /
/dev/sda5 59631908 31777376 24776480 57% /home
/dev/sda1 147764 17277 122858 13% /boot
tmpfs 776808 0 776808 0% /dev/shm
/dev/sdb1 15560 0 15560 0% /mnt/flash

The device name will remain the same as long as it remains physically attached to the
computer and the computer is not rebooted.

Creating New File Systems

Let's say that we want to reformat the flash drive with a Linux native file system, rather
than the FAT32 system it has now. This involves two steps: 1. (optional) create a new par-
tition layout if the existing one is not to our liking, and 2. create a new, empty file system
on the drive.

Warning! In the following exercise, we are going to format a flash drive. Use a
drive that contains nothing you care about because it will be erased! Again, make
absolutely sure you are specifying the correct device name for your system, not
the one shown in the text. Failure to heed this warning could result in you for-
matting (i.e., erasing) the wrong drive!

Manipulating Partitions With fdisk

The fdisk program allows us to interact directly with disk-like devices (such as hard
disk drives and flash drives) at a very low level. With this tool we can edit, delete, and
create partitions on the device. To work with our flash drive, we must first unmount it (if
needed) and then invoke the fdisk program as follows:

[me@linuxbox ~]$ sudo umount /dev/sdb1
[me@linuxbox ~]$ sudo fdisk /dev/sdb

Notice that we must specify the device in terms of the entire device, not by partition num-
ber. After the program starts up, we will see the following prompt:

185

15 – Storage Media

Command (m for help):

Entering an “m” will display the program menu:

Command action
 a toggle a bootable flag
 b edit bsd disklabel
 c toggle the dos compatibility flag
 d delete a partition
 l list known partition types
 m print this menu
 n add a new partition
 o create a new empty DOS partition table
 p print the partition table
 q quit without saving changes
 s create a new empty Sun disklabel
 t change a partition's system id
 u change display/entry units
 v verify the partition table
 w write table to disk and exit
 x extra functionality (experts only)

Command (m for help):

The first thing we want to do is examine the existing partition layout. We do this by en-
tering “p” to print the partition table for the device:

Command (m for help): p

Disk /dev/sdb: 16 MB, 16006656 bytes
1 heads, 31 sectors/track, 1008 cylinders
Units = cylinders of 31 * 512 = 15872 bytes

 Device Boot Start End Blocks Id System
/dev/sdb1 2 1008 15608+ b W95 FAT32

In this example, we see a 16 MB device with a single partition (1) that uses 1006 of the
available 1008 cylinders on the device. The partition is identified as a Windows 95
FAT32 partition. Some programs will use this identifier to limit the kinds of operation
that can be done to the disk, but most of the time it is not critical to change it. However,

186

Creating New File Systems

in the interest of demonstration, we will change it to indicate a Linux partition. To do this,
we must first find out what ID is used to identify a Linux partition. In the listing above,
we see that the ID “b” is used to specify the existing partition. To see a list of the avail-
able partition types, we refer back to the program menu. There we can see the following
choice:

 l list known partition types

If we enter “l” at the prompt, a large list of possible types is displayed. Among them we
see “b” for our existing partition type and “83” for Linux.

Going back to the menu, we see this choice to change a partition ID:

 t change a partition's system id

We enter “t” at the prompt enter the new ID:

Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 83
Changed system type of partition 1 to 83 (Linux)

This completes all the changes that we need to make. Up to this point, the device has
been untouched (all the changes have been stored in memory, not on the physical device),
so we will write the modified partition table to the device and exit. To do this, we enter
“w” at the prompt:

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
[me@linuxbox ~]$

If we had decided to leave the device unaltered, we could have entered “q” at the prompt,

187

15 – Storage Media

which would have exited the program without writing the changes. We can safely ignore
the ominous sounding warning message.

Creating A New File System With mkfs

With our partition editing done (lightweight though it might have been) it’s time to create
a new file system on our flash drive. To do this, we will use mkfs (short for “make file
system”), which can create file systems in a variety of formats. To create an ext3 file sys-
tem on the device, we use the “-t” option to specify the “ext3” system type, followed by
the name of the device containing the partition we wish to format:

[me@linuxbox ~]$ sudo mkfs -t ext3 /dev/sdb1
mke2fs 1.40.2 (12-Jul-2007)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
3904 inodes, 15608 blocks
780 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=15990784
2 block groups
8192 blocks per group, 8192 fragments per group
1952 inodes per group
Superblock backups stored on blocks:

8193

Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[me@linuxbox ~]$

The program will display a lot of information when ext3 is the chosen file system type.
To re-format the device to its original FAT32 file system, specify “vfat” as the file system
type:

[me@linuxbox ~]$ sudo mkfs -t vfat /dev/sdb1

This process of partitioning and formatting can be used anytime additional storage de-
vices are added to the system. While we worked with a tiny flash drive, the same process

188

Creating New File Systems

can be applied to internal hard disks and other removable storage devices like USB hard
drives.

Testing And Repairing File Systems

In our earlier discussion of the /etc/fstab file, we saw some mysterious digits at the
end of each line. Each time the system boots, it routinely checks the integrity of the file
systems before mounting them. This is done by the fsck program (short for “file system
check”). The last number in each fstab entry specifies the order in which the devices
are to be checked. In our example above, we see that the root file system is checked first,
followed by the home and boot file systems. Devices with a zero as the last digit are not
routinely checked.

In addition to checking the integrity of file systems, fsck can also repair corrupt file sys-
tems with varying degrees of success, depending on the amount of damage. On Unix-like
file systems, recovered portions of files are placed in the lost+found directory, lo-
cated in the root of each file system.

To check our flash drive (which should be unmounted first), we could do the following:

[me@linuxbox ~]$ sudo fsck /dev/sdb1
fsck 1.40.8 (13-Mar-2008)
e2fsck 1.40.8 (13-Mar-2008)
/dev/sdb1: clean, 11/3904 files, 1661/15608 blocks

In my experience, file system corruption is quite rare unless there is a hardware problem,
such as a failing disk drive. On most systems, file system corruption detected at boot time
will cause the system to stop and direct you to run fsck before continuing.

What The fsck?

In Unix culture, the word “fsck” is often used in place of a popular word with
which it shares three letters. This is especially appropriate, given that you will
probably be uttering the aforementioned word if you find yourself in a situation
where you are forced to run fsck.

Formatting Floppy Disks

15 – Storage Media

drives, we can manage those devices, too. Preparing a blank floppy for use is a two step
process. First, we perform a low-level format on the diskette, and then create a file sys-
tem. To accomplish the formatting, we use the fdformat program specifying the name
of the floppy device (usually /dev/fd0):

[me@linuxbox ~]$ sudo fdformat /dev/fd0
Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done

Next, we apply a FAT file system to the diskette with mkfs:

[me@linuxbox ~]$ sudo mkfs -t msdos /dev/fd0

Notice that we use the “msdos” file system type to get the older (and smaller) style file
allocation tables. After a diskette is prepared, it may be mounted like other devices.

Moving Data Directly To/From Devices

While we usually think of data on our computers as being organized into files, it is also
possible to think of the data in “raw” form. If we look at a disk drive, for example, we see
that it consists of a large number of “blocks” of data that the operating system sees as di-
rectories and files. However, if we could treat a disk drive as simply a large collection of
data blocks, we could perform useful tasks, such as cloning devices.

The dd program performs this task. It copies blocks of data from one place to another. It
uses a unique syntax (for historical reasons) and is usually used this way:

dd if=input_file of=output_file [bs=block_size [count=blocks]]

Let’s say we had two USB flash drives of the same size and we wanted to exactly copy
the first drive to the second. If we attached both drives to the computer and they are as-
signed to devices /dev/sdb and /dev/sdc respectively, we could copy everything on
the first drive to the second drive with the following:

dd if=/dev/sdb of=/dev/sdc

190

Moving Data Directly To/From Devices

Alternately, if only the first device were attached to the computer, we could copy its con-
tents to an ordinary file for later restoration or copying:

dd if=/dev/sdb of=flash_drive.img

Warning! The dd command is very powerful. Though its name derives from “data
definition,” it is sometimes called “destroy disk” because users often mistype either
the if or of specifications. Always double check your input and output specifi-
cations before pressing enter!

Creating CD-ROM Images

Writing a recordable CD-ROM (either a CD-R or CD-RW) consists of two steps; first,
constructing an iso image file that is the exact file system image of the CD-ROM and sec-
ond, writing the image file onto the CD-ROM media.

Creating An Image Copy Of A CD-ROM

If we want to make an iso image of an existing CD-ROM, we can use dd to read all the
data blocks off the CD-ROM and copy them to a local file. Say we had an Ubuntu CD
and we wanted to make an iso file that we could later use to make more copies. After in-
serting the CD and determining its device name (we’ll assume /dev/cdrom), we can
make the iso file like so:

dd if=/dev/cdrom of=ubuntu.iso

This technique works for data DVDs as well, but will not work for audio CDs, as they do
not use a file system for storage. For audio CDs, look at the cdrdao command.

Creating An Image From A Collection Of Files

To create an iso image file containing the contents of a directory, we use the
genisoimage program. To do this, we first create a directory containing all the files
we wish to include in the image, and then execute the genisoimage command to cre-
ate the image file. For example, if we had created a directory called ~/cd-rom-files
and filled it with files for our CD-ROM, we could create an image file named cd-
rom.iso with the following command:

191

15 – Storage Media

genisoimage -o cd-rom.iso -R -J ~/cd-rom-files

The “-R” option adds metadata for the Rock Ridge extensions, which allows the use of
long filenames and POSIX style file permissions. Likewise, the “-J” option enables the
Joliet extensions, which permit long filenames for Windows.

A Program By Any Other Name...

If you look at on-line tutorials for creating and burning optical media like CD-
ROMs and DVDs, you will frequently encounter two programs called mkisofs
and cdrecord. These programs were part of a popular package called “cdr-
tools” authored by Jörg Schilling. In the summer of 2006, Mr. Schilling made a li-
cense change to a portion of the cdrtools package which, in the opinion of many
in the Linux community, created a license incompatibility with the GNU GPL. As
a result, a fork of the cdrtools project was started that now includes replacement
programs for cdrecord and mkisofs named wodim and genisoimage, re-
spectively.

Writing CD-ROM Images

After we have an image file, we can burn it onto our optical media. Most of the com-
mands we will discuss below can be applied to both recordable CD-ROM and DVD me-
dia.

Mounting An ISO Image Directly

There is a trick that we can use to mount an iso image while it is still on our hard disk and
treat it as though it were already on optical media. By adding the “-o loop” option to
mount (along with the required “-t iso9660” file system type), we can mount the image
file as though it were a device and attach it to the file system tree:

mkdir /mnt/iso_image
mount -t iso9660 -o loop image.iso /mnt/iso_image

In the example above, we created a mount point named /mnt/iso_image and then
mounted the image file image.iso at that mount point. After the image is mounted, it
can be treated just as though it were a real CD-ROM or DVD. Remember to unmount the
image when it is no longer needed.

192

Writing CD-ROM Images

Blanking A Re-Writable CD-ROM

Rewritable CD-RW media needs to be erased or blanked before it can be reused. To do
this, we can use wodim, specifying the device name for the CD writer and the type of
blanking to be performed. The wodim program offers several types. The most minimal
(and fastest) is the “fast” type:

wodim dev=/dev/cdrw blank=fast

Writing An Image

To write an image, we again use wodim, specifying the name of the optical media writer
device and the name of the image file:

wodim dev=/dev/cdrw image.iso

In addition to the device name and image file, wodim supports a very large set of op-
tions. Two common ones are “-v” for verbose output, and “-dao”, which writes the disc in
disc-at-once mode. This mode should be used if you are preparing a disc for commercial
reproduction. The default mode for wodim is track-at-once, which is useful for recording
music tracks.

Summing Up

In this chapter we have looked at the basic storage management tasks. There are, of
course, many more. Linux supports a vast array of storage devices and file system
schemes. It also offers many features for interoperability with other systems.

Further Reading

Take a look at the man pages of the commands we have covered. Some of them support
huge numbers of options and operations. Also, look for on-line tutorials for adding hard
drives to your Linux system (there are many) and working with optical media.

Extra Credit

It’s often useful to verify the integrity of an iso image that we have downloaded. In most
cases, a distributor of an iso image will also supply a checksum file. A checksum is the re-
sult of an exotic mathematical calculation resulting in a number that represents the con-

193

15 – Storage Media

tent of the target file. If the contents of the file change by even one bit, the resulting
checksum will be much different. The most common method of checksum generation
uses the md5sum program. When you use md5sum, it produces a unique hexadecimal
number:

md5sum image.iso
34e354760f9bb7fbf85c96f6a3f94ece image.iso

After you download an image, you should run md5sum against it and compare the results
with the md5sum value supplied by the publisher.

In addition to checking the integrity of a downloaded file, we can use md5sum to verify
newly written optical media. To do this, we first calculate the checksum of the image file
and then calculate a checksum for the media. The trick to verifying the media is to limit
the calculation to only the portion of the optical media that contains the image. We do this
by determining the number of 2048 byte blocks the image contains (optical media is al-
ways written in 2048 byte blocks) and reading that many blocks from the media. On
some types of media, this is not required. A CD-R written in disc-at-once mode can be
checked this way:

md5sum /dev/cdrom
34e354760f9bb7fbf85c96f6a3f94ece /dev/cdrom

Many types of media, such as DVDs, require a precise calculation of the number of
blocks. In the example below, we check the integrity of the image file dvd-image.iso
and the disc in the DVD reader /dev/dvd. Can you figure out how this works?

md5sum dvd-image.iso; dd if=/dev/dvd bs=2048 count=$(($(stat -c "%s"
dvd-image.iso) / 2048)) | md5sum

194

16 – Networking

16 – Networking

When it comes to networking, there is probably nothing that cannot be done with Linux.
Linux is used to build all sorts of networking systems and appliances, including firewalls,
routers, name servers, NAS (Network Attached Storage) boxes and on and on.

Just as the subject of networking is vast, so are the number of commands that can be used
to configure and control it. We will focus our attention on just a few of the most fre-
quently used ones. The commands chosen for examination include those used to monitor
networks and those used to transfer files. In addition, we are going to explore the ssh
program that is used to perform remote logins. This chapter will cover:

● ping - Send an ICMP ECHO_REQUEST to network hosts

● traceroute - Print the route packets trace to a network host

● netstat - Print network connections, routing tables, interface statistics, mas-
querade connections, and multicast memberships

● ftp - Internet file transfer program

● wget - Non-interactive network downloader

● ssh - OpenSSH SSH client (remote login program)

We’re going to assume a little background in networking. In this, the Internet age, every-
one using a computer needs a basic understanding of networking concepts. To make full
use of this chapter we should be familiar with the following terms:

● IP (Internet Protocol) address

● Host and domain name

● URI (Uniform Resource Identifier)

Please see the “Further Reading” section below for some useful articles regarding these
terms.

Note: Some of the commands we will cover may (depending on your distribution)
require the installation of additional packages from your distribution’s repositories,

195

16 – Networking

and some may require superuser privileges to execute.

Examining And Monitoring A Network

Even if you’re not the system administrator, it’s often helpful to examine the performance
and operation of a network.

ping

The most basic network command is ping. The ping command sends a special network
packet called an IMCP ECHO_REQUEST to a specified host. Most network devices re-
ceiving this packet will reply to it, allowing the network connection to be verified.

Note: It is possible to configure most network devices (including Linux hosts) to
ignore these packets. This is usually done for security reasons, to partially obscure
a host from a potential attacker. It is also common for firewalls to be configured to
block IMCP traffic.

For example, to see if we can reach linuxcommand.org (one of our favorite sites ;-),
we can use use ping like this:

[me@linuxbox ~]$ ping linuxcommand.org

Once started, ping continues to send packets at a specified interval (default is one sec-
ond) until it is interrupted:

[me@linuxbox ~]$ ping linuxcommand.org
PING linuxcommand.org (66.35.250.210) 56(84) bytes of data.
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=1
ttl=43 time=107 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=2
ttl=43 time=108 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=3
ttl=43 time=106 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=4
ttl=43 time=106 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=5
ttl=43 time=105 ms
64 bytes from vhost.sourceforge.net (66.35.250.210): icmp_seq=6

196

Examining And Monitoring A Network

ttl=43 time=107 ms

--- linuxcommand.org ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 6010ms
rtt min/avg/max/mdev = 105.647/107.052/108.118/0.824 ms

After it is interrupted (in this case after the sixth packet) by pressing Ctrl-c, ping
prints performance statistics. A properly performing network will exhibit zero percent
packet loss. A successful “ping” will indicate that the elements of the network (its inter-
face cards, cabling, routing, and gateways) are in generally good working order.

traceroute

The traceroute program (some systems use the similar tracepath program in-
stead) displays a listing of all the “hops” network traffic takes to get from the local sys-
tem to a specified host. For example, to see the route taken to reach slashdot.org,
we would do this:

[me@linuxbox ~]$ traceroute slashdot.org

The output looks like this:

traceroute to slashdot.org (216.34.181.45), 30 hops max, 40 byte
packets
 1 ipcop.localdomain (192.168.1.1) 1.066 ms 1.366 ms 1.720 ms
 2 * * *
 3 ge-4-13-ur01.rockville.md.bad.comcast.net (68.87.130.9) 14.622
ms 14.885 ms 15.169 ms
 4 po-30-ur02.rockville.md.bad.comcast.net (68.87.129.154) 17.634
ms 17.626 ms 17.899 ms
 5 po-60-ur03.rockville.md.bad.comcast.net (68.87.129.158) 15.992
ms 15.983 ms 16.256 ms
 6 po-30-ar01.howardcounty.md.bad.comcast.net (68.87.136.5) 22.835
ms 14.233 ms 14.405 ms
 7 po-10-ar02.whitemarsh.md.bad.comcast.net (68.87.129.34) 16.154
ms 13.600 ms 18.867 ms
 8 te-0-3-0-1-cr01.philadelphia.pa.ibone.comcast.net (68.86.90.77)
21.951 ms 21.073 ms 21.557 ms
 9 pos-0-8-0-0-cr01.newyork.ny.ibone.comcast.net (68.86.85.10)
22.917 ms 21.884 ms 22.126 ms
10 204.70.144.1 (204.70.144.1) 43.110 ms 21.248 ms 21.264 ms
11 cr1-pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 21.857 ms
cr2-pos-0-0-3-1.newyork.savvis.net (204.70.204.238) 19.556 ms cr1-

197

16 – Networking

pos-0-7-3-1.newyork.savvis.net (204.70.195.93) 19.634 ms
12 cr2-pos-0-7-3-0.chicago.savvis.net (204.70.192.109) 41.586 ms
42.843 ms cr2-tengig-0-0-2-0.chicago.savvis.net (204.70.196.242)
43.115 ms
13 hr2-tengigabitethernet-12-1.elkgrovech3.savvis.net
(204.70.195.122) 44.215 ms 41.833 ms 45.658 ms
14 csr1-ve241.elkgrovech3.savvis.net (216.64.194.42) 46.840 ms
43.372 ms 47.041 ms
15 64.27.160.194 (64.27.160.194) 56.137 ms 55.887 ms 52.810 ms
16 slashdot.org (216.34.181.45) 42.727 ms 42.016 ms 41.437 ms

In the output, we can see that connecting from our test system to slashdot.org re-
quires traversing sixteen routers. For routers that provided identifying information, we
see their hostnames, IP addresses, and performance data, which includes three samples of
round-trip time from the local system to the router. For routers that do not provide identi-
fying information (because of router configuration, network congestion, firewalls, etc.),
we see asterisks as in the line for hop number 2.

netstat

The netstat program is used to examine various network settings and statistics.
Through the use of its many options, we can look at a variety of features in our network
setup. Using the “-ie” option, we can examine the network interfaces in our system:

[me@linuxbox ~]$ netstat -ie
eth0 Link encap:Ethernet HWaddr 00:1d:09:9b:99:67
 inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::21d:9ff:fe9b:9967/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:238488 errors:0 dropped:0 overruns:0 frame:0
 TX packets:403217 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 RX bytes:153098921 (146.0 MB) TX bytes:261035246 (248.9 MB)
 Memory:fdfc0000-fdfe0000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:2208 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2208 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:111490 (108.8 KB) TX bytes:111490 (108.8 KB)

In the example above, we see that our test system has two network interfaces. The first,

198

Examining And Monitoring A Network

called eth0, is the Ethernet interface and the second, called lo, is the loopback inter-
face, a virtual interface that the system uses to “talk to itself.”

When performing causal network diagnostics, the important things to look for are the
presence of the word “UP” at the beginning of the fourth line for each interface, indicat-
ing that the network interface is enabled, and the presence of a valid IP address in the
inet addr field on the second line. For systems using DHCP (Dynamic Host Configu-
ration Protocol), a valid IP address in this field will verify that the DHCP is working.

Using the “-r” option will display the kernel’s network routing table. This shows how the
network is configured to send packets from network to network:

[me@linuxbox ~]$ netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
default 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

In this simple example, we see a typical routing table for a client machine on a LAN (Lo-
cal Area Network) behind a firewall/router. The first line of the listing shows the destina-
tion 192.168.1.0. IP addresses that end in zero refer to networks rather than individ-
ual hosts, so this destination means any host on the LAN. The next field, Gateway, is
the name or IP address of the gateway (router) used to go from the current host to the des-
tination network. An asterisk in this field indicates that no gateway is needed.

The last line contains the destination default. This means any traffic destined for a
network that is not otherwise listed in the table. In our example, we see that the gateway
is defined as a router with the address of 192.168.1.1, which presumably knows what
to do with the destination traffic.

The netstat program has many options and we have only looked at a couple. Check
out the netstat man page for a complete list.

Transporting Files Over A Network

What good is a network unless we know how to move files across it? There are many
programs that move data over networks. We will cover two of them now and several
more in later sections.

ftp

One of the true “classic” programs, ftp gets it name from the protocol it uses, the File
Transfer Protocol. FTP is used widely on the Internet for file downloads. Most, if not all,

199

16 – Networking

web browsers support it and you often see URIs starting with the protocol ftp://.

Before there were web browsers, there was the ftp program. ftp is used to communi-
cate with FTP servers, machines that contain files that can be uploaded and downloaded
over a network.

FTP (in its original form) is not secure, because it sends account names and passwords in
cleartext. This means that they are not encrypted and anyone sniffing the network can see
them. Because of this, almost all FTP done over the Internet is done by anonymous FTP
servers. An anonymous server allows anyone to login using the login name “anonymous”
and a meaningless password.

In the example below, we show a typical session with the ftp program downloading an
Ubuntu iso image located in the /pub/cd_images/Ubuntu-8.04 directory of the
anonymous FTP server fileserver:

[me@linuxbox ~]$ ftp fileserver
Connected to fileserver.localdomain.
220 (vsFTPd 2.0.1)
Name (fileserver:me): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub/cd_images/Ubuntu-8.04
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-rw-r-- 1 500 500 733079552 Apr 25 03:53 ubuntu-8.04-
desktop-i386.iso
226 Directory send OK.
ftp> lcd Desktop
Local directory now /home/me/Desktop
ftp> get ubuntu-8.04-desktop-i386.iso
local: ubuntu-8.04-desktop-i386.iso remote: ubuntu-8.04-desktop-
i386.iso
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for ubuntu-8.04-desktop-
i386.iso (733079552 bytes).
226 File send OK.
733079552 bytes received in 68.56 secs (10441.5 kB/s)
ftp> bye

Here is an explanation of the commands entered during this session:

200

Transporting Files Over A Network

Command Meaning

ftp fileserver Invoke the ftp program and have it
connect to the FTP server
fileserver.

anonymous Login name. After the login prompt, a
password prompt will appear. Some
servers will accept a blank password,
others will require a password in the
form of an email address. In that case,
try something like
“user@example.com”.

cd pub/cd_images/Ubuntu-8.04 Change to the directory on the remote
system containing the desired file.
Note that on most anonymous FTP
servers, the files for public
downloading are found somewhere
under the pub directory.

ls List the directory on the remote
system.

lcd Desktop Change the directory on the local
system to ~/Desktop. In the
example, the ftp program was
invoked when the working directory
was ~. This command changes the
working directory to ~/Desktop.

get ubuntu-8.04-desktop-
i386.iso

Tell the remote system to transfer the
file ubuntu-8.04-desktop-
i386.iso to the local system. Since
the working directory on the local
system was changed to ~/Desktop,
the file will be downloaded there.

bye Log off the remote server and end the
ftp program session. The commands
quit and exit may also be used.

Typing “help” at the “ftp>” prompt will display a list of the supported commands. Using
ftp on a server where sufficient permissions have been granted, it is possible to perform

201

16 – Networking

many ordinary file management tasks. It’s clumsy, but it does work.

lftp – A Better ftp

ftp is not the only command-line FTP client. In fact, there are many. One of the better
(and more popular) ones is lftp by Alexander Lukyanov. It works much like the tradi-
tional ftp program, but has many additional convenience features including multiple-
protocol support (including HTTP), automatic re-try on failed downloads, background
processes, tab completion of path names, and many more.

wget

Another popular command-line program for file downloading is wget. It is useful for
downloading content from both web and FTP sites. Single files, multiple files, and even
entire sites can be downloaded. To download the first page of linuxcommand.org we
could do this:

[me@linuxbox ~]$ wget http://linuxcommand.org/index.php
--11:02:51-- http://linuxcommand.org/index.php
 => `index.php'
Resolving linuxcommand.org... 66.35.250.210
Connecting to linuxcommand.org|66.35.250.210|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

 [<=>] 3,120 --.--K/s

11:02:51 (161.75 MB/s) - `index.php' saved [3120]

The program's many options allow wget to recursively download, download files in the
background (allowing you to log off but continue downloading), and complete the down-
load of a partially downloaded file. These features are well documented in its better-than-
average man page.

Secure Communication With Remote Hosts

For many years, Unix-like operating systems have had the ability to be administered re-
motely via a network. In the early days, before the general adoption of the Internet, there
were a couple of popular programs used to log in to remote hosts. These were the
rlogin and telnet programs. These programs, however, suffer from the same fatal
flaw that the ftp program does; they transmit all their communications (including login
names and passwords) in cleartext. This makes them wholly inappropriate for use in the

202

Secure Communication With Remote Hosts

Internet age.

ssh

To address this problem, a new protocol called SSH (Secure Shell) was developed. SSH
solves the two basic problems of secure communication with a remote host. First, it au-
thenticates that the remote host is who it says it is (thus preventing so-called “man in the
middle” attacks), and second, it encrypts all of the communications between the local and
remote hosts.

SSH consists of two parts. An SSH server runs on the remote host, listening for incoming
connections on port 22, while an SSH client is used on the local system to communicate
with the remote server.

Most Linux distributions ship an implementation of SSH called OpenSSH from the
OpenBSD project. Some distributions include both the client and the server packages by
default (for example, Red Hat), while others (such as Ubuntu) only supply the client. To
enable a system to receive remote connections, it must have the OpenSSH-server
package installed, configured and running, and (if the system is either running or is be-
hind a firewall) it must allow incoming network connections on TCP port 22.

Tip: If you don’t have a remote system to connect to but want to try these exam-
ples, make sure the OpenSSH-server package is installed on your system and
use localhost as the name of the remote host. That way, your machine will cre-
ate network connections with itself.

The SSH client program used to connect to remote SSH servers is called, appropriately
enough, ssh. To connect to a remote host named remote-sys, we would use the ssh
client program like so:

[me@linuxbox ~]$ ssh remote-sys
The authenticity of host 'remote-sys (192.168.1.4)' can't be
established.
RSA key fingerprint is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Are you sure you want to continue connecting (yes/no)?

The first time the connection is attempted, a message is displayed indicating that the au-
thenticity of the remote host cannot be established. This is because the client program has
never seen this remote host before. To accept the credentials of the remote host, enter
“yes” when prompted. Once the connection is established, the user is prompted for
his/her password:

203

16 – Networking

Warning: Permanently added 'remote-sys,192.168.1.4' (RSA) to the list
of known hosts.
me@remote-sys's password:

After the password is successfully entered, we receive the shell prompt from the remote
system:

Last login: Sat Aug 30 13:00:48 2008
[me@remote-sys ~]$

The remote shell session continues until the user enters the exit command at the remote
shell prompt, thereby closing the remote connection. At this point, the local shell session
resumes and the local shell prompt reappears.

It is also possible to connect to remote systems using a different username. For example,
if the local user “me” had an account named “bob” on a remote system, user me could log
in to the account bob on the remote system as follows:

[me@linuxbox ~]$ ssh bob@remote-sys
bob@remote-sys's password:
Last login: Sat Aug 30 13:03:21 2008
[bob@remote-sys ~]$

As stated before, ssh verifies the authenticity of the remote host. If the remote host does
not successfully authenticate, the following message appears:

[me@linuxbox ~]$ ssh remote-sys
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle
attack)!
It is also possible that the RSA host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
41:ed:7a:df:23:19:bf:3c:a5:17:bc:61:b3:7f:d9:bb.
Please contact your system administrator.
Add correct host key in /home/me/.ssh/known_hosts to get rid of this
message.
Offending key in /home/me/.ssh/known_hosts:1
RSA host key for remote-sys has changed and you have requested strict

204

Secure Communication With Remote Hosts

checking.
Host key verification failed.

This message is caused by one of two possible situations. First, an attacker may be at-
tempting a “man-in-the-middle” attack. This is rare, since everybody knows that ssh
alerts the user to this. The more likely culprit is that the remote system has been changed
somehow; for example, its operating system or SSH server has been reinstalled. In the in-
terests of security and safety however, the first possibility should not be dismissed out of
hand. Always check with the administrator of the remote system when this message oc-
curs.

After it has been determined that the message is due to a benign cause, it is safe to correct
the problem on the client side. This is done by using a text editor (vim perhaps) to re-
move the obsolete key from the ~/.ssh/known_hosts file. In the example message
above, we see this:

Offending key in /home/me/.ssh/known_hosts:1

This means that line one of the known_hosts file contains the offending key. Delete
this line from the file, and the ssh program will be able to accept new authentication cre-
dentials from the remote system.

Besides opening a shell session on a remote system, ssh also allows us to execute a sin-
gle command on a remote system. For example, to execute the free command on a re-
mote host named remote-sys and have the results displayed on the local system:

[me@linuxbox ~]$ ssh remote-sys free
me@twin4's password:
 total used free shared buffers cached

Mem: 775536 507184 268352 0 110068 154596

-/+ buffers/cache: 242520 533016
Swap: 1572856 0 1572856
[me@linuxbox ~]$

It’s possible to use this technique in more interesting ways, such as this example in which
we perform an ls on the remote system and redirect the output to a file on the local sys-
tem:

205

16 – Networking

[me@linuxbox ~]$ ssh remote-sys 'ls *' > dirlist.txt
me@twin4's password:
[me@linuxbox ~]$

Notice the use of the single quotes in the command above. This is done because we do
not want the pathname expansion performed on the local machine; rather, we want it to
be performed on the remote system. Likewise, if we had wanted the output redirected to a
file on the remote machine, we could have placed the redirection operator and the file-
name within the single quotes:

[me@linuxbox ~]$ ssh remote-sys 'ls * > dirlist.txt'

Tunneling With SSH

Part of what happens when you establish a connection with a remote host via SSH
is that an encrypted tunnel is created between the local and remote systems. Nor-
mally, this tunnel is used to allow commands typed at the local system to be trans-
mitted safely to the remote system, and for the results to be transmitted safely
back. In addition to this basic function, the SSH protocol allows most types of
network traffic to be sent through the encrypted tunnel, creating a sort of VPN
(Virtual Private Network) between the local and remote systems.
Perhaps the most common use of this feature is to allow X Window system traffic
to be transmitted. On a system running an X server (that is, a machine displaying
a GUI), it is possible to launch and run an X client program (a graphical applica-
tion) on a remote system and have its display appear on the local system. It’s easy
to do; here’s an example: Let’s say we are sitting at a Linux system called lin-
uxbox which is running an X server, and we want to run the xload program on
a remote system named remote-sys and see the program’s graphical output on
our local system. We could do this:
[me@linuxbox ~]$ ssh -X remote-sys
me@remote-sys's password:
Last login: Mon Sep 08 13:23:11 2008
[me@remote-sys ~]$ xload
After the xload command is executed on the remote system, its window appears
on the local system. On some systems, you may need to use the “-Y” option
rather than the “-X” option to do this.

206

Secure Communication With Remote Hosts

scp And sftp

The OpenSSH package also includes two programs that can make use of an SSH-en-
crypted tunnel to copy files across the network. The first, scp (secure copy) is used
much like the familiar cp program to copy files. The most notable difference is that the
source or destination pathnames may be preceded with the name of a remote host, fol-
lowed by a colon character. For example, if we wanted to copy a document named doc-
ument.txt from our home directory on the remote system, remote-sys, to the cur-
rent working directory on our local system, we could do this:

[me@linuxbox ~]$ scp remote-sys:document.txt .
me@remote-sys's password:
document.txt 100% 5581 5.5KB/s 00:00
[me@linuxbox ~]$

As with ssh, you may apply a username to the beginning of the remote host’s name if
the desired remote host account name does not match that of the local system:

[me@linuxbox ~]$ scp bob@remote-sys:document.txt .

The second SSH file-copying program is sftp which, as its name implies, is a secure re-
placement for the ftp program. sftp works much like the original ftp program that
we used earlier; however, instead of transmitting everything in cleartext, it uses an SSH
encrypted tunnel. sftp has an important advantage over conventional ftp in that it does
not require an FTP server to be running on the remote host. It only requires the SSH
server. This means that any remote machine that can connect with the SSH client can also
be used as a FTP-like server. Here is a sample session:

[me@linuxbox ~]$ sftp remote-sys
Connecting to remote-sys...
me@remote-sys's password:
sftp> ls
ubuntu-8.04-desktop-i386.iso
sftp> lcd Desktop
sftp> get ubuntu-8.04-desktop-i386.iso
Fetching /home/me/ubuntu-8.04-desktop-i386.iso to ubuntu-8.04-
desktop-i386.iso
/home/me/ubuntu-8.04-desktop-i386.iso 100% 699MB 7.4MB/s 01:35
sftp> bye

207

16 – Networking

Tip: The SFTP protocol is supported by many of the graphical file managers found
in Linux distributions. Using either Nautilus (GNOME) or Konqueror (KDE), we
can enter a URI beginning with sftp:// into the location bar and operate on files
stored on a remote system running an SSH server.

An SSH Client For Windows?

Let’s say you are sitting at a Windows machine but you need to log in to your
Linux server and get some real work done; what do you do? Get an SSH client
program for your Windows box, of course! There are a number of these. The most
popular one is probably PuTTY by Simon Tatham and his team. The PuTTY pro-
gram displays a terminal window and allow a Windows user to open an SSH (or
telnet) session on a remote host. The program also provides analogs for the scp
and sftp programs.
PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/

Summing Up

In this chapter, we have surveyed the field of networking tools found on most Linux sys-
tems. Since Linux is so widely used in servers and networking appliances, there are many
more that can be added by installing additional software. But even with the basic set of
tools, it is possible to perform many useful network related tasks.

Further Reading

● For a broad (albeit dated) look at network administration, the Linux Documenta-
tion Project provides the Linux Network Administrator’s Guide:
http://tldp.org/LDP/nag2/index.html

● Wikipedia contains many good networking articles. Here are some of the basics:
http://en.wikipedia.org/wiki/Internet_protocol_address
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

208

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Host_name
http://en.wikipedia.org/wiki/Internet_protocol_address
http://tldp.org/LDP/nag2/index.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/

17 – Searching For Files

17 – Searching For Files

As we have wandered around our Linux system, one thing has become abundantly clear:
A typical Linux system has a lot of files! This begs the question, “How do we find
things?” We already know that the Linux file system is well organized according to con-
ventions that have been passed down from one generation of Unix-like systems to the
next, but the sheer number of files can present a daunting problem.

In this chapter, we will look at two tools that are used to find files on a system. These
tools are:

● locate – Find files by name

● find – Search for files in a directory hierarchy

We will also look at a command that is often used with file-search commands to process
the resulting list of files:

● xargs – Build and execute command lines from standard input

In addition, we will introduce a couple of commands to assist us in our explorations:

● touch – Change file times

● stat – Display file or file system status

locate – Find Files The Easy Way

The locate program performs a rapid database search of pathnames, and then outputs
every name that matches a given substring. Say, for example, we want to find all the pro-
grams with names that begin with “zip.” Since we are looking for programs, we can as-
sume that the name of the directory containing the programs would end with “bin/”.
Therefore, we could try to use locate this way to find our files:

[me@linuxbox ~]$ locate bin/zip

locate will search its database of pathnames and output any that contain the string

209

17 – Searching For Files

“bin/zip”:

/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

If the search requirement is not so simple, locate can be combined with other tools
such as grep to design more interesting searches:

[me@linuxbox ~]$ locate zip | grep bin
/bin/bunzip2
/bin/bzip2
/bin/bzip2recover
/bin/gunzip
/bin/gzip
/usr/bin/funzip
/usr/bin/gpg-zip
/usr/bin/preunzip
/usr/bin/prezip
/usr/bin/prezip-bin
/usr/bin/unzip
/usr/bin/unzipsfx
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

The locate program has been around for a number of years, and there are several dif-
ferent variants in common use. The two most common ones found in modern Linux dis-
tributions are slocate and mlocate, though they are usually accessed by a symbolic
link named locate. The different versions of locate have overlapping options sets.
Some versions include regular expression matching (which we’ll cover in an upcoming
chapter) and wildcard support. Check the man page for locate to determine which ver-
sion of locate is installed.

210

locate – Find Files The Easy Way

Where Does The locate Database Come From?

You may notice that, on some distributions, locate fails to work just after the
system is installed, but if you try again the next day, it works fine. What gives?
The locate database is created by another program named updatedb. Usu-
ally, it is run periodically as a cron job; that is, a task performed at regular inter-
vals by the cron daemon. Most systems equipped with locate run updatedb
once a day. Since the database is not updated continuously, you will notice that
very recent files do not show up when using locate. To overcome this, it’s pos-
sible to run the updatedb program manually by becoming the superuser and
running updatedb at the prompt.

find – Find Files The Hard Way

While the locate program can find a file based solely on its name, the find program
searches a given directory (and its subdirectories) for files based on a variety of at-
tributes. We’re going to spend a lot of time with find because it has a lot of interesting
features that we will see again and again when we start to cover programming concepts in
later chapters.

In its simplest use, find is given one or more names of directories to search. For exam-
ple, to produce a list of our home directory:

[me@linuxbox ~]$ find ~

On most active user accounts, this will produce a large list. Since the list is sent to stan-
dard output, we can pipe the list into other programs. Let’s use wc to count the number of
files:

[me@linuxbox ~]$ find ~ | wc -l
47068

Wow, we’ve been busy! The beauty of find is that it can be used to identify files that
meet specific criteria. It does this through the (slightly strange) application of options,
tests, and actions. We’ll look at the tests first.

211

17 – Searching For Files

Tests

Let’s say that we want a list of directories from our search. To do this, we could add the
following test:

[me@linuxbox ~]$ find ~ -type d | wc -l
1695

Adding the test -type d limited the search to directories. Conversely, we could have
limited the search to regular files with this test:

[me@linuxbox ~]$ find ~ -type f | wc -l
38737

Here are the common file type tests supported by find:

Table 17-1: find File Types

File Type Description

b Block special device file

c Character special device file

d Directory

f Regular file

l Symbolic link

We can also search by file size and filename by adding some additional tests: Let’s look
for all the regular files that match the wildcard pattern “*.JPG” and are larger than one
megabyte:

[me@linuxbox ~]$ find ~ -type f -name "*.JPG" -size +1M | wc -l
840

In this example, we add the -name test followed by the wildcard pattern. Notice how we
enclose it in quotes to prevent pathname expansion by the shell. Next, we add the -size
test followed by the string “+1M”. The leading plus sign indicates that we are looking for
files larger than the specified number. A leading minus sign would change the meaning of

212

find – Find Files The Hard Way

the string to be smaller than the specified number. Using no sign means, “match the value
exactly.” The trailing letter “M” indicates that the unit of measurement is megabytes. The
following characters may be used to specify units:

Table 17-2: find Size Units

Character Unit

b 512-byte blocks. This is the default if no unit is specified.

c Bytes

w 2-byte words

k Kilobytes (units of 1024 bytes)

M Megabytes (units of 1048576 bytes)

G Gigabytes (units of 1073741824 bytes)

find supports a large number of different tests. Below is a rundown of the common
ones. Note that in cases where a numeric argument is required, the same “+” and “-” no-
tation discussed above can be applied:

Table 17-3: find Tests

Test Description

-cmin n Match files or directories whose content or attributes were
last modified exactly n minutes ago. To specify less than n
minutes ago, use -n and to specify more than n minutes
ago, use +n.

-cnewer file Match files or directories whose contents or attributes were
last modified more recently than those of file.

-ctime n Match files or directories whose contents or attributes were
last modified n*24 hours ago.

-empty Match empty files and directories.

-group name Match file or directories belonging to group. group may
be expressed as either a group name or as a numeric group
ID.

-iname pattern Like the -name test but case insensitive.

-inum n Match files with inode number n. This is helpful for finding
all the hard links to a particular inode.

213

17 – Searching For Files

-mmin n Match files or directories whose contents were last
modified n minutes ago.

-mtime n Match files or directories whose contents were last
modified n*24 hours ago.

-name pattern Match files and directories with the specified wildcard
pattern.

-newer file Match files and directories whose contents were modified
more recently than the specified file. This is very useful
when writing shell scripts that perform file backups. Each
time you make a backup, update a file (such as a log), and
then use find to determine which files have changed since
the last update.

-nouser Match file and directories that do not belong to a valid user.
This can be used to find files belonging to deleted accounts
or to detect activity by attackers.

-nogroup Match files and directories that do not belong to a valid
group.

-perm mode Match files or directories that have permissions set to the
specified mode. mode may be expressed by either octal or
symbolic notation.

-samefile name Similar to the -inum test. Matches files that share the
same inode number as file name.

-size n Match files of size n.

-type c Match files of type c.

-user name Match files or directories belonging to user name. The user
may be expressed by a username or by a numeric user ID.

This is not a complete list. The find man page has all the details.

Operators

Even with all the tests that find provides, we may still need a better way to describe the
logical relationships between the tests. For example, what if we needed to determine if
all the files and subdirectories in a directory had secure permissions? We would look for
all the files with permissions that are not 0600 and the directories with permissions that
are not 0700. Fortunately, find provides a way to combine tests using logical operators

214

find – Find Files The Hard Way

17 – Searching For Files

we use -or instead of -and? Because as find scans through the files and directories,
each one is evaluated to see if it matches the specified tests. We want to know if it is ei-
ther a file with bad permissions or a directory with bad permissions. It can’t be both at
the same time. So if we expand the grouped expressions, we can see it this way:

(file with bad perms) -or (directory with bad perms)

Our next challenge is how to test for “bad permissions.” How do we do that? Actually we
don’t. What we will test for is “not good permissions,” since we know what “good per-
missions” are. In the case of files, we define good as 0600 and for directories, as 0700.
The expression that will test files for “not good” permissions is:

-type f -and -not -perms 0600

and for directories:

-type d -and -not -perms 0700

As noted in the table of operators above, the -and operator can be safely removed, since
it is implied by default. So if we put this all back together, we get our final command:

find ~ (-type f -not -perms 0600) -or (-type d -not
-perms 0700)

However, since the parentheses have special meaning to the shell, we must escape them
to prevent the shell from trying to interpret them. Preceding each one with a backslash
character does the trick.

There is another feature of logical operators that is important to understand. Let’s say that
we have two expressions separated by a logical operator:

expr1 -operator expr2

In all cases, expr1 will always be performed; however, the operator will determine if
expr2 is performed. Here’s how it works:

Table 17-5: find AND/OR Logic

Results of expr1 Operator expr2 is...

True -and Always performed

False -and Never performed

True -or Never performed

False -or Always performed

Why does this happen? It’s done to improve performance. Take -and, for example. We
know that the expression expr1 -and expr2 cannot be true if the result of expr1 is

216

find – Find Files The Hard Way

false, so there is no point in performing expr2. Likewise, if we have the expression
expr1 -or expr2 and the result of expr1 is true, there is no point in performing
expr2, as we already know that the expression expr1 -or expr2 is true.

OK, so it helps it go faster. Why is this important? It’s important because we can rely on
this behavior to control how actions are performed, as we shall soon see.

Predefined Actions

Let’s get some work done! Having a list of results from our find command is useful, but
what we really want to do is act on the items on the list. Fortunately, find allows actions
to be performed based on the search results. There are a set of predefined actions and sev-
eral ways to apply user-defined actions. First let’s look at a few of the predefined actions:

Table 17-6: Predefined find Actions

Action Description

-delete Delete the currently matching file.

-ls Perform the equivalent of ls -dils on the matching file.
Output is sent to standard output.

-print Output the full pathname of the matching file to standard
output. This is the default action if no other action is
specified.

-quit Quit once a match has been made.

As with the tests, there are many more actions. See the find man page for full details.

In our very first example, we did this:

find ~

which produced a list of every file and subdirectory contained within our home directory.
It produced a list because the -print action is implied if no other action is specified.
Thus our command could also be expressed as:

find ~ -print

We can use find to delete files that meet certain criteria. For example, to delete files that

217

17 – Searching For Files

have the file extension “.BAK” (which is often used to designate backup files), we could
use this command:

find ~ -type f -name '*.BAK' -delete

In this example, every file in the user’s home directory (and its subdirectories) is searched
for filenames ending in .BAK. When they are found, they are deleted.

Warning: It should go without saying that you should use extreme caution when
using the -delete action. Always test the command first by substituting the
-print action for -delete to confirm the search results.

Before we go on, let’s take another look at how the logical operators affect actions. Con-
sider the following command:

find ~ -type f -name '*.BAK' -print

As we have seen, this command will look for every regular file (-type f) whose name
ends with .BAK (-name '*.BAK') and will output the relative pathname of each
matching file to standard output (-print). However, the reason the command performs
the way it does is determined by the logical relationships between each of the tests and
actions. Remember, there is, by default, an implied -and relationship between each test
and action. We could also express the command this way to make the logical relation-
ships easier to see:

find ~ -type f -and -name '*.BAK' -and -print

With our command fully expressed, let’s look at how the logical operators affect its exe-
cution:

Test/Action Is Performed Only If...

-print -type f and -name '*.BAK' are true

-name ‘*.BAK’ -type f is true

-type f Is always performed, since it is the first test/action in an
-and relationship.

218

find – Find Files The Hard Way

Since the logical relationship between the tests and actions determines which of them are
performed, we can see that the order of the tests and actions is important. For instance, if
we were to reorder the tests and actions so that the -print action was the first one, the
command would behave much differently:

find ~ -print -and -type f -and -name '*.BAK'

This version of the command will print each file (the -print action always evaluates to
true) and then test for file type and the specified file extension.

User-Defined Actions

In addition to the predefined actions, we can also invoke arbitrary commands. The tradi-
tional way of doing this is with the -exec action. This action works like this:

-exec command {} ;

where command is the name of a command, {} is a symbolic representation of the current
pathname, and the semicolon is a required delimiter indicating the end of the command.
Here’s an example of using -exec to act like the -delete action discussed earlier:

-exec rm '{}' ';'

Again, since the brace and semicolon characters have special meaning to the shell, they
must be quoted or escaped.

It’s also possible to execute a user-defined action interactively. By using the -ok action
in place of -exec, the user is prompted before execution of each specified command:

find ~ -type f -name 'foo*' -ok ls -l '{}' ';'
< ls ... /home/me/bin/foo > ? y
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
< ls ... /home/me/foo.txt > ? y
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

In this example, we search for files with names starting with the string “foo” and execute
the command ls -l each time one is found. Using the -ok action prompts the user be-
fore the ls command is executed.

219

17 – Searching For Files

Improving Efficiency

When the -exec action is used, it launches a new instance of the specified command
each time a matching file is found. There are times when we might prefer to combine all
of the search results and launch a single instance of the command. For example, rather
than executing the commands like this:

ls -l file1

ls -l file2

we may prefer to execute them this way:

ls -l file1 file2

thus causing the command to be executed only one time rather than multiple times. There
are two ways we can do this. The traditional way, using the external command xargs
and the alternate way, using a new feature in find itself. We’ll talk about the alternate
way first.

By changing the trailing semicolon character to a plus sign, we activate the ability of
find to combine the results of the search into an argument list for a single execution of
the desired command. Going back to our example, this:

find ~ -type f -name 'foo*' -exec ls -l '{}' ';'
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

will execute ls each time a matching file is found. By changing the command to:

find ~ -type f -name 'foo*' -exec ls -l '{}' +
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

we get the same results, but the system only has to execute the ls command once.

xargs

The xargs command performs an interesting function. It accepts input from standard in-
put and converts it into an argument list for a specified command. With our example, we
would use it like this:

220

find – Find Files The Hard Way

find ~ -type f -name 'foo*' -print | xargs ls -l
-rwxr-xr-x 1 me me 224 2007-10-29 18:44 /home/me/bin/foo
-rw-r--r-- 1 me me 0 2008-09-19 12:53 /home/me/foo.txt

Here we see the output of the find command piped into xargs which, in turn, con-
structs an argument list for the ls command and then executes it.

Note: While the number of arguments that can be placed into a command line is
quite large, it’s not unlimited. It is possible to create commands that are too long for
the shell to accept. When a command line exceeds the maximum length supported
by the system, xargs executes the specified command with the maximum number
of arguments possible and then repeats this process until standard input is ex-
hausted. To see the maximum size of the command line, execute xargs with the
--show-limits option.

Dealing With Funny Filenames

Unix-like systems allow embedded spaces (and even newlines!) in filenames.
This causes problems for programs like xargs that construct argument lists for
other programs. An embedded space will be treated as a delimiter, and the result-
ing command will interpret each space-separated word as a separate argument. To
overcome this, find and xarg allow the optional use of a null character as ar-
gument separator. A null character is defined in ASCII as the character repre-
sented by the number zero (as opposed to, for example, the space character, which
is defined in ASCII as the character represented by the number 32). The find
command provides the action -print0, which produces null-separated output,
and the xargs command has the --null option, which accepts null separated
input. Here’s an example:
find ~ -iname '*.jpg' -print0 | xargs --null ls -l
Using this technique, we can ensure that all files, even those containing embedded
spaces in their names, are handled correctly.

A Return To The Playground

It’s time to put find to some (almost) practical use. We’ll create a playground and try
out some of what we have learned.

First, let’s create a playground with lots of subdirectories and files:

221

17 – Searching For Files

[me@linuxbox ~]$ mkdir -p playground/dir-{001..100}
[me@linuxbox ~]$ touch playground/dir-{001..100}/file-{A..Z}

Marvel in the power of the command line! With these two lines, we created a playground
directory containing 100 subdirectories each containing 26 empty files. Try that with the
GUI!

The method we employed to accomplish this magic involved a familiar command
(mkdir), an exotic shell expansion (braces) and a new command, touch. By combining
mkdir with the -p option (which causes mkdir to create the parent directories of the
specified paths) with brace expansion, we were able to create 100 subdirectories.

The touch command is usually used to set or update the access, change, and modify
times of files. However, if a filename argument is that of a nonexistent file, an empty file
is created.

In our playground, we created 100 instances of a file named file-A. Let’s find them:

[me@linuxbox ~]$ find playground -type f -name 'file-A'

Note that unlike ls, find does not produce results in sorted order. Its order is deter-
mined by the layout of the storage device. We can confirm that we actually have 100 in-
stances of the file this way:

[me@linuxbox ~]$ find playground -type f -name 'file-A' | wc -l
100

Next, let’s look at finding files based on their modification times. This will be helpful
when creating backups or organizing files in chronological order. To do this, we will first
create a reference file against which we will compare modification time:

[me@linuxbox ~]$ touch playground/timestamp

This creates an empty file named timestamp and sets its modification time to the cur-
rent time. We can verify this by using another handy command, stat, which is a kind of
souped-up version of ls. The stat command reveals all that the system understands
about a file and its attributes:

222

find – Find Files The Hard Way

[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2008-10-08 15:15:39.000000000 -0400
Modify: 2008-10-08 15:15:39.000000000 -0400
Change: 2008-10-08 15:15:39.000000000 -0400

If we touch the file again and then examine it with stat, we will see that the file’s
times have been updated.:

[me@linuxbox ~]$ touch playground/timestamp
[me@linuxbox ~]$ stat playground/timestamp
 File: `playground/timestamp'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: 803h/2051d Inode: 14265061 Links: 1
Access: (0644/-rw-r--r--) Uid: (1001/ me) Gid: (1001/ me)
Access: 2008-10-08 15:23:33.000000000 -0400
Modify: 2008-10-08 15:23:33.000000000 -0400
Change: 2008-10-08 15:23:33.000000000 -0400

Next, let’s use find to update some of our playground files:

[me@linuxbox ~]$ find playground -type f -name 'file-B' -exec touch
'{}' ';'

This updates all files in the playground named file-B. Next we’ll use find to identify
the updated files by comparing all the files to the reference file timestamp:

[me@linuxbox ~]$ find playground -type f -newer playground/timestamp

The results contain all 100 instances of file-B. Since we performed a touch on all the
files in the playground named file-B after we updated timestamp, they are now
“newer” than timestamp and thus can be identified with the -newer test.

Finally, let’s go back to the bad permissions test we performed earlier and apply it to
playground:

223

17 – Searching For Files

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 \) -or \(
-type d -not -perm 0700 \)

This command lists all 100 directories and 2600 files in playground (as well as
timestamp and playground itself, for a total of 2702) because none of them meets
our definition of “good permissions.” With our knowledge of operators and actions, we
can add actions to this command to apply new permissions to the files and directories in
our playground:

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec
chmod 0600 '{}' ';' \) -or \(-type d -not -perm 0700 -exec chmod
0700 '{}' ';' \)

On a day-to-day basis, we might find it easier to issue two commands, one for the direc-
tories and one for the files, rather than this one large compound command, but it’s nice to
know that we can do it this way. The important point here is to understand how the opera-
tors and actions can be used together to perform useful tasks.

Options

Finally, we have the options. The options are used to control the scope of a find search.
They may be included with other tests and actions when constructing find expressions.
Here is a list of the most commonly used ones:

Table 17-7: find Options

Option Description

-depth Direct find to process a directory’s files before the
directory itself. This option is automatically applied when
the -delete action is specified.

-maxdepth levels Set the maximum number of levels that find will
descend into a directory tree when performing tests and
actions.

-mindepth levels Set the minimum number of levels that find will
descend into a directory tree before applying tests and
actions.

-mount Direct find not to traverse directories that are mounted
on other file systems.

224

find – Find Files The Hard Way

-noleaf Direct find not to optimize its search based on the
assumption that it is searching a Unix-like file system.
This is needed when scanning DOS/Windows file
systems and CD-ROMs.

Summing Up

It's easy to see that locate is as simple as find is complicated. They both have their
uses. Take the time to explore the many features of find. It can, with regular use, im-
prove your understanding of Linux files system operations.

Further Reading

● The locate, updatedb, find, and xargs programs are all part the GNU
Project’s findutils package. The GNU Project provides a website with extensive
on-line documentation, which is quite good and should be read if you are using
these programs in high security environments:
http://www.gnu.org/software/findutils/

225

http://www.gnu.org/software/findutils/

18 – Archiving And Backup

18 – Archiving And Backup

One of the primary tasks of a computer system’s administrator is keeping the system’s
data secure. One way this is done is by performing timely backups of the system’s files.
Even if you’re not a system administrator, it is often useful to make copies of things and
to move large collections of files from place to place and from device to device.

In this chapter, we will look at several common programs that are used to manage collec-
tions of files. There are the file compression programs:

● gzip – Compress or expand files

● bzip2 – A block sorting file compressor

The archiving programs:

● tar – Tape archiving utility

● zip – Package and compress files

And the file synchronization program:

● rsync – Remote file and directory synchronization

Compressing Files

Throughout the history of computing, there has been a struggle to get the most data into
the smallest available space, whether that space be memory, storage devices, or network
bandwidth. Many of the data services that we take for granted today, such as portable mu-
sic players, high definition television, or broadband Internet, owe their existence to effec-
tive data compression techniques.

Data compression is the process of removing redundancy from data. Let’s consider an
imaginary example. Say we had an entirely black picture file with the dimensions of 100
pixels by 100 pixels. In terms of data storage (assuming 24 bits, or 3 bytes per pixel), the
image will occupy 30,000 bytes of storage:

100 * 100 * 3 = 30,000

An image that is all one color contains entirely redundant data. If we were clever, we
could encode the data in such a way that we simply describe the fact that we have a block

226

Compressing Files

of 10,000 black pixels. So, instead of storing a block of data containing 30,000 zeros
(black is usually represented in image files as zero), we could compress the data into the
number 10,000, followed by a zero to represent our data. Such a data compression
scheme is called run-length encoding and is one of the most rudimentary compression
techniques. Today’s techniques are much more advanced and complex but the basic goal
remains the same—get rid of redundant data.   

Compression algorithms (the mathematical techniques used to carry out the compression)
fall into two general categories, lossless and lossy. Lossless compression preserves all the
data contained in the original. This means that when a file is restored from a compressed
version, the restored file is exactly the same as the original, uncompressed version. Lossy
compression, on the other hand, removes data as the compression is performed, to allow
more compression to be applied. When a lossy file is restored, it does not match the origi-
nal version; rather, it is a close approximation. Examples of lossy compression are JPEG
(for images) and MP3 (for music). In our discussion, we will look exclusively at lossless
compression, since most data on computers cannot tolerate any data loss.

gzip

The gzip program is used to compress one or more files. When executed, it replaces the
original file with a compressed version of the original. The corresponding gunzip pro-
gram is used to restore compressed files to their original, uncompressed form. Here is an
example:

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 15738 2008-10-14 07:15 foo.txt
[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 3230 2008-10-14 07:15 foo.txt.gz
[me@linuxbox ~]$ gunzip foo.txt
[me@linuxbox ~]$ ls -l foo.*
-rw-r--r-- 1 me me 15738 2008-10-14 07:15 foo.txt

In this example, we create a text file named foo.txt from a directory listing. Next, we
run gzip, which replaces the original file with a compressed version named foo.tx-
t.gz. In the directory listing of foo.*, we see that the original file has been replaced
with the compressed version, and that the compressed version is about one-fifth the size
of the original. We can also see that the compressed file has the same permissions and
timestamp as the original.

Next, we run the gunzip program to uncompress the file. Afterward, we can see that the
compressed version of the file has been replaced with the original, again with the permis-

227

18 – Archiving And Backup

sions and timestamp preserved.

gzip has many options. Here are a few:

Table 18-1: gzip Options

Option Description

-c Write output to standard output and keep original files. May also be
specified with --stdout and --to-stdout.

-d Decompress. This causes gzip to act like gunzip. May also be
specified with --decompress or --uncompress.

-f Force compression even if a compressed version of the original file
already exists. May also be specified with --force.

-h Display usage information. May also be specified with --help.

-l List compression statistics for each file compressed. May also be
specified with --list.

-r If one or more arguments on the command line are directories,
recursively compress files contained within them. May also be
specified with --recursive.

-t Test the integrity of a compressed file. May also be specified with
--test.

-v Display verbose messages while compressing. May also be specified
with --verbose.

-number Set amount of compression. number is an integer in the range of 1
(fastest, least compression) to 9 (slowest, most compression). The
values 1 and 9 may also be expressed as --fast and --best,
respectively. The default value is 6.

Going back to our earlier example:

[me@linuxbox ~]$ gzip foo.txt
[me@linuxbox ~]$ gzip -tv foo.txt.gz
foo.txt.gz: OK
[me@linuxbox ~]$ gzip -d foo.txt.gz

Here, we replaced the file foo.txt with a compressed version named foo.txt.gz.
Next, we tested the integrity of the compressed version, using the -t and -v options. Fi-

228

Compressing Files

nally, we decompressed the file back to its original form.

gzip can also be used in interesting ways via standard input and output:

[me@linuxbox ~]$ ls -l /etc | gzip > foo.txt.gz

This command creates a compressed version of a directory listing.

The gunzip program, which uncompresses gzip files, assumes that filenames end in the
extension .gz, so it’s not necessary to specify it, as long as the specified name is not in
conflict with an existing uncompressed file:

[me@linuxbox ~]$ gunzip foo.txt

If our goal were only to view the contents of a compressed text file, we could do this:

[me@linuxbox ~]$ gunzip -c foo.txt | less

Alternately, there is a program supplied with gzip, called zcat, that is equivalent to
gunzip with the -c option. It can be used like the cat command on gzip compressed
files:

[me@linuxbox ~]$ zcat foo.txt.gz | less

Tip: There is a zless program, too. It performs the same function as the pipeline
above.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip, but uses a different compres-
sion algorithm that achieves higher levels of compression at the cost of compression
speed. In most regards, it works in the same fashion as gzip. A file compressed with
bzip2 is denoted with the extension .bz2:

229

18 – Archiving And Backup

[me@linuxbox ~]$ ls -l /etc > foo.txt
[me@linuxbox ~]$ ls -l foo.txt
-rw-r--r-- 1 me me 15738 2008-10-17 13:51 foo.txt
[me@linuxbox ~]$ bzip2 foo.txt
[me@linuxbox ~]$ ls -l foo.txt.bz2
-rw-r--r-- 1 me me 2792 2008-10-17 13:51 foo.txt.bz2
[me@linuxbox ~]$ bunzip2 foo.txt.bz2

As we can see, bzip2 can be used the same way as gzip. All the options (except for
-r) that we discussed for gzip are also supported in bzip2. Note, however, that the
compression level option (-number) has a somewhat different meaning to bzip2.
bzip2 comes with bunzip2 and bzcat for decompressing files.

bzip2 also comes with the bzip2recover program, which will try to recover dam-
aged .bz2 files.

Don’t Be Compressive Compulsive

I occasionally see people attempting to compress a file, that has already been
compressed with an effective compression algorithm, by doing something like
this:
$ gzip picture.jpg
Don’t do it. You’re probably just wasting time and space! If you apply compres-
sion to a file that is already compressed, you will actually end up a larger file.
This is because all compression techniques involve some overhead that is added
to the file to describe the compression. If you try to compress a file that already
contains no redundant information, the compression will not result in any savings
to offset the additional overhead.

Archiving Files

A common file-management task often used in conjunction with compression is archiv-
ing. Archiving is the process of gathering up many files and bundling them together into a
single large file. Archiving is often done as a part of system backups. It is also used when
old data is moved from a system to some type of long-term storage.

tar

In the Unix-like world of software, the tar program is the classic tool for archiving files.
Its name, short for tape archive, reveals its roots as a tool for making backup tapes. While
it is still used for that traditional task, it is equally adept on other storage devices as well.

230

Archiving Files

We often see filenames that end with the extension .tar or .tgz, which indicate a
“plain” tar archive and a gzipped archive, respectively. A tar archive can consist of a
group of separate files, one or more directory hierarchies, or a mixture of both. The com-
mand syntax works like this:

tar mode[options] pathname...

where mode is one of the following operating modes (only a partial list is shown here; see
the tar man page for a complete list):

Table 18-2: tar Modes

Mode Description

c Create an archive from a list of files and/or directories.

x Extract an archive.

r Append specified pathnames to the end of an archive.

t List the contents of an archive.

tar uses a slightly odd way of expressing options, so we’ll need some examples to show
how it works. First, let’s re-create our playground from the previous chapter:

[me@linuxbox ~]$ mkdir -p playground/dir-{001..100}
[me@linuxbox ~]$ touch playground/dir-{001..100}/file-{A..Z}

Next, let’s create a tar archive of the entire playground:

[me@linuxbox ~]$ tar cf playground.tar playground

This command creates a tar archive named playground.tar that contains the entire
playground directory hierarchy. We can see that the mode and the f option, which is used
to specify the name of the tar archive, may be joined together, and do not require a lead-
ing dash. Note, however, that the mode must always be specified first, before any other
option.

To list the contents of the archive, we can do this:

[me@linuxbox ~]$ tar tf playground.tar

231

18 – Archiving And Backup

For a more detailed listing, we can add the v (verbose) option:

[me@linuxbox ~]$ tar tvf playground.tar

Now, let’s extract the playground in a new location. We will do this by creating a new di-
rectory named foo, changing the directory and extracting the tar archive:

[me@linuxbox ~]$ mkdir foo
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground.tar
[me@linuxbox foo]$ ls
playground

If we examine the contents of ~/foo/playground, we see that the archive was suc-
cessfully installed, creating a precise reproduction of the original files. There is one
caveat, however: Unless you are operating as the superuser, files and directories extracted
from archives take on the ownership of the user performing the restoration, rather than
the original owner.

Another interesting behavior of tar is the way it handles pathnames in archives. The de-
fault for pathnames is relative, rather than absolute. tar does this by simply removing
any leading slash from the pathname when creating the archive. To demonstrate, we will
re-create our archive, this time specifying an absolute pathname:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ tar cf playground2.tar ~/playground

Remember, ~/playground will expand into /home/me/playground when we
press the enter key, so we will get an absolute pathname for our demonstration. Next, we
will extract the archive as before and watch what happens:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar
[me@linuxbox foo]$ ls
home playground
[me@linuxbox foo]$ ls home
me
[me@linuxbox foo]$ ls home/me
playground

232

Archiving Files

Here we can see that when we extracted our second archive, it re-created the directory
home/me/playground relative to our current working directory, ~/foo, not relative
to the root directory, as would have been the case with an absolute pathname. This may
seem like an odd way for it to work, but it’s actually more useful this way, as it allows us
to extract archives to any location rather than being forced to extract them to their origi-
nal locations. Repeating the exercise with the inclusion of the verbose option (v) will
give a clearer picture of what’s going on.

Let’s consider a hypothetical, yet practical, example of tar in action. Imagine we want
to copy the home directory and its contents from one system to another and we have a
large USB hard drive that we can use for the transfer. On our modern Linux system, the
drive is “automagically” mounted in the /media directory. Let’s also imagine that the
disk has a volume name of BigDisk when we attach it. To make the tar archive, we can
do the following:

[me@linuxbox ~]$ sudo tar cf /media/BigDisk/home.tar /home

After the tar file is written, we unmount the drive and attach it to the second computer.
Again, it is mounted at /media/BigDisk. To extract the archive, we do this:

[me@linuxbox2 ~]$ cd /
[me@linuxbox2 /]$ sudo tar xf /media/BigDisk/home.tar

What’s important to see here is that we must first change directory to /, so that the ex-
traction is relative to the root directory, since all pathnames within the archive are rela-
tive.

When extracting an archive, it’s possible to limit what is extracted from the archive. For
example, if we wanted to extract a single file from an archive, it could be done like this:

tar xf archive.tar pathname

By adding the trailing pathname to the command, tar will only restore the specified file.
Multiple pathnames may be specified. Note that the pathname must be the full, exact rela-
tive pathname as stored in the archive. When specifying pathnames, wildcards are not
normally supported; however, the GNU version of tar (which is the version most often
found in Linux distributions) supports them with the --wildcards option. Here is an
example using our previous playground.tar file:

233

18 – Archiving And Backup

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ tar xf ../playground2.tar --wildcards 'home/me/pla
yground/dir-*/file-A'

This command will extract only files matching the specified pathname including the
wildcard dir-*.

tar is often used in conjunction with find to produce archives. In this example, we will
use find to produce a set of files to include in an archive:

[me@linuxbox ~]$ find playground -name 'file-A' -exec tar rf
playground.tar '{}' '+'

Here we use find to match all the files in playground named file-A and then, us-
ing the -exec action, we invoke tar in the append mode (r) to add the matching files
to the archive playground.tar.

Using tar with find is a good way of creating incremental backups of a directory tree
or an entire system. By using find to match files newer than a timestamp file, we could
create an archive that only contains files newer than the last archive, assuming that the
timestamp file is updated right after each archive is created.

tar can also make use of both standard input and output. Here is a comprehensive exam-
ple:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name 'file-A' | tar cf - --files-
from=- | gzip > playground.tgz

In this example, we used the find program to produce a list of matching files and piped
them into tar. If the filename “-” is specified, it is taken to mean standard input or out-
put, as needed (By the way, this convention of using “-” to represent standard input/out-
put is used by a number of other programs, too.) The --files-from option (which
may also be specified as -T) causes tar to read its list of pathnames from a file rather
than the command line. Lastly, the archive produced by tar is piped into gzip to create
the compressed archive playground.tgz. The .tgz extension is the conventional
extension given to gzip-compressed tar files. The extension .tar.gz is also used some-
times.

While we used the gzip program externally to produced our compressed archive, mod-

234

Archiving Files

ern versions of GNU tar support both gzip and bzip2 compression directly, with the use
of the z and j options, respectively. Using our previous example as a base, we can sim-
plify it this way:

[me@linuxbox ~]$ find playground -name 'file-A' | tar czf
playground.tgz -T -

If we had wanted to create a bzip2 compressed archive instead, we could have done this:

[me@linuxbox ~]$ find playground -name 'file-A' | tar cjf
playground.tbz -T -

By simply changing the compression option from z to j (and changing the output file’s
extension to .tbz to indicate a bzip2 compressed file) we enabled bzip2 compression.

Another interesting use of standard input and output with the tar command involves
transferring files between systems over a network. Imagine that we had two machines
running a Unix-like system equipped with tar and ssh. In such a scenario, we could
transfer a directory from a remote system (named remote-sys for this example) to our
local system:

[me@linuxbox ~]$ mkdir remote-stuff
[me@linuxbox ~]$ cd remote-stuff
[me@linuxbox remote-stuff]$ ssh remote-sys 'tar cf - Documents' | tar
xf -
me@remote-sys’s password:
[me@linuxbox remote-stuff]$ ls
Documents

Here we were able to copy a directory named Documents from the remote system re-
mote-sys to a directory within the directory named remote-stuff on the local sys-
tem. How did we do this? First, we launched the tar program on the remote system us-
ing ssh. You will recall that ssh allows us to execute a program remotely on a net-
worked computer and “see” the results on the local system—the standard output pro    -
duced on the remote system is sent to the local system for viewing. We can take advan-
tage of this by having tar create an archive (the c mode) and send it to standard output,
rather than a file (the f option with the dash argument), thereby transporting the archive
over the encrypted tunnel provided by ssh to the local system. On the local system, we
execute tar and have it expand an archive (the x mode) supplied from standard input

235

18 – Archiving And Backup

(again, the f option with the dash argument).

zip

The zip program is both a compression tool and an archiver. The file format used by the
program is familiar to Windows users, as it reads and writes .zip files. In Linux, how-
ever, gzip is the predominant compression program with bzip2 being a close second.

In its most basic usage, zip is invoked like this:

zip options zipfile file...

For example, to make a zip archive of our playground, we would do this:

[me@linuxbox ~]$ zip -r playground.zip playground

Unless we include the -r option for recursion, only the playground directory (but
none of its contents) is stored. Although the addition of the extension .zip is automatic,
we will include the file extension for clarity.

During the creation of the zip archive, zip will normally display a series of messages
like this:

 adding: playground/dir-020/file-Z (stored 0%)
 adding: playground/dir-020/file-Y (stored 0%)
 adding: playground/dir-020/file-X (stored 0%)
 adding: playground/dir-087/ (stored 0%)
 adding: playground/dir-087/file-S (stored 0%)

These messages show the status of each file added to the archive. zip will add files to
the archive using one of two storage methods: Either it will “store” a file without com-
pression, as shown here, or it will “deflate” the file which performs compression. The nu-
meric value displayed after the storage method indicates the amount of compression
achieved. Since our playground only contains empty files, no compression is performed
on its contents.

Extracting the contents of a zip file is straightforward when using the unzip program:

[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip

236

Archiving Files

One thing to note about zip (as opposed to tar) is that if an existing archive is speci-
fied, it is updated rather than replaced. This means that the existing archive is preserved,
but new files are added and matching files are replaced.

Files may be listed and extracted selectively from a zip archive by specifying them to
unzip:

[me@linuxbox ~]$ unzip -l playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
 Length Date Time Name
 -------- ---- ---- ----
 0 10-05-08 09:25 playground/dir-087/file-Z
 -------- -------
 0 1 file
[me@linuxbox ~]$ cd foo
[me@linuxbox foo]$ unzip ../playground.zip playground/dir-087/file-Z
Archive: ../playground.zip
replace playground/dir-087/file-Z? [y]es, [n]o, [A]ll, [N]one,
[r]ename: y
 extracting: playground/dir-087/file-Z

Using the -l option causes unzip to merely list the contents of the archive without ex-
tracting the file. If no file(s) are specified, unzip will list all files in the archive. The -v
option can be added to increase the verbosity of the listing. Note that when the archive
extraction conflicts with an existing file, the user is prompted before the file is replaced.

Like tar, zip can make use of standard input and output, though its implementation is
somewhat less useful. It is possible to pipe a list of filenames to zip via the -@ option:

[me@linuxbox foo]$ cd
[me@linuxbox ~]$ find playground -name "file-A" | zip -@ file-A.zip

Here we use find to generate a list of files matching the test -name "file-A", and
then pipe the list into zip, which creates the archive file-A.zip containing the se-
lected files.

zip also supports writing its output to standard output, but its use is limited because very
few programs can make use of the output. Unfortunately, the unzip program does not
accept standard input. This prevents zip and unzip from being used together to per-
form network file copying like tar.

zip can, however, accept standard input, so it can be used to compress the output of
other programs:

237

18 – Archiving And Backup

[me@linuxbox ~]$ ls -l /etc/ | zip ls-etc.zip -
 adding: - (deflated 80%)

In this example we pipe the output of ls into zip. Like tar, zip interprets the trailing
dash as “use standard input for the input file.”

The unzip program allows its output to be sent to standard output when the -p (for
pipe) option is specified:

[me@linuxbox ~]$ unzip -p ls-etc.zip | less

We touched on some of the basic things that zip/unzip can do. They both have a lot of
options that add to their flexibility, though some are platform specific to other systems.
The man pages for both zip and unzip are pretty good and contain useful examples.
However, the main use of these programs is for exchanging files with Windows systems,
rather than performing compression and archiving on Linux, where tar and gzip are
greatly preferred.

Synchronizing Files And Directories

A common strategy for maintaining a backup copy of a system involves keeping one or
more directories synchronized with another directory (or directories) located on either the
local system (usually a removable storage device of some kind) or a remote system. We
might, for example, have a local copy of a website under development and synchronize it
from time to time with the “live” copy on a remote web server.

In the Unix-like world, the preferred tool for this task is rsync. This program can syn-
chronize both local and remote directories by using the rsync remote-update protocol,
which allows rsync to quickly detect the differences between two directories and per-
form the minimum amount of copying required to bring them into sync. This makes
rsync very fast and economical to use, compared to other kinds of copy programs.

rsync is invoked like this:

rsync options source destination

where source and destination are one of the following:

● A local file or directory

● A remote file or directory in the form of [user@]host:path

● A remote rsync server specified with a URI of rsync://[user@]host[:port]/path

Note that either the source or the destination must be a local file. Remote-to-remote copy-

238

18 – Archiving And Backup

we see that rsync detected the change and copied only the updated file.

As a practical example, let’s consider the imaginary external hard drive that we used ear-
lier with tar. If we attach the drive to our system and, once again, it is mounted at /me-
dia/BigDisk, we can perform a useful system backup by first creating a directory
named /backup on the external drive, and then using rsync to copy the most impor-
tant stuff from our system to the external drive:

[me@linuxbox ~]$ mkdir /media/BigDisk/backup
[me@linuxbox ~]$ sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup

In this example, we copied the /etc, /home, and /usr/local directories from our
system to our imaginary storage device. We included the --delete option to remove
files that may have existed on the backup device that no longer existed on the source de-
vice (this is irrelevant the first time we make a backup, but will be useful on subsequent
copies). Repeating the procedure of attaching the external drive and running this rsync
command would be a useful (though not ideal) way of keeping a small system backed up.
Of course, an alias would be helpful here, too. We could create an alias and add it to our
.bashrc file to provide this feature:

alias backup='sudo rsync -av --delete /etc /home /usr/local
/media/BigDisk/backup'

Now all we have to do is attach our external drive and run the backup command to do
the job.

Using rsync Over A Network

One of the real beauties of rsync is that it can be used to copy files over a network. Af-
ter all, the “r” in rsync stands for “remote.” Remote copying can be done in one of two
ways. The first way is with another system that has rsync installed, along with a remote
shell program such as ssh. Let’s say we had another system on our local network with a
lot of available hard drive space and we wanted to perform our backup operation using
the remote system instead of an external drive. Assuming that it already had a directory
named /backup where we could deliver our files, we could do this:

[me@linuxbox ~]$ sudo rsync -av --delete --rsh=ssh /etc /home

240

Synchronizing Files And Directories

/usr/local remote-sys:/backup

We made two changes to our command to facilitate the network copy. First, we added the
--rsh=ssh option, which instructs rsync to use the ssh program as its remote shell.
In this way, we were able to use an ssh encrypted tunnel to securely transfer the data from
the local system to the remote host. Second, we specified the remote host by prefixing its
name (in this case the remote host is named remote-sys) to the destination pathname.

The second way that rsync can be used to synchronize files over a network is by using
an rysnc server. rsync can be configured to run as a daemon and listen to incoming re-
quests for synchronization. This is often done to allow mirroring of a remote system. For
example, Red Hat Software maintains a large repository of software packages under de-
velopment for its Fedora distribution. It is useful for software testers to mirror this collec-
tion during the testing phase of the distribution release cycle. Since files in the repository
change frequently (often more than once a day), it is desirable to maintain a local mirror
by periodic synchronization, rather than by bulk copying of the repository. One of these
repositories is kept at Georgia Tech; we could mirror it using our local copy of rsync
and their rsync server like this:

[me@linuxbox ~]$ mkdir fedora-devel
[me@linuxbox ~]$ rsync -av -delete rsync://rsync.gtlib.gatech.edu/fed
ora-linux-core/development/i386/os fedora-devel

In this example, we use the URI of the remote rsync server, which consists of a protocol
(rsync://), followed by the remote host-name (rsync.gtlib.gatech.edu), fol-
lowed by the pathname of the repository.

Summing Up

We've looked at the common compression and archiving programs used on Linux and
other Unix-like operating systems. For archiving files, the tar/gzip combination is the
preferred method on Unix-like systems while zip/unzip is used for interoperability
with Windows systems. Finally, we looked at the rsync program (a personal favorite)
which is very handy for efficient synchronization of files and directories across systems.

Further Reading

● The man pages for all of the commands discussed here are pretty clear and con-
tain useful examples. In addition, the GNU Project has a good online manual for
its version of tar. It can be found here:

241

18 – Archiving And Backup

http://www.gnu.org/software/tar/manual/index.html

242

http://www.gnu.org/software/tar/manual/index.html

19 – Regular Expressions

19 – Regular Expressions

In the next few chapters, we are going to look at tools used to manipulate text. As we
have seen, text data plays an important role on all Unix-like systems, such as Linux. But
before we can fully appreciate all of the features offered by these tools, we have to first
examine a technology that is frequently associated with the most sophisticated uses of
these tools—   regular expressions.

As we have navigated the many features and facilities offered by the command line, we
have encountered some truly arcane shell features and commands, such as shell expan-
sion and quoting, keyboard shortcuts, and command history, not to mention the vi editor.
Regular expressions continue this “tradition” and may be (arguably) the most arcane fea-
ture of them all. This is not to suggest that the time it takes to learn about them is not
worth the effort. Quite the contrary. A good understanding will enable us to perform
amazing feats, though their full value may not be immediately apparent.

What Are Regular Expressions?

Simply put, regular expressions are symbolic notations used to identify patterns in text. In
some ways, they resemble the shell’s wildcard method of matching file and pathnames,
but on a much grander scale. Regular expressions are supported by many command line
tools and by most programming languages to facilitate the solution of text manipulation
problems. However, to further confuse things, not all regular expressions are the same;
they vary slightly from tool to tool and from programming language to language. For our
discussion, we will limit ourselves to regular expressions as described in the POSIX stan-
dard (which will cover most of the command line tools), as opposed to many program-
ming languages (most notably Perl), which use slightly larger and richer sets of notations.

grep

The main program we will use to work with regular expressions is our old pal, grep.
The name “grep” is actually derived from the phrase “global regular expression print,” so
we can see that grep has something to do with regular expressions. In essence, grep
searches text files for the occurrence of a specified regular expression and outputs any
line containing a match to standard output.

243

19 – Regular Expressions

So far, we have used grep with fixed strings, like so:

[me@linuxbox ~]$ ls /usr/bin | grep zip

This will list all the files in the /usr/bin directory whose names contain the substring
“zip”.

The grep program accepts options and arguments this way:

grep [options] regex [file...]

where regex is a regular expression.

Here is a list of the commonly used grep options:

Table20-1: grep Options

Option Description

-i Ignore case. Do not distinguish between upper and lower case
characters. May also be specified --ignore-case.

-v Invert match. Normally, grep prints lines that contain a match.
This option causes grep to print every line that does not contain a
match. May also be specified --invert-match.

-c Print the number of matches (or non-matches if the -v option is
also specified) instead of the lines themselves. May also be
specified --count.

-l Print the name of each file that contains a match instead of the lines
themselves. May also be specified --files-with-matches.

-L Like the -l option, but print only the names of files that do not
contain matches. May also be specified --files-without-
match.

-n Prefix each matching line with the number of the line within the
file. May also be specified --line-number.

-h For multi-file searches, suppress the output of filenames. May also
be specified --no-filename.

In order to more fully explore grep, let’s create some text files to search:

244

grep

[me@linuxbox ~]$ ls /bin > dirlist-bin.txt
[me@linuxbox ~]$ ls /usr/bin > dirlist-usr-bin.txt
[me@linuxbox ~]$ ls /sbin > dirlist-sbin.txt
[me@linuxbox ~]$ ls /usr/sbin > dirlist-usr-sbin.txt
[me@linuxbox ~]$ ls dirlist*.txt
dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbin.txt
dirlist-usr-bin.txt

We can perform a simple search of our list of files like this:

[me@linuxbox ~]$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

In this example, grep searches all of the listed files for the string bzip and finds two
matches, both in the file dirlist-bin.txt. If we were only interested in the list of
files that contained matches rather than the matches themselves, we could specify the -l
option:

[me@linuxbox ~]$ grep -l bzip dirlist*.txt
dirlist-bin.txt

Conversely, if we wanted only to see a list of the files that did not contain a match, we
could do this:

[me@linuxbox ~]$ grep -L bzip dirlist*.txt
dirlist-sbin.txt
dirlist-usr-bin.txt
dirlist-usr-sbin.txt

Metacharacters And Literals

While it may not seem apparent, our grep searches have been using regular expressions
all along, albeit very simple ones. The regular expression “bzip” is taken to mean that a
match will occur only if the line in the file contains at least four characters and that some-
where in the line the characters “b”, “z”, “i”, and “p” are found in that order, with no
other characters in between. The characters in the string “bzip” are all literal characters,
in that they match themselves. In addition to literals, regular expressions may also in-

245

19 – Regular Expressions

clude metacharacters that are used to specify more complex matches. Regular expression
metacharacters consist of the following:

^ $. [] { } - ? * + () | \

All other characters are considered literals, though the backslash character is used in a
few cases to create meta sequences, as well as allowing the metacharacters to be escaped
and treated as literals instead of being interpreted as metacharacters.

Note: As we can see, many of the regular expression metacharacters are also char-
acters that have meaning to the shell when expansion is performed. When we pass
regular expressions containing metacharacters on the command line, it is vital that
they be enclosed in quotes to prevent the shell from attempting to expand them.

The Any Character

The first metacharacter we will look at is the dot or period character, which is used to
match any character. If we include it in a regular expression, it will match any character
in that character position. Here’s an example:

[me@linuxbox ~]$ grep -h '.zip' dirlist*.txt
bunzip2
bzip2
bzip2recover
gunzip
gzip
funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

We searched for any line in our files that matches the regular expression “.zip”. There are
a couple of interesting things to note about the results. Notice that the zip program was
not found. This is because the inclusion of the dot metacharacter in our regular expression
increased the length of the required match to four characters, and because the name “zip”
only contains three, it does not match. Also, if any files in our lists had contained the file
extension .zip, they would have been matched as well, because the period character in
the file extension is treated as “any character,” too.

246

Anchors

Anchors

The caret (^) and dollar sign ($) characters are treated as anchors in regular expressions.
This means that they cause the match to occur only if the regular expression is found at
the beginning of the line (^) or at the end of the line ($):

[me@linuxbox ~]$ grep -h '^zip' dirlist*.txt
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit
[me@linuxbox ~]$ grep -h 'zip$' dirlist*.txt
gunzip
gzip
funzip
gpg-zip
preunzip
prezip
unzip
zip
[me@linuxbox ~]$ grep -h '^zip$' dirlist*.txt
zip

Here we searched the list of files for the string “zip” located at the beginning of the line,
the end of the line, and on a line where it is at both the beginning and the end of the line
(i.e., by itself on the line.) Note that the regular expression ‘^$’ (a beginning and an end
with nothing in between) will match blank lines.

A Crossword Puzzle Helper

Even with our limited knowledge of regular expressions at this point, we can do
something useful.
My wife loves crossword puzzles and she will sometimes ask me for help with a
particular question. Something like, “What’s a five letter word whose third letter
is ‘j’ and last letter is ‘r’ that means...?” This kind of question got me thinking.
Did you know that your Linux system contains a dictionary? It does. Take a look
in the /usr/share/dict directory and you might find one, or several. The
dictionary files located there are just long lists of words, one per line, arranged in
alphabetical order. On my system, the words file contains just over 98,500

247

19 – Regular Expressions

words. To find possible answers to the crossword puzzle question above, we
could do this:
[me@linuxbox ~]$ grep -i '^..j.r$' /usr/share/dict/words
Major
major

Using this regular expression, we can find all the words in our dictionary file that
are five letters long and have a “j” in the third position and an “r” in the last posi-
tion.

Bracket Expressions And Character Classes

In addition to matching any character at a given position in our regular expression, we
can also match a single character from a specified set of characters by using bracket ex-
pressions. With bracket expressions, we can specify a set of characters (including charac-
ters that would otherwise be interpreted as metacharacters) to be matched. In this exam-
ple, using a two character set:

[me@linuxbox ~]$ grep -h '[bg]zip' dirlist*.txt
bzip2
bzip2recover
gzip

we match any line that contains the string “bzip” or “gzip”.

A set may contain any number of characters, and metacharacters lose their special mean-
ing when placed within brackets. However, there are two cases in which metacharacters
are used within bracket expressions, and have different meanings. The first is the caret
(^), which is used to indicate negation; the second is the dash (-), which is used to indi-
cate a character range.

Negation

If the first character in a bracket expression is a caret (^), the remaining characters are
taken to be a set of characters that must not be present at the given character position. We
do this by modifying our previous example:

[me@linuxbox ~]$ grep -h '[^bg]zip' dirlist*.txt
bunzip2
gunzip

248

Bracket Expressions And Character Classes

funzip
gpg-zip
preunzip
prezip
prezip-bin
unzip
unzipsfx

With negation activated, we get a list of files that contain the string “zip” preceded by any
character except “b” or “g”. Notice that the file zip was not found. A negated character
set still requires a character at the given position, but the character must not be a member
of the negated set.

The caret character only invokes negation if it is the first character within a bracket ex-
pression; otherwise, it loses its special meaning and becomes an ordinary character in the
set.

Traditional Character Ranges

If we wanted to construct a regular expression that would find every file in our lists be-
ginning with an uppercase letter, we could do this:

[me@linuxbox ~]$ grep -h '^[ABCDEFGHIJKLMNOPQRSTUVWXZY]' dirlist*.txt

It’s just a matter of putting all 26uppercase letters in a bracket expression. But the idea of
all that typing is deeply troubling, so there is another way:

[me@linuxbox ~]$ grep -h '^[A-Z]' dirlist*.txt
MAKEDEV
ControlPanel
GET
HEAD
POST
X
X11
Xorg
MAKEFLOPPIES
NetworkManager
NetworkManagerDispatcher

By using a three character range, we can abbreviate the 26 letters. Any range of charac-
ters can be expressed this way including multiple ranges, such as this expression that

249

19 – Regular Expressions

matches all filenames starting with letters and numbers:

[me@linuxbox ~]$ grep -h '^[A-Za-z0-9]' dirlist*.txt

In character ranges, we see that the dash character is treated specially, so how do we actu-
ally include a dash character in a bracket expression? By making it the first character in
the expression. Consider these two examples:

[me@linuxbox ~]$ grep -h '[A-Z]' dirlist*.txt

This will match every filename containing an uppercase letter. While:

[me@linuxbox ~]$ grep -h '[-AZ]' dirlist*.txt

will match every filename containing a dash, or a uppercase “A” or an uppercase “Z”.

POSIX Character Classes

The traditional character ranges are an easily understood and effective way to handle the
problem of quickly specifying sets of characters. Unfortunately, they don’t always work.
While we have not encountered any problems with our use of grep so far, we might run
into problems using other programs.

Back in Chapter 4, we looked at how wildcards are used to perform pathname expansion.
In that discussion, we said that character ranges could be used in a manner almost identi-
cal to the way they are used in regular expressions, but here’s the problem:

[me@linuxbox ~]$ ls /usr/sbin/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

(Depending on the Linux distribution, we will get a different list of files, possibly an
empty list. This example is from Ubuntu). This command produces the expected result—   
a list of only the files whose names begin with an uppercase letter, but:

250

Bracket Expressions And Character Classes

[me@linuxbox ~]$ ls /usr/sbin/[A-Z]*
/usr/sbin/biosdecode
/usr/sbin/chat
/usr/sbin/chgpasswd
/usr/sbin/chpasswd
/usr/sbin/chroot
/usr/sbin/cleanup-info
/usr/sbin/complain
/usr/sbin/console-kit-daemon

with this command we get an entirely different result (only a partial listing of the results
is shown). Why is that? It’s a long story, but here’s the short version:

Back when Unix was first developed, it only knew about ASCII characters, and this fea-
ture reflects that fact. In ASCII, the first 32 characters (numbers 0-31) are control codes
(things like tabs, backspaces, and carriage returns). The next 32 (32-63) contain printable
characters, including most punctuation characters and the numerals zero through nine.
The next 32 (numbers 64-95) contain the uppercase letters and a few more punctuation
symbols. The final 31 (numbers 96-127) contain the lowercase letters and yet more punc-
tuation symbols. Based on this arrangement, systems using ASCII used a collation order
that looked like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

This differs from proper dictionary order, which is like this:

aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

As the popularity of Unix spread beyond the United States, there grew a need to support
characters not found in U.S. English. The ASCII table was expanded to use a full eight
bits, adding characters numbers 128-255, which accommodated many more languages.
To support this ability, the POSIX standards introduced a concept called a locale, which
could be adjusted to select the character set needed for a particular location. We can see
the language setting of our system using this command:

[me@linuxbox ~]$ echo $LANG
en_US.UTF-8

With this setting, POSIX compliant applications will use a dictionary collation order
rather than ASCII order. This explains the behavior of the commands above. A character
range of [A-Z] when interpreted in dictionary order includes all of the alphabetic char-
acters except the lowercase “a”, hence our results.

To partially work around this problem, the POSIX standard includes a number of charac-
ter classes which provide useful ranges of characters. They are described in the table be-

251

19 – Regular Expressions

low:

Table 19-2: POSIX Character Classes

Character Class Description

[:alnum:] The alphanumeric characters. In ASCII, equivalent to:
[A-Za-z0-9]

[:word:] The same as [:alnum:], with the addition of the underscore
(_) character.

[:alpha:] The alphabetic characters. In ASCII, equivalent to:
[A-Za-z]

[:blank:] Includes the space and tab characters.

[:cntrl:] The ASCII control codes. Includes the ASCII characters 0
through 31 and 127.

[:digit:] The numerals zero through nine.

[:graph:] The visible characters. In ASCII, it includes characters 33
through 126.

[:lower:] The lowercase letters.

[:punct:] The punctuation characters. In ASCII, equivalent to:
[-!"#$%&'()*+,./:;<=>?@[\\\]_`{|}~]

[:print:] The printable characters. All the characters in [:graph:]
plus the space character.

[:space:] The whitespace characters including space, tab, carriage
return, newline, vertical tab, and form feed. In ASCII,
equivalent to:
[\t\r\n\v\f]

[:upper:] The uppercase characters.

[:xdigit:] Characters used to express hexadecimal numbers. In ASCII,
equivalent to:
[0-9A-Fa-f]

Even with the character classes, there is still no convenient way to express partial ranges,
such as [A-M].

Using character classes, we can repeat our directory listing and see an improved result:

252

Bracket Expressions And Character Classes

[me@linuxbox ~]$ ls /usr/sbin/[[:upper:]]*
/usr/sbin/MAKEFLOPPIES
/usr/sbin/NetworkManagerDispatcher
/usr/sbin/NetworkManager

Remember, however, that this is not an example of a regular expression, rather it is the
shell performing pathname expansion. We show it here because POSIX character classes
can be used for both.

Reverting To Traditional Collation Order

You can opt to have your system use the traditional (ASCII) collation order by
changing the value of the LANG environment variable. As we saw above, the
LANG variable contains the name of the language and character set used in your
locale. This value was originally determined when you selected an installation
language as your Linux was installed.
To see the locale settings, use the locale command:
[me@linuxbox ~]$ locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=
To change the locale to use the traditional Unix behaviors, set the LANG variable
to POSIX:
[me@linuxbox ~]$ export LANG=POSIX
Note that this change converts the system to use U.S. English (more specifically,
ASCII) for its character set, so be sure if this is really what you want.
You can make this change permanent by adding this line to you your .bashrc
file:

253

19 – Regular Expressions

export LANG=POSIX

POSIX Basic Vs. Extended Regular Expressions

Just when we thought this couldn’t get any more confusing, we discover that POSIX also
splits regular expression implementations into two kinds: basic regular expressions
(BRE) and extended regular expressions (ERE). The features we have covered so far are
supported by any application that is POSIX compliant and implements BRE. Our grep
program is one such program.

What’s the difference between BRE and ERE? It’s a matter of metacharacters. With BRE,
the following metacharacters are recognized:

^ $. [] *

All other characters are considered literals. With ERE, the following metacharacters (and
their associated functions) are added:

() { } ? + |

However (and this is the fun part), the “(”, “)”, “{”, and “}” characters are treated as
metacharacters in BRE if they are escaped with a backslash, whereas with ERE, preced-
ing any metacharacter with a backslash causes it to be treated as a literal. Any weirdness
that comes along will be covered in the discussions that follow.

Since the features we are going to discuss next are part of ERE, we are going to need to
use a different grep. Traditionally, this has been performed by the egrep program, but
the GNU version of grep also supports extended regular expressions when the -E op-
tion is used.

POSIX

During the 1980’s, Unix became a very popular commercial operating system, but
by 1988, the Unix world was in turmoil. Many computer manufacturers had li-
censed the Unix source code from its creators, AT&T, and were supplying various
versions of the operating system with their systems. However, in their efforts to
create product differentiation, each manufacturer added proprietary changes and
extensions. This started to limit the compatibility of the software. As always with
proprietary vendors, each was trying to play a winning game of “lock-in” with
their customers. This dark time in the history of Unix is known today as “the
Balkanization.”

254

POSIX Basic Vs. Extended Regular Expressions

Enter the IEEE (Institute of Electrical and Electronics Engineers). In the mid-
1980s, the IEEE began developing a set of standards that would define how Unix
(and Unix-like) systems would perform. These standards, formally known as
IEEE 1003, define the application programming interfaces (APIs), shell and utili-
ties that are to be found on a standard Unix-like system. The name “POSIX,”
which stands for Portable Operating System Interface (with the “X” added to the
end for extra snappiness), was suggested by Richard Stallman (yes, that Richard
Stallman), and was adopted by the IEEE.

Alternation

The first of the extended regular expression features we will discuss is called alternation,
which is the facility that allows a match to occur from among a set of expressions. Just as
a bracket expression allows a single character to match from a set of specified characters,
alternation allows matches from a set of strings or other regular expressions.

To demonstrate, we’ll use grep in conjunction with echo. First, let’s try a plain old
string match:

[me@linuxbox ~]$ echo "AAA" | grep AAA
AAA
[me@linuxbox ~]$ echo "BBB" | grep AAA
[me@linuxbox ~]$

A pretty straightforward example, in which we pipe the output of echo into grep and
see the results. When a match occurs, we see it printed out; when no match occurs, we
see no results.

Now we’ll add alternation, signified by the vertical-bar metacharacter:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB'
AAA
[me@linuxbox ~]$ echo "BBB" | grep -E 'AAA|BBB'
BBB
[me@linuxbox ~]$ echo "CCC" | grep -E 'AAA|BBB'
[me@linuxbox ~]$

Here we see the regular expression 'AAA|BBB', which means “match either the string
AAA or the string BBB.” Notice that since this is an extended feature, we added the -E

255

19 – Regular Expressions

option to grep (though we could have just used the egrep program instead), and we
enclosed the regular expression in quotes to prevent the shell from interpreting the verti-
cal-bar metacharacter as a pipe operator. Alternation is not limited to two choices:

[me@linuxbox ~]$ echo "AAA" | grep -E 'AAA|BBB|CCC'
AAA

To combine alternation with other regular expression elements, we can use () to separate
the alternation:

[me@linuxbox ~]$ grep -Eh '^(bz|gz|zip)' dirlist*.txt

This expression will match the filenames in our lists that start with either “bz”, “gz”, or
“zip”. Had we left off the parentheses, the meaning of this regular expression :

[me@linuxbox ~]$ grep -Eh '^bz|gz|zip' dirlist*.txt

changes to match any filename that begins with “bz” or contains “gz” or contains “zip”.

Quantifiers

Extended regular expressions support several ways to specify the number of times an ele-
ment is matched.

? - Match An Element Zero Or One Time

This quantifier means, in effect, “Make the preceding element optional.” Let’s say we
wanted to check a phone number for validity and we considered a phone number to be
valid if it matched either of these two forms:

(nnn) nnn-nnnn

nnn nnn-nnnn

where “n” is a numeral. We could construct a regular expression like this:

^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

In this expression, we follow the parentheses characters with question marks to indicate
that they are to be matched zero or one time. Again, since the parentheses are normally
metacharacters (in ERE), we precede them with backslashes to cause them to be treated
as literals instead.

256

Quantifiers

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E '^\(?[0-9][0-9][0-9]
\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$'
(555) 123-4567
[me@linuxbox ~]$ echo "555 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)
? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$'
555 123-4567
[me@linuxbox ~]$ echo "AAA 123-4567" | grep -E '^\(?[0-9][0-9][0-9]\)
? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$'
[me@linuxbox ~]$

Here we see that the expression matches both forms of the phone number, but does not
match one containing non-numeric characters.

* - Match An Element Zero Or More Times

Like the ? metacharacter, the * is used to denote an optional item; however, unlike the ?,
the item may occur any number of times, not just once. Let’s say we wanted to see if a
string was a sentence; that is, it starts with an uppercase letter, then contains any number
of upper and lowercase letters and spaces, and ends with a period. To match this (very
crude) definition of a sentence, we could use a regular expression like this:

[[:upper:]][[:upper:][:lower:]]*\.

The expression consists of three items: a bracket expression containing the [:upper:]
character class, a bracket expression containing both the [:upper:] and [:lower:]
character classes and a space, and a period escaped with a backslash. The second element
is trailed with an * metacharacter, so that after the leading uppercase letter in our sen-
tence, any number of upper and lowercase letters and spaces may follow it and still
match:

[me@linuxbox ~]$ echo "This works." | grep -E '[[:upper:]][[:upper:][
:lower:]]*\.'
This works.
[me@linuxbox ~]$ echo "This Works." | grep -E '[[:upper:]][[:upper:][
:lower:]]*\.'
This Works.
[me@linuxbox ~]$ echo "this does not" | grep -E '[[:upper:]][[:upper:
][:lower:]]*\.'
[me@linuxbox ~]$

The expression matches the first two tests, but not the third, since it lacks the required

257

19 – Regular Expressions

leading uppercase character and trailing period.

+ - Match An Element One Or More Times

The + metacharacter works much like the *, except it requires at least one instance of the
preceding element to cause a match. Here is a regular expression that will only match
lines consisting of groups of one or more alphabetic characters separated by single spa-
ces:

^([[:alpha:]]+ ?)+$

[me@linuxbox ~]$ echo "This that" | grep -E '^([[:alpha:]]+ ?)+$'
This that
[me@linuxbox ~]$ echo "a b c" | grep -E '^([[:alpha:]]+ ?)+$'
a b c
[me@linuxbox ~]$ echo "a b 9" | grep -E '^([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$ echo "abc d" | grep -E '^([[:alpha:]]+ ?)+$'
[me@linuxbox ~]$

We see that this expression does not match the line “a b 9”, because it contains a non-al-
phabetic character; nor does it match “abc d”, because more than one space character
separates the characters “c” and “d”.

{ } - Match An Element A Specific Number Of Times

The { and } metacharacters are used to express minimum and maximum numbers of re-
quired matches. They may be specified in four possible ways:

Table 19-3: Specifying The Number Of Matches

Specifier Meaning

{n} Match the preceding element if it occurs exactly n times.

{n,m} Match the preceding element if it occurs at least n times, but no
more than m times.

{n,} Match the preceding element if it occurs n or more times.

{,m} Match the preceding element if it occurs no more than m times.

Going back to our earlier example with the phone numbers, we can use this method of
specifying repetitions to simplify our original regular expression from:

^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

258

Quantifiers

to:

^\(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$

Let’s try it:

[me@linuxbox ~]$ echo "(555) 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-
9]{3}-[0-9]{4}$'
(555) 123-4567
[me@linuxbox ~]$ echo "555 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9]
{3}-[0-9]{4}$'
555 123-4567
[me@linuxbox ~]$ echo "5555 123-4567" | grep -E '^\(?[0-9]{3}\)? [0-9
]{3}-[0-9]{4}$'
[me@linuxbox ~]$

As we can see, our revised expression can successfully validate numbers both with and
without the parentheses, while rejecting those numbers that are not properly formatted.

Putting Regular Expressions To Work

Let’s look at some of the commands we already know and see how they can be used with
regular expressions.

Validating A Phone List With grep

In our earlier example, we looked at single phone numbers and checked them for proper
formatting. A more realistic scenario would be checking a list of numbers instead, so let’s
make a list. We’ll do this by reciting a magical incantation to the command line. It will be
magic because we have not covered most of the commands involved, but worry not. We
will get there in future chapters. Here is the incantation:

[me@linuxbox ~]$ for i in {1..10}; do echo "(${RANDOM:0:3}) ${RANDO
M:0:3}-${RANDOM:0:4}" >> phonelist.txt; done

This command will produce a file named phonelist.txt containing ten phone num-
bers. Each time the command is repeated, another ten numbers are added to the list. We
can also change the value 10 near the beginning of the command to produce more or
fewer phone numbers. If we examine the contents of the file, however, we see we have a
problem:

259

19 – Regular Expressions

[me@linuxbox ~]$ cat phonelist.txt
(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440

Some of the numbers are malformed, which is perfect for our purposes, since we will use
grep to validate them.

One useful method of validation would be to scan the file for invalid numbers and display
the resulting list on the display:

[me@linuxbox ~]$ grep -Ev '^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$'
phonelist.txt
(292) 108-518
(129) 44-1379
[me@linuxbox ~]$

Here we use the -v option to produce an inverse match so that we will only output the
lines in the list that do not match the specified expression. The expression itself includes
the anchor metacharacters at each end to ensure that the number has no extra characters at
either end. This expression also requires that the parentheses be present in a valid num-
ber, unlike our earlier phone number example.

Finding Ugly Filenames With find

The find command supports a test based on a regular expression. There is an important
consideration to keep in mind when using regular expressions in find versus grep.
Whereas grep will print a line when the line contains a string that matches an expres-
sion, find requires that the pathname exactly match the regular expression. In the fol-
lowing example, we will use find with a regular expression to find every pathname that
contains any character that is not a member of the following set:

[-_./0-9a-zA-Z]

Such a scan would reveal pathnames that contain embedded spaces and other potentially
offensive characters:

260

Putting Regular Expressions To Work

[me@linuxbox ~]$ find . -regex '.*[^-_./0-9a-zA-Z].*'

Due to the requirement for an exact match of the entire pathname, we use .* at both ends
of the expression to match zero or more instances of any character. In the middle of the
expression, we use a negated bracket expression containing our set of acceptable path-
name characters.

Searching For Files With locate

The locate program supports both basic (the --regexp option) and extended (the
--regex option) regular expressions. With it, we can perform many of the same opera-
tions that we performed earlier with our dirlist files:

[me@linuxbox ~]$ locate --regex 'bin/(bz|gz|zip)'
/bin/bzcat
/bin/bzcmp
/bin/bzdiff
/bin/bzegrep
/bin/bzexe
/bin/bzfgrep
/bin/bzgrep
/bin/bzip2
/bin/bzip2recover
/bin/bzless
/bin/bzmore
/bin/gzexe
/bin/gzip
/usr/bin/zip
/usr/bin/zipcloak
/usr/bin/zipgrep
/usr/bin/zipinfo
/usr/bin/zipnote
/usr/bin/zipsplit

Using alternation, we perform a search for pathnames that contain either bin/bz,
bin/gz, or /bin/zip.

Searching For Text With less And vim

less and vim both share the same method of searching for text. Pressing the / key fol-
lowed by a regular expression will perform a search. If we use less to view our
phonelist.txt file:

261

19 – Regular Expressions

[me@linuxbox ~]$ less phonelist.txt

then search for our validation expression:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440
~
~
~
/^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$

less will highlight the strings that match, leaving the invalid ones easy to spot:

(232) 298-2265
(624) 381-1078
(540) 126-1980
(874) 163-2885
(286) 254-2860
(292) 108-518
(129) 44-1379
(458) 273-1642
(686) 299-8268
(198) 307-2440
~
~
~
(END)

vim, on the other hand, supports basic regular expressions, so our search expression
would look like this:

/([0-9]\{3\}) [0-9]\{3\}-[0-9]\{4\}

We can see that the expression is mostly the same; however, many of the characters that
are considered metacharacters in extended expressions are considered literals in basic ex-
pressions. They are only treated as metacharacters when escaped with a backslash. De-

262

Putting Regular Expressions To Work

pending on the particular configuration of vim on our system, the matching will be high-
lighted. If not, try this command mode command:

:hlsearch

to activate search highlighting.

Note: Depending on your distribution, vim may or may not support text search
highlighting. Ubuntu, in particular, supplies a very stripped-down version of vim
by default. On such systems, you may want to use your package manager to install
a more complete version of vim.

Summing Up

In this chapter, we’ve seen a few of the many uses of regular expressions. We can find
even more if we use regular expressions to search for additional applications that use
them. We can do that by searching the man pages:

[me@linuxbox ~]$ cd /usr/share/man/man1
[me@linuxbox man1]$ zgrep -El 'regex|regular expression' *.gz

The zgrep program provides a front end for grep, allowing it to read compressed files.
In our example, we search the compressed section one man page files in their usual loca-
tion. The result of this command is a list of files containing either the string “regex” or
“regular expression”. As we can see, regular expressions show up in a lot of programs.

There is one feature found in basic regular expressions that we did not cover. Called back
references, this feature will be discussed in the next chapter.

Further Reading

There are many online resources for learning regular expressions, including various tuto-
rials and cheat sheets.

In addition, the Wikipedia has good articles on the following background topics:

● POSIX: http://en.wikipedia.org/wiki/Posix

● ASCII: http://en.wikipedia.org/wiki/Ascii

263

http://en.wikipedia.org/wiki/Ascii
http://en.wikipedia.org/wiki/Posix

20 – Text Processing

20 – Text Processing

All Unix-like operating systems rely heavily on text files for several types of data stor-
age. So it makes sense that there are many tools for manipulating text. In this chapter, we
will look at programs that are used to “slice and dice” text. In the next chapter, we will
look at more text processing, focusing on programs that are used to format text for print-
ing and other kinds of human consumption.

This chapter will revisit some old friends and introduce us to some new ones:

● cat – Concatenate files and print on the standard output

● sort – Sort lines of text files

● uniq – Report or omit repeated lines

● cut – Remove sections from each line of files

● paste – Merge lines of files

● join – Join lines of two files on a common field

● comm – Compare two sorted files line by line

● diff – Compare files line by line

● patch – Apply a diff file to an original

● tr – Translate or delete characters

● sed – Stream editor for filtering and transforming text

● aspell – Interactive spell checker

Applications Of Text

So far, we have learned a couple of text editors (nano and vim), looked at a bunch of
configuration files, and have witnessed the output of dozens of commands, all in text. But
what else is text used for? For many things, it turns out.

264

Applications Of Text

Documents

Many people write documents using plain text formats. While it is easy to see how a
small text file could be useful for keeping simple notes, it is also possible to write large
documents in text format, as well. One popular approach is to write a large document in a
text format and then use a markup language to describe the formatting of the finished
document. Many scientific papers are written using this method, as Unix-based text pro-
cessing systems were among the first systems that supported the advanced typographical
layout needed by writers in technical disciplines.

Web Pages

The world’s most popular type of electronic document is probably the web page. Web
pages are text documents that use either HTML (Hypertext Markup Language) or XML
(Extensible Markup Language) as markup languages to describe the document’s visual
format.

Email

Email is an intrinsically text-based medium. Even non-text attachments are converted
into a text representation for transmission. We can see this for ourselves by downloading
an email message and then viewing it in less. We will see that the message begins with
a header that describes the source of the message and the processing it received during its
journey, followed by the body of the message with its content.

Printer Output

On Unix-like systems, output destined for a printer is sent as plain text or, if the page
contains graphics, is converted into a text format page description language known as
PostScript, which is then sent to a program that generates the graphic dots to be printed.

Program Source Code

Many of the command line programs found on Unix-like systems were created to support
system administration and software development, and text processing programs are no
exception. Many of them are designed to solve software development problems. The rea-
son text processing is important to software developers is that all software starts out as
text. Source code, the part of the program the programmer actually writes, is always in
text format.

Revisiting Some Old Friends

Back in Chapter 6 (Redirection), we learned about some commands that are able to ac-

265

20 – Text Processing

cept standard input in addition to command line arguments. We only touched on them
briefly then, but now we will take a closer look at how they can be used to perform text
processing.

cat

The cat program has a number of interesting options. Many of them are used to help
better visualize text content. One example is the -A option, which is used to display non-
printing characters in the text. There are times when we want to know if control charac-
ters are embedded in our otherwise visible text. The most common of these are tab char-
acters (as opposed to spaces) and carriage returns, often present as end-of-line characters
in MS-DOS-style text files. Another common situation is a file containing lines of text
with trailing spaces.

Let’s create a test file using cat as a primitive word processor. To do this, we’ll just en-
ter the command cat (along with specifying a file for redirected output) and type our
text, followed by Enter to properly end the line, then Ctrl-d, to indicate to cat that
we have reached end-of-file. In this example, we enter a leading tab character and follow
the line with some trailing spaces:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox jumped over the lazy dog.

[me@linuxbox ~]$

Next, we will use cat with the -A option to display the text:

[me@linuxbox ~]$ cat -A foo.txt
^IThe quick brown fox jumped over the lazy dog. $
[me@linuxbox ~]$

As we can see in the results, the tab character in our text is represented by ^I. This is a
common notation that means “Control-I” which, as it turns out, is the same as a tab char-
acter. We also see that a $ appears at the true end of the line, indicating that our text con-
tains trailing spaces.

266

Revisiting Some Old Friends

MS-DOS Text Vs. Unix Text

One of the reasons you may want to use cat to look for non-printing characters
in text is to spot hidden carriage returns. Where do hidden carriage returns come
from? DOS and Windows! Unix and DOS don’t define the end of a line the same
way in text files. Unix ends a line with a linefeed character (ASCII 10) while MS-
DOS and its derivatives use the sequence carriage return (ASCII 13) and linefeed
to terminate each line of text.
There are a several ways to convert files from DOS to Unix format. On many
Linux systems, there are programs called dos2unix and unix2dos, which can
convert text files to and from DOS format. However, if you don’t have dos2u-
nix on your system, don’t worry. The process of converting text from DOS to
Unix format is very simple; it simply involves the removal of the offending car-
riage returns. That is easily accomplished by a couple of the programs discussed
later in this chapter.

cat also has options that are used to modify text. The two most prominent are -n, which
numbers lines, and -s, which suppresses the output of multiple blank lines. We can
demonstrate thusly:

[me@linuxbox ~]$ cat > foo.txt
The quick brown fox

jumped over the lazy dog.
[me@linuxbox ~]$ cat -ns foo.txt
 1 The quick brown fox
 2
 3 jumped over the lazy dog.
[me@linuxbox ~]$

In this example, we create a new version of our foo.txt test file, which contains two
lines of text separated by two blank lines. After processing by cat with the -ns options,
the extra blank line is removed and the remaining lines are numbered. While this is not
much of a process to perform on text, it is a process.

sort

The sort program sorts the contents of standard input, or one or more files specified on
the command line, and sends the results to standard output. Using the same technique that
we used with cat, we can demonstrate processing of standard input directly from the

267

20 – Text Processing

keyboard:

[me@linuxbox ~]$ sort > foo.txt
c
b
a
[me@linuxbox ~]$ cat foo.txt
a
b
c

After entering the command, we type the letters “c”, “b”, and “a”, followed once again by
Ctrl-d to indicate end-of-file. We then view the resulting file and see that the lines now
appear in sorted order.

Since sort can accept multiple files on the command line as arguments, it is possible to
merge multiple files into a single sorted whole. For example, if we had three text files and
wanted to combine them into a single sorted file, we could do something like this:

sort file1.txt file2.txt file3.txt > final_sorted_list.txt

sort has several interesting options. Here is a partial list:

Table 20-1: Common sort Options

Option Long Option Description

-b --ignore-leading-blanks By default, sorting is performed on
the entire line, starting with the
first character in the line. This
option causes sort to ignore
leading spaces in lines and
calculates sorting based on the first
non-whitespace character on the
line.

-f --ignore-case Makes sorting case-insensitive.

-n --numeric-sort Performs sorting based on the
numeric evaluation of a string.
Using this option allows sorting to
be performed on numeric values
rather than alphabetic values.

268

Revisiting Some Old Friends

-r --reverse Sort in reverse order. Results are in
descending rather than ascending
order.

-k --key=field1[,field2] Sort based on a key field located
from field1 to field2 rather than the
entire line. See discussion below.

-m --merge Treat each argument as the name
of a presorted file. Merge multiple
files into a single sorted result
without performing any additional
sorting.

-o --output=file Send sorted output to file rather
than standard output.

-t --field-separator=char Define the field-separator
character. By default fields are
separated by spaces or tabs.

Although most of the options above are pretty self-explanatory, some are not. First, let’s
look at the -n option, used for numeric sorting. With this option, it is possible to sort val-
ues based on numeric values. We can demonstrate this by sorting the results of the du
command to determine the largest users of disk space. Normally, the du command lists
the results of a summary in pathname order:

[me@linuxbox ~]$ du -s /usr/share/* | head
252 /usr/share/aclocal
96 /usr/share/acpi-support
8 /usr/share/adduser
196 /usr/share/alacarte
344 /usr/share/alsa
8 /usr/share/alsa-base
12488 /usr/share/anthy
8 /usr/share/apmd
21440 /usr/share/app-install
48 /usr/share/application-registry

In this example, we pipe the results into head to limit the results to the first ten lines. We
can produce a numerically sorted list to show the ten largest consumers of space this way:

269

20 – Text Processing

[me@linuxbox ~]$ du -s /usr/share/* | sort -nr | head
509940 /usr/share/locale-langpack
242660 /usr/share/doc
197560 /usr/share/fonts
179144 /usr/share/gnome
146764 /usr/share/myspell
144304 /usr/share/gimp
135880 /usr/share/dict
76508 /usr/share/icons
68072 /usr/share/apps
62844 /usr/share/foomatic

By using the -nr options, we produce a reverse numerical sort, with the largest values
appearing first in the results. This sort works because the numerical values occur at the
beginning of each line. But what if we want to sort a list based on some value found
within the line? For example, the results of an ls -l:

[me@linuxbox ~]$ ls -l /usr/bin | head
total 152948
-rwxr-xr-x 1 root root 34824 2008-04-04 02:42 [
-rwxr-xr-x 1 root root 101556 2007-11-27 06:08 a2p
-rwxr-xr-x 1 root root 13036 2008-02-27 08:22 aconnect
-rwxr-xr-x 1 root root 10552 2007-08-15 10:34 acpi
-rwxr-xr-x 1 root root 3800 2008-04-14 03:51 acpi_fakekey
-rwxr-xr-x 1 root root 7536 2008-04-19 00:19 acpi_listen
-rwxr-xr-x 1 root root 3576 2008-04-29 07:57 addpart
-rwxr-xr-x 1 root root 20808 2008-01-03 18:02 addr2line
-rwxr-xr-x 1 root root 489704 2008-10-09 17:02 adept_batch

Ignoring, for the moment, that ls can sort its results by size, we could use sort to sort
this list by file size, as well:

[me@linuxbox ~]$ ls -l /usr/bin | sort -nr -k 5 | head
-rwxr-xr-x 1 root root 8234216 2008-04-07 17:42 inkscape
-rwxr-xr-x 1 root root 8222692 2008-04-07 17:42 inkview
-rwxr-xr-x 1 root root 3746508 2008-03-07 23:45 gimp-2.4
-rwxr-xr-x 1 root root 3654020 2008-08-26 16:16 quanta
-rwxr-xr-x 1 root root 2928760 2008-09-10 14:31 gdbtui
-rwxr-xr-x 1 root root 2928756 2008-09-10 14:31 gdb
-rwxr-xr-x 1 root root 2602236 2008-10-10 12:56 net
-rwxr-xr-x 1 root root 2304684 2008-10-10 12:56 rpcclient
-rwxr-xr-x 1 root root 2241832 2008-04-04 05:56 aptitude
-rwxr-xr-x 1 root root 2202476 2008-10-10 12:56 smbcacls

270

Revisiting Some Old Friends

Many uses of sort involve the processing of tabular data, such as the results of the ls
command above. If we apply database terminology to the table above, we would say that
each row is a record and that each record consists of multiple fields, such as the file at-
tributes, link count, filename, file size and so on. sort is able to process individual
fields. In database terms, we are able to specify one or more key fields to use as sort keys.
In the example above, we specify the n and r options to perform a reverse numerical sort
and specify -k 5 to make sort use the fifth field as the key for sorting.

The k option is very interesting and has many features, but first we need to talk about
how sort defines fields. Let’s consider a very simple text file consisting of a single line
containing the author’s name:

William Shotts

By default, sort sees this line as having two fields. The first field contains the charac-
ters:

“William”

and the second field contains the characters:

“ Shotts”

meaning that whitespace characters (spaces and tabs) are used as delimiters between
fields and that the delimiters are included in the field when sorting is performed.

Looking again at a line from our ls output, we can see that a line contains eight fields
and that the fifth field is the file size:

-rwxr-xr-x 1 root root 8234216 2008-04-07 17:42 inkscape

For our next series of experiments, let’s consider the following file containing the history
of three popular Linux distributions released from 2006 to 2008. Each line in the file has
three fields: the distribution name, version number, and date of release in
MM/DD/YYYY format:

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
SUSE 10.3 10/04/2007

271

20 – Text Processing

Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
SUSE 10.1 05/11/2006
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Using a text editor (perhaps vim), we’ll enter this data and name the resulting file dis-
tros.txt.

Next, we’ll try sorting the file and observe the results:

[me@linuxbox ~]$ sort distros.txt
Fedora 10 11/25/2008
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Well, it mostly worked. The problem occurs in the sorting of the Fedora version numbers.
Since a “1” comes before a “5” in the character set, version “10” ends up at the top while
version “9” falls to the bottom.

To fix this problem we are going to have to sort on multiple keys. We want to perform an
alphabetic sort on the first field and then a numeric sort on the second field. sort allows
multiple instances of the -k option so that multiple sort keys can be specified. In fact, a
key may include a range of fields. If no range is specified (as has been the case with our
previous examples), sort uses a key that begins with the specified field and extends to
the end of the line. Here is the syntax for our multi-key sort:

272

Revisiting Some Old Friends

[me@linuxbox ~]$ sort --key=1,1 --key=2n distros.txt
Fedora 5 03/20/2006
Fedora 6 10/24/2006
Fedora 7 05/31/2007
Fedora 8 11/08/2007
Fedora 9 05/13/2008
Fedora 10 11/25/2008
SUSE 10.1 05/11/2006
SUSE 10.2 12/07/2006
SUSE 10.3 10/04/2007
SUSE 11.0 06/19/2008
Ubuntu 6.06 06/01/2006
Ubuntu 6.10 10/26/2006
Ubuntu 7.04 04/19/2007
Ubuntu 7.10 10/18/2007
Ubuntu 8.04 04/24/2008
Ubuntu 8.10 10/30/2008

Though we used the long form of the option for clarity, -k 1,1 -k 2n would be ex-
actly equivalent. In the first instance of the key option, we specified a range of fields to
include in the first key. Since we wanted to limit the sort to just the first field, we speci -
fied 1,1 which means “start at field one and end at field one.” In the second instance, we
specified 2n, which means that field 2 is the sort key and that the sort should be numeric.
An option letter may be included at the end of a key specifier to indicate the type of sort
to be performed. These option letters are the same as the global options for the sort pro-
gram: b (ignore leading blanks), n (numeric sort), r (reverse sort), and so on.

The third field in our list contains a date in an inconvenient format for sorting. On com-
puters, dates are usually formatted in YYYY-MM-DD order to make chronological sort-
ing easy, but ours are in the American format of MM/DD/YYYY. How can we sort this
list in chronological order?

Fortunately, sort provides a way. The key option allows specification of offsets within
fields, so we can define keys within fields:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt
Fedora 10 11/25/2008
Ubuntu 8.10 10/30/2008
SUSE 11.0 06/19/2008
Fedora 9 05/13/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 7.10 10/18/2007
SUSE 10.3 10/04/2007
Fedora 7 05/31/2007

273

20 – Text Processing

Ubuntu 7.04 04/19/2007
SUSE 10.2 12/07/2006
Ubuntu 6.10 10/26/2006
Fedora 6 10/24/2006
Ubuntu 6.06 06/01/2006
SUSE 10.1 05/11/2006
Fedora 5 03/20/2006

By specifying -k 3.7 we instruct sort to use a sort key that begins at the seventh
character within the third field, which corresponds to the start of the year. Likewise, we
specify -k 3.1 and -k 3.4 to isolate the month and day portions of the date. We also
add the n and r options to achieve a reverse numeric sort. The b option is included to
suppress the leading spaces (whose numbers vary from line to line, thereby affecting the
outcome of the sort) in the date field.

Some files don’t use tabs and spaces as field delimiters; for example, the /etc/passwd
file:

[me@linuxbox ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh

The fields in this file are delimited with colons (:), so how would we sort this file using a
key field? sort provides the -t option to define the field separator character. To sort the
passwd file on the seventh field (the account’s default shell), we could do this:

[me@linuxbox ~]$ sort -t ':' -k 7 /etc/passwd | head
me:x:1001:1001:Myself,,,:/home/me:/bin/bash
root:x:0:0:root:/root:/bin/bash
dhcp:x:101:102::/nonexistent:/bin/false
gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false
hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false
klog:x:103:104::/home/klog:/bin/false
messagebus:x:108:119::/var/run/dbus:/bin/false
polkituser:x:110:122:PolicyKit,,,:/var/run/PolicyKit:/bin/false

274

Revisiting Some Old Friends

pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

By specifying the colon character as the field separator, we can sort on the seventh field.

uniq

Compared to sort, the uniq program is a lightweight. uniq performs a seemingly
trivial task. When given a sorted file (including standard input), it removes any duplicate
lines and sends the results to standard output. It is often used in conjunction with sort to
clean the output of duplicates.

Tip: While uniq is a traditional Unix tool often used with sort, the GNU version
of sort supports a -u option, which removes duplicates from the sorted output.

Let’s make a text file to try this out:

[me@linuxbox ~]$ cat > foo.txt
a
b
c
a
b
c

Remember to type Ctrl-d to terminate standard input. Now, if we run uniq on our text
file:

[me@linuxbox ~]$ uniq foo.txt
a
b
c
a
b
c

the results are no different from our original file; the duplicates were not removed. For
uniq to actually do its job, the input must be sorted first:

275

20 – Text Processing

[me@linuxbox ~]$ sort foo.txt | uniq
a
b
c

This is because uniq only removes duplicate lines which are adjacent to each other.

uniq has several options. Here are the common ones:

Table 20-2: Common uniq Options

Option Description

-c Output a list of duplicate lines preceded by the number of times the
line occurs.

-d Only output repeated lines, rather than unique lines.

-f n Ignore n leading fields in each line. Fields are separated by
whitespace as they are in sort; however, unlike sort, uniq has
no option for setting an alternate field separator.

-i Ignore case during the line comparisons.

-s n Skip (ignore) the leading n characters of each line.

-u Only output unique lines. This is the default.

Here we see uniq used to report the number of duplicates found in our text file, using
the -c option:

[me@linuxbox ~]$ sort foo.txt | uniq -c
 2 a
 2 b
 2 c

Slicing And Dicing

The next three programs we will discuss are used to peel columns of text out of files and
recombine them in useful ways.

cut

The cut program is used to extract a section of text from a line and output the extracted

276

Slicing And Dicing

section to standard output. It can accept multiple file arguments or input from standard in-
put.

Specifying the section of the line to be extracted is somewhat awkward and is specified
using the following options:

Table 20-3: cut Selection Options

Option Description

-c char_list Extract the portion of the line defined by char_list. The list
may consist of one or more comma-separated numerical
ranges.

-f field_list Extract one or more fields from the line as defined by
field_list. The list may contain one or more fields or field
ranges separated by commas.

-d delim_char When -f is specified, use delim_char as the field delimiting
character. By default, fields must be separated by a single tab
character.

--complement Extract the entire line of text, except for those portions
specified by -c and/or -f.

As we can see, the way cut extracts text is rather inflexible. cut is best used to extract
text from files that are produced by other programs, rather than text directly typed by hu-
mans. We’ll take a look at our distros.txt file to see if it is “clean” enough to be a
good specimen for our cut examples. If we use cat with the -A option, we can see if
the file meets our requirements of tab-separated fields:

[me@linuxbox ~]$ cat -A distros.txt
SUSE^I10.2^I12/07/2006$
Fedora^I10^I11/25/2008$
SUSE^I11.0^I06/19/2008$
Ubuntu^I8.04^I04/24/2008$
Fedora^I8^I11/08/2007$
SUSE^I10.3^I10/04/2007$
Ubuntu^I6.10^I10/26/2006$
Fedora^I7^I05/31/2007$
Ubuntu^I7.10^I10/18/2007$
Ubuntu^I7.04^I04/19/2007$
SUSE^I10.1^I05/11/2006$
Fedora^I6^I10/24/2006$
Fedora^I9^I05/13/2008$

277

20 – Text Processing

Ubuntu^I6.06^I06/01/2006$
Ubuntu^I8.10^I10/30/2008$
Fedora^I5^I03/20/2006$

It looks good. No embedded spaces, just single tab characters between the fields. Since
the file uses tabs rather than spaces, we’ll use the -f option to extract a field:

[me@linuxbox ~]$ cut -f 3 distros.txt
12/07/2006
11/25/2008
06/19/2008
04/24/2008
11/08/2007
10/04/2007
10/26/2006
05/31/2007
10/18/2007
04/19/2007
05/11/2006
10/24/2006
05/13/2008
06/01/2006
10/30/2008
03/20/2006

Because our distros file is tab-delimited, it is best to use cut to extract fields rather
than characters. This is because when a file is tab-delimited, it is unlikely that each line
will contain the same number of characters, which makes calculating character positions
within the line difficult or impossible. In our example above, however, we now have ex-
tracted a field that luckily contains data of identical length, so we can show how character
extraction works by extracting the year from each line:

[me@linuxbox ~]$ cut -f 3 distros.txt | cut -c 7-10
2006
2008
2008
2008
2007
2007
2006
2007
2007
2007
2006

278

Slicing And Dicing

2006
2008
2006
2008
2006

By running cut a second time on our list, we are able to extract character positions 7
through 10, which corresponds to the year in our date field. The 7-10 notation is an ex-
ample of a range. The cut man page contains a complete description of how ranges can
be specified.

Expanding Tabs

Our distros.txt file is ideally formatted for extracting fields using cut. But
what if we wanted a file that could be fully manipulated with cut by characters,
rather than fields? This would require us to replace the tab characters within the
file with the corresponding number of spaces. Fortunately, the GNU Coreutils
package includes a tool for that. Named expand, this program accepts either one
or more file arguments or standard input, and outputs the modified text to stan-
dard output.
If we process our distros.txt file with expand, we can use the cut -c to
extract any range of characters from the file. For example, we could use the fol-
lowing command to extract the year of release from our list, by expanding the file
and using cut to extract every character from the twenty-third position to the end
of the line:
[me@linuxbox ~]$ expand distros.txt | cut -c 23-

Coreutils also provides the unexpand program to substitute tabs for spaces.

When working with fields, it is possible to specify a different field delimiter rather than
the tab character. Here we will extract the first field from the /etc/passwd file:

[me@linuxbox ~]$ cut -d ':' -f 1 /etc/passwd | head
root
daemon
bin
sys
sync
games
man
lp

279

20 – Text Processing

mail
news

Using the -d option, we are able to specify the colon character as the field delimiter.

paste

The paste command does the opposite of cut. Rather than extracting a column of text
from a file, it adds one or more columns of text to a file. It does this by reading multiple
files and combining the fields found in each file into a single stream on standard output.
Like cut, paste accepts multiple file arguments and/or standard input. To demonstrate
how paste operates, we will perform some surgery on our distros.txt file to pro-
duce a chronological list of releases.

From our earlier work with sort, we will first produce a list of distros sorted by date
and store the result in a file called distros-by-date.txt:

[me@linuxbox ~]$ sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt > dis
tros-by-date.txt

Next, we will use cut to extract the first two fields from the file (the distro name and
version), and store that result in a file named distro-versions.txt:

[me@linuxbox ~]$ cut -f 1,2 distros-by-date.txt > distros-versions.t
xt
[me@linuxbox ~]$ head distros-versions.txt
Fedora 10
Ubuntu 8.10
SUSE 11.0
Fedora 9
Ubuntu 8.04
Fedora 8
Ubuntu 7.10
SUSE 10.3
Fedora 7
Ubuntu 7.04

The final piece of preparation is to extract the release dates and store them a file named
distro-dates.txt:

280

Slicing And Dicing

[me@linuxbox ~]$ cut -f 3 distros-by-date.txt > distros-dates.txt
[me@linuxbox ~]$ head distros-dates.txt
11/25/2008
10/30/2008
06/19/2008
05/13/2008
04/24/2008
11/08/2007
10/18/2007
10/04/2007
05/31/2007
04/19/2007

We now have the parts we need. To complete the process, use paste to put the column
of dates ahead of the distro names and versions, thus creating a chronological list. This is
done simply by using paste and ordering its arguments in the desired arrangement:

[me@linuxbox ~]$ paste distros-dates.txt distros-versions.txt
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04
12/07/2006 SUSE 10.2
10/26/2006 Ubuntu 6.10
10/24/2006 Fedora 6
06/01/2006 Ubuntu 6.06
05/11/2006 SUSE 10.1
03/20/2006 Fedora 5

join

In some ways, join is like paste in that it adds columns to a file, but it uses a unique
way to do it. A join is an operation usually associated with relational databases where
data from multiple tables with a shared key field is combined to form a desired result.
The join program performs the same operation. It joins data from multiple files based
on a shared key field.

To see how a join operation is used in a relational database, let’s imagine a very small
database consisting of two tables, each containing a single record. The first table, called

281

20 – Text Processing

CUSTOMERS, has three fields: a customer number (CUSTNUM), the customer’s first
name (FNAME), and the customer’s last name (LNAME):

CUSTNUM FNAME LNAME
======== ===== ======
4681934 John Smith

The second table is called ORDERS and contains four fields: an order number (ORDER-
NUM), the customer number (CUSTNUM), the quantity (QUAN), and the item ordered
(ITEM).

ORDERNUM CUSTNUM QUAN ITEM
======== ======= ==== ====
3014953305 4681934 1 Blue Widget

Note that both tables share the field CUSTNUM. This is important, as it allows a rela-
tionship between the tables.

Performing a join operation would allow us to combine the fields in the two tables to
achieve a useful result, such as preparing an invoice. Using the matching values in the
CUSTNUM fields of both tables, a join operation could produce the following:

FNAME LNAME QUAN ITEM
===== ===== ==== ====
John Smith 1 Blue Widget

To demonstrate the join program, we’ll need to make a couple of files with a shared
key. To do this, we will use our distros-by-date.txt file. From this file, we will
construct two additional files, one containing the release dates (which will be our shared
key for this demonstration) and the release names:

[me@linuxbox ~]$ cut -f 1,1 distros-by-date.txt > distros-names.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-names.txt > distros-
key-names.txt
[me@linuxbox ~]$ head distros-key-names.txt
11/25/2008 Fedora
10/30/2008 Ubuntu
06/19/2008 SUSE
05/13/2008 Fedora
04/24/2008 Ubuntu
11/08/2007 Fedora
10/18/2007 Ubuntu
10/04/2007 SUSE
05/31/2007 Fedora
04/19/2007 Ubuntu

and the second file, which contains the release dates and the version numbers:

282

Slicing And Dicing

[me@linuxbox ~]$ cut -f 2,2 distros-by-date.txt > distros-vernums.txt
[me@linuxbox ~]$ paste distros-dates.txt distros-vernums.txt > distro
s-key-vernums.txt
[me@linuxbox ~]$ head distros-key-vernums.txt
11/25/2008 10
10/30/2008 8.10
06/19/2008 11.0
05/13/2008 9
04/24/2008 8.04
11/08/2007 8
10/18/2007 7.10
10/04/2007 10.3
05/31/2007 7
04/19/2007 7.04

We now have two files with a shared key (the “release date” field). It is important to point
out that the files must be sorted on the key field for join to work properly.

[me@linuxbox ~]$ join distros-key-names.txt distros-key-vernums.txt |
head
11/25/2008 Fedora 10
10/30/2008 Ubuntu 8.10
06/19/2008 SUSE 11.0
05/13/2008 Fedora 9
04/24/2008 Ubuntu 8.04
11/08/2007 Fedora 8
10/18/2007 Ubuntu 7.10
10/04/2007 SUSE 10.3
05/31/2007 Fedora 7
04/19/2007 Ubuntu 7.04

Note also that, by default, join uses whitespace as the input field delimiter and a single
space as the output field delimiter. This behavior can be modified by specifying options.
See the join man page for details.

Comparing Text

It is often useful to compare versions of text files. For system administrators and software
developers, this is particularly important. A system administrator may, for example, need
to compare an existing configuration file to a previous version to diagnose a system prob-
lem. Likewise, a programmer frequently needs to see what changes have been made to
programs over time.

283

20 – Text Processing

comm

The comm program compares two text files and displays the lines that are unique to each
one and the lines they have in common. To demonstrate, we will create two nearly identi-
cal text files using cat:

[me@linuxbox ~]$ cat > file1.txt
a
b
c
d
[me@linuxbox ~]$ cat > file2.txt
b
c
d
e

Next, we will compare the two files using comm:

[me@linuxbox ~]$ comm file1.txt file2.txt
a

b
c
d

e

As we can see, comm produces three columns of output. The first column contains lines
unique to the first file argument; the second column, the lines unique to the second file ar-
gument; the third column contains the lines shared by both files. comm supports options
in the form -n where n is either 1, 2 or 3. When used, these options specify which col-
umn(s) to suppress. For example, if we only wanted to output the lines shared by both
files, we would suppress the output of columns one and two:

[me@linuxbox ~]$ comm -12 file1.txt file2.txt
b
c
d

diff

Like the comm program, diff is used to detect the differences between files. However,

284

Comparing Text

diff is a much more complex tool, supporting many output formats and the ability to
process large collections of text files at once. diff is often used by software developers
to examine changes between different versions of program source code, and thus has the
ability to recursively examine directories of source code, often referred to as source trees.
One common use for diff is the creation of diff files or patches that are used by pro-
grams such as patch (which we’ll discuss shortly) to convert one version of a file (or
files) to another version.

If we use diff to look at our previous example files:

[me@linuxbox ~]$ diff file1.txt file2.txt
1d0
< a
4a4
> e

we see its default style of output: a terse description of the differences between the two
files. In the default format, each group of changes is preceded by a change command in
the form of range operation range to describe the positions and types of changes required
to convert the first file to the second file:

Table 20-4: diff Change Commands

Change Description

r1ar2 Append the lines at the position r2 in the second file to the position
r1 in the first file.

r1cr2 Change (replace) the lines at position r1 with the lines at the
position r2 in the second file.

r1dr2 Delete the lines in the first file at position r1, which would have
appeared at range r2 in the second file

In this format, a range is a comma-separated list of the starting line and the ending line.
While this format is the default (mostly for POSIX compliance and backward compatibil-
ity with traditional Unix versions of diff), it is not as widely used as other, optional for-
mats. Two of the more popular formats are the context format and the unified format.

When viewed using the context format (the -c option), we will see this:

[me@linuxbox ~]$ diff -c file1.txt file2.txt

285

20 – Text Processing

*** file1.txt 2008-12-23 06:40:13.000000000 -0500
--- file2.txt 2008-12-23 06:40:34.000000000 -0500

*** 1,4 ****
- a
 b
 c
 d
--- 1,4 ----
 b
 c
 d
+ e

The output begins with the names of the two files and their timestamps. The first file is
marked with asterisks and the second file is marked with dashes. Throughout the remain-
der of the listing, these markers will signify their respective files. Next, we see groups of
changes, including the default number of surrounding context lines. In the first group, we
see:

*** 1,4 ***

which indicates lines 1 through 4 in the first file. Later we see:

--- 1,4 ---

which indicates lines 1 through 4 in the second file. Within a change group, lines begin
with one of four indicators:

Table 20-5: diff Context Format Change Indicators

Indicator Meaning

blank A line shown for context. It does not indicate a difference between
the two files.

- A line deleted. This line will appear in the first file but not in the
second file.

+ A line added. This line will appear in the second file but not in the
first file.

! A line changed. The two versions of the line will be displayed, each
in its respective section of the change group.

The unified format is similar to the context format but is more concise. It is specified
with the -u option:

286

Comparing Text

[me@linuxbox ~]$ diff -u file1.txt file2.txt
--- file1.txt 2008-12-23 06:40:13.000000000 -0500
+++ file2.txt 2008-12-23 06:40:34.000000000 -0500
@@ -1,4 +1,4 @@
-a
 b
 c
 d
+e

The most notable difference between the context and unified formats is the elimination of
the duplicated lines of context, making the results of the unified format shorter than those
of the context format. In our example above, we see file timestamps like those of the con-
text format, followed by the string @@ -1,4 +1,4 @@. This indicates the lines in the
first file and the lines in the second file described in the change group. Following this are
the lines themselves, with the default three lines of context. Each line starts with one of
three possible characters:

Table 20-6: diff Unified Format Change Indicators

Character Meaning

blank This line is shared by both files.

- This line was removed from the first file.

+ This line was added to the first file.

patch

The patch program is used to apply changes to text files. It accepts output from diff
and is generally used to convert older version of files into newer versions. Let’s consider
a famous example. The Linux kernel is developed by a large, loosely organized team of
contributors who submit a constant stream of small changes to the source code. The
Linux kernel consists of several million lines of code, while the changes that are made by
one contributor at one time are quite small. It makes no sense for a contributor to send
each developer an entire kernel source tree each time a small change is made. Instead, a
diff file is submitted. The diff file contains the change from the previous version of the
kernel to the new version with the contributor's changes. The receiver then uses the
patch program to apply the change to his own source tree. Using diff/patch offers
two significant advantages:

1. The diff file is very small, compared to the full size of the source tree.

2. The diff file concisely shows the change being made, allowing reviewers of the

287

20 – Text Processing

patch to quickly evaluate it.

Of course, diff/patch will work on any text file, not just source code. It would be
equally applicable to configuration files or any other text.

To prepare a diff file for use with patch, the GNU documentation (see Further Reading
below) suggests using diff as follows:

diff -Naur old_file new_file > diff_file

Where old_file and new_file are either single files or directories containing files. The r
option supports recursion of a directory tree.

Once the diff file has been created, we can apply it to patch the old file into the new file:

patch < diff_file

We’ll demonstrate with our test file:

[me@linuxbox ~]$ diff -Naur file1.txt file2.txt > patchfile.txt
[me@linuxbox ~]$ patch < patchfile.txt
patching file file1.txt
[me@linuxbox ~]$ cat file1.txt
b
c
d
e

In this example, we created a diff file named patchfile.txt and then used the
patch program to apply the patch. Note that we did not have to specify a target file to
patch, as the diff file (in unified format) already contains the filenames in the header.
Once the patch is applied, we can see that file1.txt now matches file2.txt.

patch has a large number of options, and there are additional utility programs that can
be used to analyze and edit patches.

Editing On The Fly

Our experience with text editors has been largely interactive, meaning that we manually
move a cursor around, then type our changes. However, there are non-interactive ways to
edit text as well. It’s possible, for example, to apply a set of changes to multiple files with
a single command.

tr

The tr program is used to transliterate characters. We can think of this as a sort of char-

288

Editing On The Fly

acter-based search-and-replace operation. Transliteration is the process of changing char-
acters from one alphabet to another. For example, converting characters from lowercase
to uppercase is transliteration. We can perform such a conversion with tr as follows:

[me@linuxbox ~]$ echo "lowercase letters" | tr a-z A-Z
LOWERCASE LETTERS

As we can see, tr operates on standard input, and outputs its results on standard output.
tr accepts two arguments: a set of characters to convert from and a corresponding set of
characters to convert to. Character sets may be expressed in one of three ways:

1. An enumerated list. For example, ABCDEFGHIJKLMNOPQRSTUVWXYZ

2. A character range. For example, A-Z. Note that this method is sometimes subject
to the same issues as other commands, due to the locale collation order, and thus
should be used with caution.

3. POSIX character classes. For example, [:upper:].

In most cases, both character sets should be of equal length; however, it is possible for
the first set to be larger than the second, particularly if we wish to convert multiple char-
acters to a single character:

[me@linuxbox ~]$ echo "lowercase letters" | tr [:lower:] A
AAAAAAAAA AAAAAAA

In addition to transliteration, tr allows characters to simply be deleted from the input
stream. Earlier in this chapter, we discussed the problem of converting MS-DOS text files
to Unix-style text. To perform this conversion, carriage return characters need to be re-
moved from the end of each line. This can be performed with tr as follows:

tr -d '\r' < dos_file > unix_file

where dos_file is the file to be converted and unix_file is the result. This form of the com-
mand uses the escape sequence \r to represent the carriage return character. To see a
complete list of the sequences and character classes tr supports, try:

[me@linuxbox ~]$ tr --help

289

20 – Text Processing

ROT13: The Not-So-Secret Decoder Ring

One amusing use of tr is to perform ROT13 encoding of text. ROT13 is a trivial
type of encryption based on a simple substitution cipher. Calling ROT13 “encryp-
tion” is being generous; “text obfuscation” is more accurate. It is used sometimes
on text to obscure potentially offensive content. The method simply moves each
character 13 places up the alphabet. Since this is half way up the possible 26 char-
acters, performing the algorithm a second time on the text restores it to its original
form. To perform this encoding with tr:
echo "secret text" | tr a-zA-Z n-za-mN-ZA-M
frperg grkg

Performing the same procedure a second time results in the translation:
echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M
secret text

A number of email programs and Usenet news readers support ROT13 encoding.
Wikipedia contains a good article on the subject:
http://en.wikipedia.org/wiki/ROT13

tr can perform another trick, too. Using the -s option, tr can “squeeze” (delete) re-
peated instances of a character:

[me@linuxbox ~]$ echo "aaabbbccc" | tr -s ab
abccc

Here we have a string containing repeated characters. By specifying the set “ab” to tr,
we eliminate the repeated instances of the letters in the set, while leaving the character
that is missing from the set (“c”) unchanged. Note that the repeating characters must be
adjoining. If they are not:

[me@linuxbox ~]$ echo "abcabcabc" | tr -s ab
abcabcabc

the squeezing will have no effect.

sed

The name sed is short for stream editor. It performs text editing on a stream of text, ei-

290

http://en.wikipedia.org/wiki/ROT13

Editing On The Fly

ther a set of specified files or standard input. sed is a powerful and somewhat complex
program (there are entire books about it), so we will not cover it completely here.

In general, the way sed works is that it is given either a single editing command (on the
command line) or the name of a script file containing multiple commands, and it then
performs these commands upon each line in the stream of text. Here is a very simple ex-
ample of sed in action:

[me@linuxbox ~]$ echo "front" | sed 's/front/back/'
back

In this example, we produce a one-word stream of text using echo and pipe it into sed.
sed, in turn, carries out the instruction s/front/back/ upon the text in the stream
and produces the output “back” as a result. We can also recognize this command as re-
sembling the “substitution” (search-and-replace) command in vi.

Commands in sed begin with a single letter. In the example above, the substitution com-
mand is represented by the letter s and is followed by the search-and-replace strings, sep-
arated by the slash character as a delimiter. The choice of the delimiter character is arbi-
trary. By convention, the slash character is often used, but sed will accept any character
that immediately follows the command as the delimiter. We could perform the same com-
mand this way:

[me@linuxbox ~]$ echo "front" | sed 's_front_back_'
back

By using the underscore character immediately after the command, it becomes the delim-
iter. The ability to set the delimiter can be used to make commands more readable, as we
shall see.

Most commands in sed may be preceded by an address, which specifies which line(s) of
the input stream will be edited. If the address is omitted, then the editing command is car-
ried out on every line in the input stream. The simplest form of address is a line number.
We can add one to our example:

[me@linuxbox ~]$ echo "front" | sed '1s/front/back/'
back

Adding the address 1 to our command causes our substitution to be performed on the first

291

20 – Text Processing

line of our one-line input stream. If we specify another number:

[me@linuxbox ~]$

Editing On The Fly

Fedora 8 11/08/2007

In this example, we print a range of lines, starting with line 1 and continuing to line 5. To
do this, we use the p command, which simply causes a matched line to be printed. For
this to be effective however, we must include the option -n (the no auto-print option) to
cause sed not to print every line by default.

Next, we’ll try a regular expression:

[me@linuxbox ~]$ sed -n '/SUSE/p' distros.txt
SUSE 10.2 12/07/2006
SUSE 11.0 06/19/2008
SUSE 10.3 10/04/2007
SUSE 10.1 05/11/2006

By including the slash-delimited regular expression /SUSE/, we are able to isolate the
lines containing it in much the same manner as grep.

Finally, we’ll try negation by adding an exclamation point (!) to the address:

[me@linuxbox ~]$ sed -n '/SUSE/!p' distros.txt
Fedora 10 11/25/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007
Fedora 6 10/24/2006
Fedora 9 05/13/2008
Ubuntu 6.06 06/01/2006
Ubuntu 8.10 10/30/2008
Fedora 5 03/20/2006

Here we see the expected result: all of the lines in the file except the ones matched by the
regular expression.

So far, we’ve looked at two of the sed editing commands, s and p. Here is a more com-
plete list of the basic editing commands:

Table 20-8: sed Basic Editing Commands

Command Description

293

20 – Text Processing

= Output current line number.

a Append text after the current line.

d Delete the current line.

i Insert text in front of the current line.

p Print the current line. By default, sed prints every
line and only edits lines that match a specified
address within the file. The default behavior can
be overridden by specifying the -n option.

q Exit sed without processing any more lines. If the
-n option is not specified, output the current line.

Q Exit

Editing On The Fly

)$/\3-\1-\2/' distros.txt
SUSE 10.2 2006-12-07
Fedora 10 2008-11-25
SUSE 11.0 2008-06-19
Ubuntu 8.04 2008-04-24
Fedora 8 2007-11-08
SUSE 10.3 2007-10-04
Ubuntu 6.10 2006-10-26
Fedora 7 2007-05-31
Ubuntu 7.10 2007-10-18
Ubuntu 7.04 2007-04-19
SUSE 10.1 2006-05-11
Fedora 6 2006-10-24
Fedora 9 2008-05-13
Ubuntu 6.06 2006-06-01
Ubuntu 8.10 2008-10-30
Fedora 5 2006-03-20

Wow! Now that is an ugly looking command. But it works. In just one step, we have
changed the date format in our file. It is also a perfect example of why regular expres-
sions are sometimes jokingly referred to as a “write-only” medium. We can write them,
but we sometimes cannot read them. Before we are tempted to run away in terror from
this command, let’s look at how it was constructed. First, we know that the command will
have this basic structure:

sed 's/regexp/replacement/' distros.txt

Our next step is to figure out a regular expression that will isolate the date. Since it is in
MM/DD/YYYY format and appears at the end of the line, we can use an expression like
this:

[0-9]{2}/[0-9]{2}/[0-9]{4}$

which matches two digits, a slash, two digits, a slash, four digits, and the end of line. So
that takes care of regexp, but what about replacement? To handle that, we must introduce
a new regular expression feature that appears in some applications which use BRE. This
feature is called back references and works like this: If the sequence \n appears in re-
placement where n is a number from 1 to 9, the sequence will refer to the corresponding
subexpression in the preceding regular expression. To create the subexpressions, we sim-
ply enclose them in parentheses like so:

295

20 – Text Processing

([0-9]{2})/([0-9]{2})/([0-9]{4})$

We now have three subexpressions. The first contains the month, the second contains the
day of the month, and the third contains the year. Now we can construct replacement as
follows:

\3-\1-\2

which gives us the year, a dash, the month, a dash, and the day.

Now, our command looks like this:

sed 's/([0-9]{2})/([0-9]{2})/([0-9]{4})$/\3-\1-\2/' distros.txt

We have two remaining problems. The first is that the extra slashes in our regular expres-
sion will confuse sed when it tries to interpret the s command. The second is that since
sed, by default, accepts only basic regular expressions, several of the characters in our
regular expression will be taken as literals, rather than as metacharacters. We can solve
both these problems with a liberal application of backslashes to escape the offending
characters:

sed 's/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/' dis
tros.txt

And there you have it!

Another feature of the s command is the use of optional flags that may follow the re-
placement string. The most important of these is the g flag, which instructs sed to apply
the search-and-replace globally to a line, not just to the first instance, which is the default.
Here is an example:

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/'
aaaBbbccc

We see that the replacement was performed, but only to the first instance of the letter “b,”
while the remaining instances were left unchanged. By adding the g flag, we are able to
change all the instances:

296

Editing On The Fly

[me@linuxbox ~]$ echo "aaabbbccc" | sed 's/b/B/g'
aaaBBBccc

So far, we have only given sed single commands via the command line. It is also possi-
ble to construct more complex commands in a script file using the -f option. To demon-
strate, we will use sed with our distros.txt file to build a report. Our report will
feature a title at the top, our modified dates, and all the distribution names converted to
uppercase. To do this, we will need to write a script, so we’ll fire up our text editor and
enter the following:

sed script to produce Linux distributions report

1 i\
\
Linux Distributions Report\

s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

We will save our sed script as distros.sed and run it like this:

[me@linuxbox ~]$ sed -f distros.sed distros.txt

Linux Distributions Report

SUSE 10.2 2006-12-07
FEDORA 10 2008-11-25
SUSE 11.0 2008-06-19
UBUNTU 8.04 2008-04-24
FEDORA 8 2007-11-08
SUSE 10.3 2007-10-04
UBUNTU 6.10 2006-10-26
FEDORA 7 2007-05-31
UBUNTU 7.10 2007-10-18
UBUNTU 7.04 2007-04-19
SUSE 10.1 2006-05-11
FEDORA 6 2006-10-24
FEDORA 9 2008-05-13
UBUNTU 6.06 2006-06-01
UBUNTU 8.10 2008-10-30
FEDORA 5 2006-03-20

As we can see, our script produces the desired results, but how does it do it? Let’s take

297

20 – Text Processing

another look at our script. We’ll use cat to number the lines:

[me@linuxbox ~]$ cat -n distros.sed
 1 # sed script to produce Linux distributions report
 2
 3 1 i\
 4 \
 5 Linux Distributions Report\
 6
 7 s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)
$/\3-\1-\2/
 8 y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

Line one of our script is a comment. Like many configuration files and programming lan-
guages on Linux systems, comments begin with the # character and are followed by hu-
man-readable text. Comments can be placed anywhere in the script (though not within
commands themselves) and are helpful to any humans who might need to identify and/or
maintain the script.

Line 2 is a blank line. Like comments, blank lines may be added to improve readability.

Many sed commands support line addresses. These are used to specify which lines of
the input are to be acted upon. Line addresses may be expressed as single line numbers,
line number ranges, and the special line number “$” which indicates the last line of input.

Lines 3 through 6 contain text to be inserted at the address 1, the first line of the input.
The i command is followed by the sequence backslash-carriage return to produce an es-
caped carriage return, or what is called a line-continuation character. This sequence,
which can be used in many circumstances including shell scripts, allows a carriage return
to be embedded in a stream of text without signaling the interpreter (in this case sed)
that the end of the line has been reached. The i, and likewise, the a (which appends text,
rather than inserting it) and c (which replaces text) commands, allow multiple lines of
text as long as each line, except the last, ends with a line-continuation character. The sixth
line of our script is actually the end of our inserted text and ends with a plain carriage re-
turn rather than a line-continuation character, signaling the end of the i command.

Note: A line-continuation character is formed by a backslash followed immediately
by a carriage return. No intermediary spaces are permitted.

Line 7 is our search-and-replace command. Since it is not preceded by an address, each
line in the input stream is subject to its action.

Line 8 performs transliteration of the lowercase letters into uppercase letters. Note that

298

Editing On The Fly

unlike tr, the y command in sed does not support character ranges (for example, [a-
z]), nor does it support POSIX character classes. Again, since the y command is not pre-
ceded by an address, it applies to every line in the input stream.

People Who Like sed Also Like...

sed is a very capable program, able to perform fairly complex editing tasks to
streams of text. It is most often used for simple, one-line tasks rather than long
scripts. Many users prefer other tools for larger tasks. The most popular of these
are awk and perl. These go beyond mere tools like the programs covered here,
and extend into the realm of complete programming languages. perl, in particu-
lar, is often used in place of shell scripts for many system-management and ad-
ministration tasks, as well as being a very popular medium for web development.
awk is a little more specialized. Its specific strength is its ability to manipulate
tabular data. It resembles sed in that awk programs normally process text files
line-by-line, using a scheme similar to the sed concept of an address followed by
an action. While both awk and perl are outside the scope of this book, they are
very good skills for the Linux command line user.

aspell

The last tool we will look at is aspell, an interactive spelling checker. The aspell
program is the successor to an earlier program named ispell, and can be used, for the
most part, as a drop-in replacement. While the aspell program is mostly used by other
programs that require spell-checking capability, it can also be used very effectively as a
stand-alone tool from the command line. It has the ability to intelligently check various
type of text files, including HTML documents, C/C++ programs, email messages, and
other kinds of specialized texts.

To spell check a text file containing simple prose, it could be used like this:

aspell check textfile

where textfile is the name of the file to check. As a practical example, let’s create a simple
text file named foo.txt containing some deliberate spelling errors:

[me@linuxbox ~]$ cat > foo.txt

299

20 – Text Processing

The quick brown fox jimped over the laxy dog.

Next we’ll check the file using aspell:

[me@linuxbox ~]$ aspell check foo.txt

As aspell is interactive in the check mode, we will see a screen like this:

The quick brown fox jimped over the laxy dog.

1) jumped 6) wimped
2) gimped 7) camped
3) comped 8) humped
4) limped 9) impede
5) pimped 0) umped
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

At the top of the display, we see our text with a suspiciously spelled word highlighted. In
the middle, we see ten spelling suggestions numbered zero through nine, followed by a
list of other possible actions. Finally, at the very bottom, we see a prompt ready to accept
our choice.

If we press the 1 key, aspell replaces the offending word with the word “jumped” and
moves on to the next misspelled word, which is “laxy.” If we select the replacement
“lazy,” aspell replaces it and terminates. Once aspell has finished, we can examine
our file and see that the misspellings have been corrected:

[me@linuxbox ~]$ cat foo.txt
The quick brown fox jumped over the lazy dog.

Unless told otherwise via the command line option --dont-backup, aspell creates
a backup file containing the original text by appending the extension .bak to the file-
name.

300

20 – Text Processing

1) HTML 4) Hamel
2) ht ml 5) Hamil
3) ht-ml 6) hotel

i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

aspell will see the contents of the HTML tags as misspelled. This problem can be
overcome by including the -H (HTML) checking-mode option, like this:

[me@linuxbox ~]$ aspell -H check foo.txt

which will result in this:

<html>
 <head>
 <title>Mispelled HTML file</title>
 </head>
 <body>
 <p>The quick brown fox jimped over the laxy dog.</p>
 </body>
</html>

1) Mi spelled 6) Misapplied
2) Mi-spelled 7) Miscalled
3) Misspelled 8) Respelled
4) Dispelled 9) Misspell
5) Spelled 0) Misled
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

The HTML is ignored and only the non-markup portions of the file are checked. In this
mode, the contents of HTML tags are ignored and not checked for spelling. However, the
contents of ALT tags, which benefit from checking, are checked in this mode.

302

Editing On The Fly

Note: By default, aspell will ignore URLs and email addresses in text. This be-
havior can be overridden with command line options. It is also possible to specify
which markup tags are checked and skipped. See the aspell man page for details.

Summing Up

In this chapter, we have looked at a few of the many command line tools that operate on
text. In the next chapter, we will look at several more. Admittedly, it may not seem imme-
diately obvious how or why you might use some of these tools on a day-to-day basis,
though we have tried to show some semi-practical examples of their use. We will find in
later chapters that these tools form the basis of a tool set that is used to solve a host of
practical problems. This will be particularly true when we get into shell scripting, where
these tools will really show their worth.

Further Reading

The GNU Project website contains many online guides to the tools discussed in this chap-
ter.

● From the Coreutils package:
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire -
files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on -
sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-fields
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-char-
acters

● From the Diffutils package:
http://www.gnu.org/software/diffutils/manual/html_mono/diff.html

● sed:
http://www.gnu.org/software/sed/manual/sed.html

● aspell:
http://aspell.net/man-html/index.html

● There are many other online resources for sed, in particular:
http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt

● Also try googling “sed one liners”, “sed cheat sheets”

303

http://sed.sourceforge.net/sed1line.txt
http://www.grymoire.com/Unix/Sed.html
http://aspell.net/man-html/index.html
http://www.gnu.org/software/sed/manual/sed.html
http://www.gnu.org/software/diffutils/manual/html_mono/diff.html
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-characters
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-characters
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-fields
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Operating-on-sorted-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files
http://www.gnu.org/software/coreutils/manual/coreutils.html#Output-of-entire-files

20 – Text Processing

Extra Credit

There are a few more interesting text-manipulation commands worth investigating.
Among these are: split (split files into pieces), csplit (split files into pieces based
on context), and sdiff (side-by-side merge of file differences.)

304

21 – Formatting Output

21 – Formatting Output

In this chapter, we continue our look at text-related tools, focusing on programs that are
used to format text output, rather than changing the text itself. These tools are often used
to prepare text for eventual printing, a subject that we will cover in the next chapter. The
programs that we will cover in this chapter include:

● nl – Number lines

● fold – Wrap each line to a specified length

● fmt – A simple text formatter

● pr – Prepare text for printing

● printf – Format and print data

● groff – A document formatting system

Simple Formatting Tools

We’ll look at some of the simple formatting tools first. These are mostly single-purpose
programs, and a bit unsophisticated in what they do, but they can be used for small tasks
and as parts of pipelines and scripts.

nl – Number Lines

The nl program is a rather arcane tool used to perform a simple task. It numbers lines. In
its simplest use, it resembles cat -n:

[me@linuxbox ~]$ nl distros.txt | head
 1 SUSE 10.2 12/07/2006
 2 Fedora 10 11/25/2008
 3 SUSE 11.0 06/19/2008
 4 Ubuntu 8.04 04/24/2008
 5 Fedora 8 11/08/2007
 6 SUSE 10.3 10/04/2007
 7 Ubuntu 6.10 10/26/2006

305

21 – Formatting Output

 8 Fedora 7 05/31/2007
 9 Ubuntu 7.10 10/18/2007
 10 Ubuntu 7.04 04/19/2007

Like cat, nl can accept either multiple files as command line arguments, or standard in-
put. However, nl has a number of options and supports a primitive form of markup to al-
low more complex kinds of numbering.

nl supports a concept called “logical pages” when numbering. This allows nl to reset
(start over) the numerical sequence when numbering. Using options, it is possible to set
the starting number to a specific value and, to a limited extent, its format. A logical page
is further broken down into a header, body, and footer. Within each of these sections, line
numbering may be reset and/or be assigned a different style. If nl is given multiple files,
it treats them as a single stream of text. Sections in the text stream are indicated by the
presence of some rather odd-looking markup added to the text:

Table 21-1: nl Markup

Markup Meaning

\:\:\: Start of logical page header

\:\: Start of logical page body

\: Start of logical page footer

Each of the above markup elements must appear alone on its own line. After processing a
markup element, nl deletes it from the text stream.

Here are the common options for nl:

Table 21-2: Common nl Options

Option Meaning

-b style Set body numbering to style, where style is one of the following:
a = number all lines
t = number only non-blank lines. This is the default.
n = none
pregexp = number only lines matching basic regular expression
regexp.

-f style Set footer numbering to style. Default is n (none).

-h style Set header numbering to style. Default is n (none).

306

Simple Formatting Tools

-i number Set page numbering increment to number. Default is one.

-n format Sets numbering format to format, where format is:
ln = left justified, without leading zeros.
rn = right justified, without leading zeros. This is the default.
rz = right justified, with leading zeros.

-p Do not reset page numbering at the beginning of each logical page.

-s string Add string to the end of each line number to create a separator.
Default is a single tab character.

-v number Set first line number of each logical page to number. Default is one.

-w width Set width of the line number field to width. Default is 6.

Admittedly, we probably won’t be numbering lines that often, but we can use nl to look
at how we can combine multiple tools to perform more complex tasks. We will build on
our work in the previous chapter to produce a Linux distributions report. Since we will be
using nl, it will be useful to include its header/body/footer markup. To do this, we will
add it to the sed script from the last chapter. Using our text editor, we will change the
script as follows and save it as distros-nl.sed:

sed script to produce Linux distributions report

1 i\
\\:\\:\\:\
\
Linux Distributions Report\
\
Name Ver. Released\
---- ---- --------\
\\:\\:
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\
\\:\
\
End Of Report

The script now inserts the nl logical page markup and adds a footer at the end of the re-
port. Note that we had to double up the backslashes in our markup, because they are nor-
mally interpreted as an escape character by sed.

Next, we’ll produce our enhanced report by combining sort, sed, and nl:

307

21 – Formatting Output

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-nl.s
ed | nl

 Linux Distributions Report

 Name Ver. Released
 ---- ---- --------

 1 Fedora 5 2006-03-20
 2 Fedora 6 2006-10-24
 3 Fedora 7 2007-05-31
 4 Fedora 8 2007-11-08
 5 Fedora 9 2008-05-13
 6 Fedora 10 2008-11-25
 7 SUSE 10.1 2006-05-11
 8 SUSE 10.2 2006-12-07
 9 SUSE 10.3 2007-10-04
 10 SUSE 11.0 2008-06-19
 11 Ubuntu 6.06 2006-06-01
 12 Ubuntu 6.10 2006-10-26
 13 Ubuntu 7.04 2007-04-19
 14 Ubuntu 7.10 2007-10-18
 15 Ubuntu 8.04 2008-04-24
 16 Ubuntu 8.10 2008-10-30

 End Of Report

Our report is the result of our pipeline of commands. First, we sort the list by distribution
name and version (fields 1 and 2), then we process the results with sed, adding the re-
port header (including the logical page markup for nl) and footer. Finally, we process the
result with nl, which, by default, only numbers the lines of the text stream that belong to
the body section of the logical page.

We can repeat the command and experiment with different options for nl. Some interest-
ing ones are:

nl -n rz

and

 nl -w 3 -s ' '

308

Simple Formatting Tools

fold – Wrap Each Line To A Specified Length

Folding is the process of breaking lines of text at a specified width. Like our other com-
mands, fold accepts either one or more text files or standard input. If we send fold a
simple stream of text, we can see how it works:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog."
| fold -w 12
The quick br
own fox jump
ed over the
lazy dog.

Here we see fold in action. The text sent by the echo command is broken into seg-
ments specified by the -w option. In this example, we specify a line width of 12 charac-
ters. If no width is specified, the default is 80 characters. Notice how the lines are broken
regardless of word boundaries. The addition of the -s option will cause fold to break
the line at the last available space before the line width is reached:

[me@linuxbox ~]$ echo "The quick brown fox jumped over the lazy dog."
| fold -w 12 -s
The quick
brown fox
jumped over
the lazy
dog.

fmt – A Simple Text Formatter

The fmt program also folds text, plus a lot more. It accepts either files or standard input
and performs paragraph formatting on the text stream. Basically, it fills and joins lines in
text while preserving blank lines and indentation.

To demonstrate, we’ll need some text. Let’s lift some from the fmt info page:

 `fmt' reads from the specified FILE arguments (or standard input
if none are given), and writes to standard output.

 By default, blank lines, spaces between words, and indentation are

309

21 – Formatting Output

preserved in the output; successive input lines with different
indentation are not joined; tabs are expanded on input and introduced
on output.

 `fmt' prefers breaking lines at the end of a sentence, and tries
to avoid line breaks after the first word of a sentence or before the
last word of a sentence. A "sentence break" is defined as either the
end of a paragraph or a word ending in any of `.?!', followed by two
spaces or end of line, ignoring any intervening parentheses or
quotes. Like TeX, `fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of that given by Donald E.
Knuth and Michael F. Plass in "Breaking Paragraphs Into Lines",
`Software--Practice & Experience' 11, 11 (November 1981), 1119-1184.

We’ll copy this text into our text editor and save the file as fmt-info.txt. Now, let’s
say we wanted to reformat this text to fit a fifty character wide column. We could do this
by processing the file with fmt and the -w option:

[me@linuxbox ~]$ fmt -w 50 fmt-info.txt | head
 `fmt' reads from the specified FILE arguments
 (or standard input if
none are given), and writes to standard output.

 By default, blank lines, spaces between words,
 and indentation are
preserved in the output; successive input lines
with different indentation are not joined; tabs
are expanded on input and introduced on output.

Well, that’s an awkward result. Perhaps we should actually read this text, since it explains
what’s going on:

By default, blank lines, spaces between words, and indentation are preserved in the
output; successive input lines with different indentation are not joined; tabs are
expanded on input and introduced on output.

So, fmt is preserving the indentation of the first line. Fortunately, fmt provides an op-
tion to correct this:

[me@linuxbox ~]$ fmt -cw 50 fmt-info.txt
 `fmt' reads from the specified FILE arguments
(or standard input if none are given), and writes
to standard output.

310

Simple Formatting Tools

 By default, blank lines, spaces between words,
and indentation are preserved in the output;
successive input lines with different indentation
are not joined; tabs are expanded on input and
introduced on output.

 `fmt' prefers breaking lines at the end of a
sentence, and tries to avoid line breaks after
the first word of a sentence or before the
last word of a sentence. A "sentence break"
is defined as either the end of a paragraph
or a word ending in any of `.?!', followed
by two spaces or end of line, ignoring any
intervening parentheses or quotes. Like TeX,
`fmt' reads entire "paragraphs" before choosing
line breaks; the algorithm is a variant of
that given by Donald E. Knuth and Michael F.
Plass in "Breaking Paragraphs Into Lines",
`Software--Practice & Experience' 11, 11
(November 1981), 1119-1184.

Much better. By adding the -c option, we now have the desired result.

fmt has some interesting options:

Table 21-3: fmt Options

Option Description

-c Operate in crown margin mode. This preserves the indentation of
the first two lines of a paragraph. Subsequent lines are aligned with
the indentation of the second line.

-p string Only format those lines beginning with the prefix string. After
formatting, the contents of string are prefixed to each reformatted
line. This option can be used to format text in source code
comments. For example, any programming language or
configuration file that uses a “#” character to delineate a comment
could be formatted by specifying -p '# ' so that only the
comments will be formatted. See the example below.

-s Split-only mode. In this mode, lines will only be split to fit the
specified column width. Short lines will not be joined to fill lines.
This mode is useful when formatting text such as code where
joining is not desired.

-u Perform uniform spacing. This will apply traditional “typewriter-

311

21 – Formatting Output

style” formatting to the text. This means a single space between
words and two spaces between sentences. This mode is useful for
removing “justification,” that is, text that has been padded with
spaces to force alignment on both the left and right margins.

-w width Format text to fit within a column width characters wide. The
default is 75 characters. Note: fmt actually formats lines slightly
shorter than the specified width to allow for line balancing.

The -p option is particularly interesting. With it, we can format selected portions of a
file, provided that the lines to be formatted all begin with the same sequence of charac-
ters. Many programming languages use the pound sign (#) to indicate the beginning of a
comment and thus can be formatted using this option. Let’s create a file that simulates a
program that uses comments:

[me@linuxbox ~]$ cat > fmt-code.txt
This file contains code with comments.

This line is a comment.
Followed by another comment line.
And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Our sample file contains comments which begin with the string “# “ (a # followed by a
space) and lines of “code” which do not. Now, using fmt, we can format the comments
and leave the code untouched:

[me@linuxbox ~]$ fmt -w 50 -p '# ' fmt-code.txt
This file contains code with comments.

This line is a comment. Followed by another
comment line. And another.

This, on the other hand, is a line of code.
And another line of code.
And another.

Notice that the adjoining comment lines are joined, while the blank lines and the lines
that do not begin with the specified prefix are preserved.

312

Simple Formatting Tools

pr – Format Text For Printing

The pr program is used to paginate text. When printing text, it is often desirable to sepa-
rate the pages of output with several lines of whitespace, to provide a top and bottom
margin for each page. Further, this whitespace can be used to insert a header and footer
on each page.

We’ll demonstrate pr by formatting our distros.txt file into a series of very short
pages (only the first two pages are shown):

[me@linuxbox ~]$ pr -l 15 -w 65 distros.txt

2008-12-11 18:27 distros.txt Page 1

SUSE 10.2 12/07/2006
Fedora 10 11/25/2008
SUSE 11.0 06/19/2008
Ubuntu 8.04 04/24/2008
Fedora 8 11/08/2007

2008-12-11 18:27 distros.txt Page 2

SUSE 10.3 10/04/2007
Ubuntu 6.10 10/26/2006
Fedora 7 05/31/2007
Ubuntu 7.10 10/18/2007
Ubuntu 7.04 04/19/2007

In this example, we employ the -l option (for page length) and the -w option (page
width) to define a “page” that is 65 columns wide and 15 lines long. pr paginates the
contents of the distros.txt file, separates each page with several lines of whitespace
and creates a default header containing the file modification time, filename, and page
number. The pr program provides many options to control page layout. We’ll take a look
at more of them in the next chapter.

313

21 – Formatting Output

printf – Format And Print Data

Unlike the other commands in this chapter, the printf command is not used for pipe-
lines (it does not accept standard input) nor does it find frequent application directly on
the command line (it’s mostly used in scripts). So why is it important? Because it is so
widely used.

printf (from the phrase “print formatted”) was originally developed for the C pro-
gramming language and has been implemented in many programming languages includ-
ing the shell. In fact, in bash, printf is a builtin.

printf works like this:

printf “format” arguments

The command is given a string containing a format description which is then applied to a
list of arguments. The formatted result is sent to standard output. Here is a trivial exam-
ple:

[me@linuxbox ~]$ printf "I formatted the string: %s\n" foo
I formatted the string: foo

The format string may contain literal text (like “I formatted the string:”), escape se-
quences (such as \n, a newline character), and sequences beginning with the % character,
which are called conversion specifications. In the example above, the conversion specifi-
cation %s is used to format the string “foo” and place it in the command’s output. Here it
is again:

[me@linuxbox ~]$ printf "I formatted '%s' as a string.\n" foo
I formatted 'foo' as a string.

As we can see, the %s conversion specification is replaced by the string “foo” in the com-
mand’s output. The s conversion is used to format string data. There are other specifiers
for other kinds of data. This table lists the commonly used data types:

Table 21-4: Common printf Data Type Specifiers

Specifier Description

d Format a number as a signed decimal integer.

f Format and output a floating point number.

o Format an integer as an octal number.

314

Simple Formatting Tools

s Format a string.

x Format an integer as a hexadecimal number using lowercase a-f where
needed.

X Same as x but use uppercase letters.

% Print a literal % symbol (i.e., specify “%%”)

We’ll demonstrate the effect each of the conversion specifiers on the string “380”:

[me@linuxbox ~]$ printf "%d, %f, %o, %s, %x, %X\n" 380 380 380 380
380 380
380, 380.000000, 574, 380, 17c, 17C

Since we specified six conversion specifiers, we must also supply six arguments for
printf to process. The six results show the effect of each specifier.

Several optional components may be added to the conversion specifier to adjust its out-
put. A complete conversion specification may consist of the following:

%[flags][width][.precision]conversion_specification

Multiple optional components, when used, must appear in the order specified above to be
properly interpreted. Here is a description of each:

Table 21-5: printf Conversion Specification Components

Component Description

flags There are five different flags:

– Use the “alternate format” for output. This varies by data
type. For o (octal number) conversion, the output is prefixed with
0. For x and X (hexadecimal number) conversions, the output is
prefixed with 0x or 0X respectively.

0–(zero) Pad the output with zeros. This means that the field will
be filled with leading zeros, as in “000380”.

- – (dash) Left-align the output. By default, printf right-aligns
output.

‘ ’ – (space) Produce a leading space for positive numbers.

+ – (plus sign) Sign positive numbers. By default, printf only

315

21 – Formatting Output

signs negative numbers.

width A number specifying the minimum field width.

.precision For floating point numbers, specify the number of digits of
precision to be output after the decimal point. For string
conversion, precision specifies the number of characters to
output.

Here are some examples of different formats in action:

Table 21-6: print Conversion Specification Examples

Argument Format Result Notes

380 "%d" 380 Simple formatting of an
integer.

380 "%#x" 0x17c Integer formatted as a
hexadecimal number using
the “alternate format” flag.

380 "%05d" 00380 Integer formatted with
leading zeros (padding)
and a minimum field width
of five characters.

380 "%05.5f" 380.00000 Number formatted as a
floating point number with
padding and five decimal
places of precision. Since
the specified minimum
field width (5) is less than
the actual width of the
formatted number, the
padding has no effect.

380 "%010.5f" 0380.00000 By increasing the
minimum field width to 10
the padding is now visible.

380 "%+d" +380 The + flag signs a positive
number.

380 "%-d" 380 The - flag left aligns the
formatting.

316

Simple Formatting Tools

abcdefghijk "%5s" abcedfghijk A string formatted with a
minimum field width.

abcdefghijk "%.5s" abcde By applying precision to a
string, it is truncated.

Again, printf is used mostly in scripts where it is employed to format tabular data,
rather than on the command line directly. But we can still show how it can be used to
solve various formatting problems. First, let’s output some fields separated by tab charac-
ters:

[me@linuxbox ~]$ printf "%s\t%s\t%s\n" str1 str2 str3
str1 str2 str3

By inserting \t (the escape sequence for a tab), we achieve the desired effect. Next,
some numbers with neat formatting:

[me@linuxbox ~]$ printf "Line: %05d %15.3f Result: %+15d\n" 1071
3.14156295 32589
Line: 01071 3.142 Result: +32589

This shows the effect of minimum field width on the spacing of the fields. Or how about
formatting a tiny web page:

[me@linuxbox ~]$ printf "<html>\n\t<head>\n\t\t<title>%s</title>\n
\t</head>\n\t<body>\n\t\t<p>%s</p>\n\t</body>\n</html>\n" "Page Tit
le" "Page Content"
<html>

<head>
<title>Page Title</title>

</head>
<body>

<p>Page Content</p>
</body>

</html>

Document Formatting Systems

So far, we have examined the simple text-formatting tools. These are good for small, sim-

317

21 – Formatting Output

ple tasks, but what about larger jobs? One of the reasons that Unix became a popular op-
erating system among technical and scientific users (aside from providing a powerful
multitasking, multiuser environment for all kinds of software development) is that it of-
fered tools that could be used to produce many types of documents, particularly scientific
and academic publications. In fact, as the GNU documentation describes, document
preparation was instrumental to the development of Unix:

The first version of UNIX was developed on a PDP-7 which was sitting around Bell
Labs. In 1971 the developers wanted to get a PDP-11 for further work on the
operating system. In order to justify the cost for this system, they proposed that they
would implement a document formatting system for the AT&T patents division. This
first formatting program was a reimplementation of McIllroy's `roff', written by J.
F. Ossanna.

Two main families of document formatters dominate the field: those descended from the
original roff program, including nroff and troff, and those based on Donald
Knuth’s TEX (pronounced “tek”) typesetting system. And yes, the dropped “E” in the
middle is part of its name.

The name “roff” is derived from the term “run off” as in, “I’ll run off a copy for you.”
The nroff program is used to format documents for output to devices that use
monospaced fonts, such as character terminals and typewriter-style printers. At the time
of its introduction, this included nearly all printing devices attached to computers. The
later troff program formats documents for output on typesetters, devices used to pro-
duce “camera-ready” type for commercial printing. Most computer printers today are able
to simulate the output of typesetters. The roff family also includes some other programs
that are used to prepare portions of documents. These include eqn (for mathematical
equations) and tbl (for tables).

The TEX system (in stable form) first appeared in 1989 and has, to some degree, dis-
placed troff as the tool of choice for typesetter output. We won’t be covering TEX
here, due both to its complexity (there are entire books about it) and to the fact that it is
not installed by default on most modern Linux systems.

Tip: For those interested in installing TEX, check out the texlive package
which can be found in most distribution repositories, and the LyX graphical content
editor.

groff

groff is a suite of programs containing the GNU implementation of troff. It also in-
cludes a script that is used to emulate nroff and the rest of the roff family as well.

318

Document Formatting Systems

While roff and its descendants are used to make formatted documents, they do it in a
way that is rather foreign to modern users. Most documents today are produced using
word processors that are able to perform both the composition and layout of a document
in a single step. Prior to the advent of the graphical word processor, documents were of-
ten produced in a two-step process involving the use of a text editor to perform composi-
tion, and a processor, such as troff, to apply the formatting. Instructions for the format-
ting program were embedded into the composed text through the use of a markup lan-
guage. The modern analog for such a process is the web page, which is composed using a
text editor of some kind and then rendered by a web browser using HTML as the markup
language to describe the final page layout.

We’re not going to cover groff in its entirety, as many elements of its markup language
deal with rather arcane details of typography. Instead we will concentrate on one of its
macro packages that remains in wide use. These macro packages condense many of its
low-level commands into a smaller set of high-level commands that make using groff
much easier.

For a moment, let’s consider the humble man page. It lives in the /usr/share/man
directory as a gzip compressed text file. If we were to examine its uncompressed con-
tents, we would see the following (the man page for ls in section 1 is shown):

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | head
.\" DO NOT MODIFY THIS FILE! It was generated by help2man 1.35.
.TH LS "1" "April 2008" "GNU coreutils 6.10" "User Commands"
.SH NAME
ls \- list directory contents
.SH SYNOPSIS
.B ls
[\fIOPTION\fR]... [\fIFILE\fR]...
.SH DESCRIPTION
.\" Add any additional description here
.PP

Compared to the man page in its normal presentation, we can begin to see a correlation
between the markup language and its results:

[me@linuxbox ~]$ man ls | head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

319

21 – Formatting Output

SYNOPSIS
 ls [OPTION]... [FILE]...

The reason this is of interest is that man pages are rendered by groff, using the man-
doc macro package. In fact, we can simulate the man command with the following pipe-
line:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc -T
ascii | head
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

Here we use the groff program with the options set to specify the mandoc macro
package and the output driver for ASCII. groff can produce output in several formats.
If no format is specified, PostScript is output by default:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc |
head
%!PS-Adobe-3.0
%%Creator: groff version 1.18.1
%%CreationDate: Thu Feb 5 13:44:37 2009
%%DocumentNeededResources: font Times-Roman
%%+ font Times-Bold
%%+ font Times-Italic
%%DocumentSuppliedResources: procset grops 1.18 1
%%Pages: 4
%%PageOrder: Ascend
%%Orientation: Portrait

We briefly mentioned PostScript in the previous chapter, and will again in the next chap-
ter. PostScript is a page description language that is used to describe the contents of a
printed page to a typesetter-like device. If we take the output of our command and store it
to a file (assuming that we are using a graphical desktop with a Desktop directory):

320

Document Formatting Systems

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | groff -mandoc >
~/Desktop/foo.ps

An icon for the output file should appear on the desktop. By double-clicking the icon, a
page viewer should start up and reveal the file in its rendered form:

What we see is a nicely typeset man page for ls! In fact, it’s possible to convert the Post-
Script file into a PDF (Portable Document Format) file with this command:

[me@linuxbox ~]$ ps2pdf ~/Desktop/foo.ps ~/Desktop/ls.pdf

The ps2pdf program is part of the ghostscript package, which is installed on most
Linux systems that support printing.

Tip: Linux systems often include many command line programs for file format

321

Figure 4: Viewing PostScript Output With A Page Viewer In GNOME

21 – Formatting Output

conversion. They are often named using the convention of format2format. Try us-
ing the command ls /usr/bin/*[[:alpha:]]2[[:alpha:]]* to iden-
tify them. Also try searching for programs named formattoformat.

For our last exercise with groff, we will revisit our old friend distros.txt once
more. This time, we will use the tbl program which is used to format tables to typeset
our list of Linux distributions. To do this, we are going to use our earlier sed script to
add markup to a text stream that we will feed to groff.

First, we need to modify our sed script to add the necessary requests that tbl requires.
Using a text editor, we will change distros.sed to the following:

sed script to produce Linux distributions report

1 i\
.TS\
center box;\
cb s s\
cb cb cb\
l n c.\
Linux Distributions Report\
=\
Name Version Released\
_
s/\([0-9]\{2\}\)\/\([0-9]\{2\}\)\/\([0-9]\{4\}\)$/\3-\1-\2/
$ a\
.TE

Note that for the script to work properly, care must been taken to see that the words
“Name Version Released” are separated by tabs, not spaces. We’ll save the resulting file
as distros-tbl.sed. tbl uses the .TS and .TE requests to start and end the table.
The rows following the .TS request define global properties of the table which, for our
example, are centered horizontally on the page and surrounded by a box. The remaining
lines of the definition describe the layout of each table row. Now, if we run our report-
generating pipeline again with the new sed script, we’ll get the following :

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl
.sed | groff -t -T ascii 2>/dev/null
 +------------------------------+
 | Linux Distributions Report |
 +------------------------------+
 | Name Version Released |

322

Document Formatting Systems

 +------------------------------+
 |Fedora 5 2006-03-20 |
 |Fedora 6 2006-10-24 |
 |Fedora 7 2007-05-31 |
 |Fedora 8 2007-11-08 |
 |Fedora 9 2008-05-13 |
 |Fedora 10 2008-11-25 |
 |SUSE 10.1 2006-05-11 |
 |SUSE 10.2 2006-12-07 |
 |SUSE 10.3 2007-10-04 |
 |SUSE 11.0 2008-06-19 |
 |Ubuntu 6.06 2006-06-01 |
 |Ubuntu 6.10 2006-10-26 |
 |Ubuntu 7.04 2007-04-19 |
 |Ubuntu 7.10 2007-10-18 |
 |Ubuntu 8.04 2008-04-24 |
 |Ubuntu 8.10 2008-10-30 |
 +------------------------------+

Adding the -t option to groff instructs it to pre-process the text stream with tbl.
Likewise, the -T option is used to output to ASCII rather than the default output medium,
PostScript.

The format of the output is the best we can expect if we are limited to the capabilities of a
terminal screen or typewriter-style printer. If we specify PostScript output and graphically
view the resulting output, we get a much more satisfying result:

[me@linuxbox ~]$ sort -k 1,1 -k 2n distros.txt | sed -f distros-tbl
.sed | groff -t > ~/Desktop/foo.ps

323

21 – Formatting Output

Summing Up

Given that text is so central to the character of Unix-like operating systems, it makes
sense that there would be many tools that are used to manipulate and format text. As we
have seen, there are! The simple formatting tools like fmt and pr will find many uses in
scripts that produce short documents, while groff (and friends) can be used to write
books. We may never write a technical paper using command line tools (though there are
many people who do!), but it’s good to know that we could.

Further Reading

● groff User’s Guide
http://www.gnu.org/software/groff/manual/

● Writing Papers With nroff Using -me:
http://docs.freebsd.org/44doc/usd/19.memacros/paper.pdf

● -me Reference Manual:

324

Figure 5: Viewing The Finished Table

http://docs.freebsd.org/44doc/usd/19.memacros/paper.pdf
http://www.gnu.org/software/groff/manual/

Further Reading

http://docs.freebsd.org/44doc/usd/20.meref/paper.pdf

● Tbl – A Program To Format Tables:
http://plan9.bell-labs.com/10thEdMan/tbl.pdf

● And, of course, try the following articles at Wikipedia:
http://en.wikipedia.org/wiki/TeX
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Typesetting

325

http://en.wikipedia.org/wiki/Typesetting
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/TeX
http://plan9.bell-labs.com/10thEdMan/tbl.pdf
http://docs.freebsd.org/44doc/usd/20.meref/paper.pdf

22 – Printing

22 – Printing

After spending the last couple of chapters manipulating text, it’s time to put that text on
paper. In this chapter, we’ll look at the command line tools that are used to print files and
control printer operation. We won’t be looking at how to configure printing, as that varies
from distribution to distribution and is usually set up automatically during installation.
Note that we will need a working printer configuration to perform the exercises in this
chapter.

We will discuss the following commands:

● pr – Convert text files for printing

● lpr – Print files

● a2ps – Format files for printing on a PostScript printer

● lpstat – Show printer status information

● lpq – Show printer queue status

● lprm – Cancel print jobs

A Brief History Of Printing

To fully understand the printing features found in Unix-like operating systems, we must
first learn some history. Printing on Unix-like systems goes way back to the beginning of
the operating system itself. In those days, printers and how they were used was much dif-
ferent from today.

Printing In The Dim Times

Like the computers themselves, printers in the pre-PC era tended to be large, expensive,
and centralized. The typical computer user of 1980 worked at a terminal connected to a
computer some distance away. The printer was located near the computer and was under
the watchful eyes of the computer’s operators.

When printers were expensive and centralized, as they often were in the early days of
Unix, it was common practice for many users to share a printer. To identify print jobs be-

326

A Brief History Of Printing

longing to a particular user, a banner page displaying the name of the user was often
printed at the beginning of each print job. The computer support staff would then load up
a cart containing the day’s print jobs and deliver them to the individual users.

Character-based Printers

The printer technology of the 80s was very different in two respects. First, printers of that
period were almost always impact printers. Impact printers use a mechanical mechanism
which strikes a ribbon against the paper to form character impressions on the page. Two
of the popular technologies of that time were daisy-wheel printing and dot-matrix print-
ing.

The second, and more important characteristic of early printers was that printers used a
fixed set of characters that were intrinsic to the device itself. For example, a daisy-wheel
printer could only print the characters actually molded into the petals of the daisy wheel.
This made the printers much like high-speed typewriters. As with most typewriters, they
printed using monospaced (fixed width) fonts. This means that each character has the
same width. Printing was done at fixed positions on the page, and the printable area of a
page contained a fixed number of characters. Most printers printed ten characters per inch
(CPI) horizontally and six lines per inch (LPI) vertically. Using this scheme, a US-letter
sheet of paper is 85 characters wide and 66 lines high. Taking into account a small margin
on each side, 80 characters was considered the maximum width of a print line. This ex-
plains why terminal displays (and our terminal emulators) are normally 80 characters
wide. It provides a WYSIWYG (What You See Is What You Get) view of printed output,
using a monospaced font.

Data is sent to a typewriter-like printer in a simple stream of bytes containing the charac-
ters to be printed. For example, to print an “a”, the ASCII character code 97 is sent. In ad-
dition, the low-numbered ASCII control codes provided a means of moving the printer’s
carriage and paper, using codes for carriage return, line feed, form feed, etc. Using the
control codes, it’s possible to achieve some limited font effects, such as boldface, by hav-
ing the printer print a character, backspace, and print the character again to get a darker
print impression on the page. We can actually witness this if we use nroff to render a
man page and examine the output using cat -A:

[me@linuxbox ~]$ zcat /usr/share/man/man1/ls.1.gz | nroff -man | cat
-A | head
LS(1) User Commands LS(1)
$
$
$
N^HNA^HAM^HME^HE$
 ls - list directory contents$

327

22 – Printing

$
S^HSY^HYN^HNO^HOP^HPS^HSI^HIS^HS$
 l^Hls^Hs [_^HO_^HP_^HT_^HI_^HO_^HN]... [_^HF_^HI_^HL_^HE]...$

The ^H (Control-h) characters are the backspaces used to create the boldface effect. Like-
wise, we can also see a backspace/underscore sequence used to produce underlining.

Graphical Printers

The development of GUIs led to major changes in printer technology. As computers
moved to more picture-based displays, printing moved from character-based to graphical
techniques. This was facilitated by the advent of the low-cost laser printer which, instead
of printing fixed characters, could print tiny dots anywhere in the printable area of the
page. This made printing proportional fonts (like those used by typesetters), and even
photographs and high-quality diagrams, possible.

However, moving from a character-based scheme to a graphical scheme presented a for-
midable technical challenge. Here’s why: The number of bytes needed to fill a page using
a character-based printer can be calculated this way (assuming 60 lines per page each
containing 80 characters):

60 X 80 = 4800 bytes

In comparison, a 300 dot per inch (DPI) laser printer (assuming an 8 by 10 inch print area
per page) requires:

(8 X 300) X (10 X 300) / 8 = 900000 bytes

Many of the slow PC networks simply could not handle the nearly one megabyte of data
required to print a full page on a laser printer, so it was clear that a clever invention was
needed.

That invention turned out to be the page description language (PDL). A page description
language is a programming language that describes the contents of a page. Basically it
says, “go to this position, draw the character ‘a’ in 10 point Helvetica, go to this
position...” until everything on the page is described. The first major PDL was PostScript
from Adobe Systems, which is still in wide use today. The PostScript language is a com-
plete programming language tailored for typography and other kinds of graphics and
imaging. It includes built-in support for 35 standard, high-quality fonts, plus the ability to
accept additional font definitions at run time. At first, support for PostScript was built
into the printers themselves. This solved the data transmission problem. While the typical
PostScript program was very verbose in comparison to the simple byte stream of charac-
ter-based printers, it was much smaller than the number of bytes required to represent the
entire printed page.

A PostScript printer accepted a PostScript program as input. The printer contained its

328

A Brief History Of Printing

own processor and memory (oftentimes making the printer a more powerful computer
than the computer to which it was attached) and executed a special program called a
PostScript interpreter, which read the incoming PostScript program and rendered the re-
sults into the printer’s internal memory, thus forming the pattern of bits (dots) that would
be transferred to the paper. The generic name for this process of rendering something into
a large bit pattern (called a bitmap) is raster image processor or RIP.

As the years went by, both computers and networks became much faster. This allowed the
RIP to move from the printer to the host computer, which, in turn, permitted high-quality
printers to be much less expensive.

Many printers today still accept character-based streams, but many low-cost printers do
not. They rely on the host computer’s RIP to provide a stream of bits to print as dots.
There are still some PostScript printers, too.

Printing With Linux

Modern Linux systems employ two software suites to perform and manage printing. The
first, CUPS (Common Unix Printing System) provides print drivers and print-job man-
agement , and the second, Ghostscript, a PostScript interpreter, acts as a RIP.

CUPS manages printers by creating and maintaining print queues. As we discussed in our
history lesson above, Unix printing was originally designed to manage a centralized
printer shared by multiple users. Since printers are slow by nature, compared to the com-
puters that are feeding them, printing systems need a way to schedule multiple print jobs
and keep things organized. CUPS also has the ability to recognize different types of data
(within reason) and can convert files to a printable form.

Preparing Files For Printing

As command line users, we are mostly interested in printing text, though it is certainly
possible to print other data formats as well.

pr – Convert Text Files For Printing

We looked at pr a little in the previous chapter. Now we will examine some of its many
options used in conjunction with printing. In our history of printing, we saw how charac-
ter-based printers use monospaced fonts, resulting in fixed numbers of characters per line
and lines per page. pr is used to adjust text to fit on a specific page size, with optional
page headers and margins. Here is a summary of its most commonly used options:

Table 22-1: Common pr Options

Option Description

329

22 – Printing

+first[:last] Output a range of pages starting with first and, optionally,
ending with last.

-columns Organize the content of the page into the number of columns
specified by columns.

-a By default, multicolumn output is listed vertically. By adding
the -a (across) option, content is listed horizontally.

-d Double-space output.

-D “format” Format the date displayed in page headers using format. See
the man page for the date command for a description of the
format string.

-f Use form feeds rather than carriage returns to separate pages.

-h “header” In the center portion of the page header, use header rather
than the name of the file being processed.

-l length Set page length to length. Default is 66 (US letter at 6 lines
per inch)

-n Number lines.

-o offset Create a left margin offset characters wide.

-w width Set page width to width. Default is 72.

pr is often used in pipelines as a filter. In this example, we will produce a directory list-
ing of /usr/bin and format it into paginated, three-column output using pr:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -w 65 | head

2009-02-18 14:00 Page 1

[apturl bsd-write
411toppm ar bsh
a2p arecord btcflash
a2ps arecordmidi bug-buddy
a2ps-lpr-wrapper ark buildhash

330

Sending A Print Job To A Printer

Sending A Print Job To A Printer

The CUPS printing suite supports two methods of printing historically used on Unix-like
systems. One method, called Berkeley or LPD (used in the Berkeley Software Distribu-
tion version of Unix), uses the lpr program, while the other method, called SysV (from
the System V version of Unix), uses the lp program. Both programs do roughly the same
thing. Choosing one over the other is a matter of personal taste.

lpr – Print Files (Berkeley Style)

The lpr program can be used to send files to the printer. It may also used in pipelines, as
it accepts standard input. For example, to print the results of our multicolumn directory
listing above, we could do this:

[me@linuxbox ~]$ ls /usr/bin | pr -3 | lpr

and the report would be sent to the system’s default printer. To send the file to a different
printer, the -P option can used like this:

lpr -P printer_name

where printer_name is the name of the desired printer. To see a list of printers known to
the system:

[me@linuxbox ~]$ lpstat -a

Tip: Many Linux distributions allow you to define a “printer” that outputs files in
PDF (Portable Document Format), rather than printing on the physical printer. This
is very handy for experimenting with printing commands. Check your printer con-
figuration program to see if it supports this configuration. On some distributions,
you may need to install additional packages (such as cups-pdf) to enable this ca-
pability.

Here are some of the common options for lpr:

331

22 – Printing

Table 22-2: Common lpr Options

Option Description

-# number Set number of copies to number.

-p Print each page with a shaded header with the date, time, job
name, and page number. This so-called “pretty print” option
can be used when printing text files.

-P printer Specify the name of the printer used for output. If no printer is
specified, the system’s default printer is used.

-r Delete files after printing. This would be useful for programs
that produce temporary printer-output files.

lp – Print Files (System V Style)

Like lpr, lp accepts either files or standard input for printing. It differs from lpr in
that it supports a different (and slightly more sophisticated) option set. Here are the com-
mon options:

Table 22-3: Common lp Options

Option Description

-d printer Set the destination (printer) to printer. If no d
option is specified, the system default printer is
used.

-n number Set the number of copies to number.

-o landscape Set output to landscape orientation.

-o fitplot Scale the file to fit the page. This is useful when
printing images, such as JPEG files.

-o scaling=number Scale file to number. The value of 100 fills the
page. Values less than 100 are reduced, while
values greater than 100 cause the file to be printed
across multiple pages.

-o cpi=number Set the output characters per inch to number.
Default is 10.

-o lpi=number Set the output lines per inch to number. Default is
6.

332

Sending A Print Job To A Printer

-o page-bottom=points
-o page-left=points
-o page-right=points
-o page-top=points

Set the page margins. Values are expressed in
points, a unit of typographic measurement. There
are 72 points to an inch.

-P pages Specify the list of pages. pages may be expressed
as a comma-separated list and/or a range. For
example “1,3,5,7-10”

We’ll produce our directory listing again, this time printing 12 CPI and 8 LPI with a left
margin of one half inch. Note that we have to adjust the pr options to account for the
new page size:

[me@linuxbox ~]$ ls /usr/bin | pr -4 -w 90 -l 88 | lp -o page-left=36
-o cpi=12 -o lpi=8

This pipeline produces a four-column listing using smaller type than the default. The in-
creased number of characters per inch allows us to fit more columns on the page.

Another Option: a2ps

The a2ps program is interesting. As we can surmise from its name, it’s a format conver-
sion program, but it also much more. Its name originally meant “ASCII to PostScript”
and it was used to prepare text files for printing on PostScript printers. Over the years,
however, the capabilities of the program have grown, and now its name means “Anything
to PostScript.” While its name suggests a format-conversion program, it is actually a
printing program. It sends its default output to the system’s default printer rather than
standard output. The program’s default behavior is that of a “pretty printer,” meaning that
it improves the appearance of output. If we use the program to create a PostScript file on
our desktop:

[me@linuxbox ~]$ ls /usr/bin | pr -3 -t | a2ps -o ~/Desktop/ls.ps -L
66
[stdin (plain): 11 pages on 6 sheets]
[Total: 11 pages on 6 sheets] saved into the file `/home/me/Desktop/
ls.ps'

Here we filter the stream with pr, using the -t option (omit headers and footers) and
then with a2ps, specifying an output file (-o option) and 66 lines per page (-L option)

333

22 – Printing

to match the output pagination of pr. If we view the resulting file with a suitable file
viewer, we will see this:

As we can see, the default output layout is “two up” format. This causes the contents of 2
pages to be printed on each sheet of paper. a2ps applies nice page headers and footers,
too.

a2ps has a lot of options. Here is a summary:

Table 22-4: a2ps Options

Option Description

--center-title text Set center page title to text.

--columns number Arrange pages into number columns. Default
is 2.

334

Figure 6: Viewing a2ps Output

Sending A Print Job To A Printer

--footer text Set page footer to text.

--guess Report the types of files given as arguments.
Since a2ps tries to convert and format all
types of data, this option can be useful for
predicting what a2ps will do when given a
particular file.

--left-footer text Set left-page footer to text.

--left-title text Set left-page title to text.

--line-numbers=interval Number lines of output every interval lines.

--list=defaults Display default settings.

--list=topic Display settings for topic, where topic is one
of the following: delegations (external
programs that will be used to convert data),
encodings, features, variables, media (paper
sizes and the like), ppd (PostScript printer
descriptions), printers, prologues (portions of
code that are prefixed to normal output),
stylesheets, and user options.

--pages range Print pages in range.

--right-footer text Set right-page footer to text.

--right-title text Set right-page title to text.

--rows number Arrange pages into number rows. Default is
one.

-B No page headers.

-b text Set page header to text.

-f size Use size point font.

-l number Set characters per line to number. This and the
-L option (below) can be used to make files
paginated with other programs, such as pr, fit
correctly on the page.

-L number Set lines per page to number.

-M name Use media name. For example, “A4”.

-n number Output number copies of each page.

335

22 – Printing

-o file Send output to file. If file is specified as “-”,
use standard output.

-P printer Use printer. If a printer is not specified, the
system default printer is used.

-R Portrait orientation.

-r Landscape orientation.

-T number Set tab stops to every number characters.

-u text Underlay (watermark) pages with text.

This is just a summary. a2ps has several more options.

Note: a2ps is still in active development. During my testing, I noticed different
behavior on various distributions. On CentOS 4, output always went to standard
output by default. On CentOS 4 and Fedora 10, output defaulted to A4 media, de-
spite the program being configured to use letter-size media by default. I could over-
come these issues by explicitly specifying the desired option. On Ubuntu 8.04,
a2ps performed as documented.

Also note that there is another output formatter that is useful for converting text
into PostScript. Called enscript, it can perform many of the same kinds of for-
matting and printing tricks, but unlike a2ps, it only accepts text input.

Monitoring And Controlling Print Jobs

As Unix printing systems are designed to handle multiple print jobs from multiple users,
CUPS is designed to do the same. Each printer is given a print queue, where jobs are
parked until they can be spooled to the printer. CUPS supplies several command line pro-
grams that are used to manage printer status and print queues. Like the lpr and lp pro-
grams, these management programs are modeled after the corresponding programs from
the Berkeley and System V printing systems.

lpstat – Display Print System Status

The lpstat program is useful for determining the names and availability of printers on
the system. For example, if we had a system with both a physical printer (named
“printer”) and a PDF virtual printer (named “PDF”), we could check their status like this:

336

Monitoring And Controlling Print Jobs

[me@linuxbox ~]$ lpstat -a
PDF accepting requests since Mon 08 Dec 2008 03:05:59 PM EST
printer accepting requests since Tue 24 Feb 2009 08:43:22 AM EST

Further, we could determine a more detailed description of the print system configuration
this way:

[me@linuxbox ~]$ lpstat -s
system default destination: printer
device for PDF: cups-pdf:/
device for printer: ipp://print-server:631/printers/printer

In this example, we see that “printer” is the system’s default printer and that it is a net-
work printer using Internet Printing Protocol (ipp://) attached to a system named “print-
server”.

The commonly useful options include:

Table 22-5: Common lpstat Options

Option Description

-a [printer...] Display the state of the printer queue for printer. Note that
this is the status of the printer queue’s ability to accept
jobs, not the status of the physical printers. If no printers
are specified, all print queues are shown.

-d Display the name of the system’s default printer.

-p [printer...] Display the status of the specified printer. If no printers
are specified, all printers are shown.

-r Display the status of the print server.

-s Display a status summary.

-t Display a complete status report.

lpq – Display Printer Queue Status

To see the status of a printer queue, the lpq program is used. This allows us to view the
status of the queue and the print jobs it contains. Here is an example of an empty queue
for a system default printer named “printer”:

337

22 – Printing

[me@linuxbox ~]$ lpq
printer is ready
no entries

If we do not specify a printer (using the -P option), the system’s default printer is shown.
If we send a job to the printer and then look at the queue, we will see it listed:

[me@linuxbox ~]$ ls *.txt | pr -3 | lp
request id is printer-603 (1 file(s))
[me@linuxbox ~]$ lpq
printer is ready and printing
Rank Owner Job File(s) Total Size
active me 603 (stdin) 1024 bytes

lprm / cancel – Cancel Print Jobs

CUPS supplies two programs used to terminate print jobs and remove them from the print
queue. One is Berkeley style (lprm) and the other is System V (cancel). They differ
slightly in the options they support, but do basically the same thing. Using our print job
above as an example, we could stop the job and remove it this way:

[me@linuxbox ~]$ cancel 603
[me@linuxbox ~]$ lpq
printer is ready
no entries

Each command has options for removing all the jobs belonging to a particular user, par-
ticular printer, and multiple job numbers. Their respective man pages have all the details.

Summing Up

In this chapter, we have seen how the printers of the past influenced the design of the
printing systems on Unix-like machines, and how much control is available on the com-
mand line to control not only the scheduling and execution of print jobs, but also the vari-
ous output options.

Further Reading

● A good article on the PostScript page description language:
http://en.wikipedia.org/wiki/PostScript

338

http://en.wikipedia.org/wiki/PostScript

Further Reading

● The Common Unix Printing System (CUPS):
http://en.wikipedia.org/wiki/Common_Unix_Printing_System
http://www.cups.org/

● The Berkeley and System V Printing Systems:
http://en.wikipedia.org/wiki/Berkeley_printing_system
http://en.wikipedia.org/wiki/System_V_printing_system

339

http://en.wikipedia.org/wiki/System_V_printing_system
http://en.wikipedia.org/wiki/Berkeley_printing_system
http://www.cups.org/
http://en.wikipedia.org/wiki/Common_Unix_Printing_System

23 – Compiling Programs

23 – Compiling Programs

In this chapter, we will look at how to build programs by compiling source code. The
availability of source code is the essential freedom that makes Linux possible. The entire
ecosystem of Linux development relies on free exchange between developers. For many
desktop users, compiling is a lost art. It used to be quite common, but today, distribution
providers maintain huge repositories of precompiled binaries, ready to download and use.
At the time of this writing, the Debian repository (one of the largest of any of the distri-
butions) contains almost 23,000 packages.

So why compile software? There are two reasons:

1. Availability. Despite the number of precompiled programs in distribution reposi-
tories, some distributions may not include all the desired applications. In this case,
the only way to get the desired program is to compile it from source.

2. Timeliness. While some distributions specialize in cutting edge versions of pro-
grams, many do not. This means that in order to have the very latest version of a
program, compiling is necessary.

Compiling software from source code can become very complex and technical; well be-
yond the reach of many users. However, many compiling tasks are quite easy and involve
only a few steps. It all depends on the package. We will look at a very simple case in or-
der to provide an overview of the process and as a starting point for those who wish to
undertake further study.

We will introduce one new command:

● make – Utility to maintain programs

What Is Compiling?

Simply put, compiling is the process of translating source code (the human-readable de-
scription of a program written by a programmer) into the native language of the com-
puter’s processor.

The computer’s processor (or CPU) works at a very elemental level, executing programs
in what is called machine language. This is a numeric code that describes very small op-
erations, such as “add this byte,” “point to this location in memory,” or “copy this byte.”

340

What Is Compiling?

Each of these instructions is expressed in binary (ones and zeros). The earliest computer
programs were written using this numeric code, which may explain why programmers
who wrote it were said to smoke a lot, drink gallons of coffee, and wear thick glasses.

This problem was overcome by the advent of assembly language, which replaced the nu-
meric codes with (slightly) easier to use character mnemonics such as CPY (for copy) and
MOV (for move). Programs written in assembly language are processed into machine
language by a program called an assembler. Assembly language is still used today for
certain specialized programming tasks, such as device drivers and embedded systems.

We next come to what are called high-level programming languages. They are called this
because they allow the programmer to be less concerned with the details of what the pro-
cessor is doing and more with solving the problem at hand. The early ones (developed
during the 1950s) included FORTRAN (designed for scientific and technical tasks) and
COBOL (designed for business applications). Both are still in limited use today.

While there are many popular programming languages, two predominate. Most programs
written for modern systems are written in either C or C++. In the examples to follow, we
will be compiling a C program.

Programs written in high-level programming languages are converted into machine lan-
guage by processing them with another program, called a compiler. Some compilers
translate high-level instructions into assembly language and then use an assembler to per-
form the final stage of translation into machine language.

A process often used in conjunction with compiling is called linking. There are many
common tasks performed by programs. Take, for instance, opening a file. Many programs
perform this task, but it would be wasteful to have each program implement its own rou-
tine to open files. It makes more sense to have a single piece of programming that knows
how to open files and to allow all programs that need it to share it. Providing support for
common tasks is accomplished by what are called libraries. They contain multiple rou-
tines, each performing some common task that multiple programs can share. If we look in
the /lib and /usr/lib directories, we can see where many of them live. A program
called a linker is used to form the connections between the output of the compiler and the
libraries that the compiled program requires. The final result of this process is the exe-
cutable program file, ready for use.

Are All Programs Compiled?

No. As we have seen, there are programs such as shell scripts that do not require compil-
ing. They are executed directly. These are written in what are known as scripting or inter-
preted languages. These languages have grown in popularity in recent years and include
Perl, Python, PHP, Ruby, and many others.

Scripted languages are executed by a special program called an interpreter. An interpreter
inputs the program file and reads and executes each instruction contained within it. In

341

23 – Compiling Programs

general, interpreted programs execute much more slowly than compiled programs. This is
because that each source code instruction in an interpreted program is translated every
time it is carried out, whereas with a compiled program, a source code instruction is only
translated once, and this translation is permanently recorded in the final executable file.

So why are interpreted languages so popular? For many programming chores, the results
are “fast enough,” but the real advantage is that it is generally faster and easier to develop
interpreted programs than compiled programs. Programs are usually developed in a re-
peating cycle of code, compile, test. As a program grows in size, the compilation phase of
the cycle can become quite long. Interpreted languages remove the compilation step and
thus speed up program development.

Compiling A C Program

Let’s compile something. Before we do that however, we’re going to need some tools like
the compiler, the linker, and make. The C compiler used almost universally in the Linux
environment is called gcc (GNU C Compiler), originally written by Richard Stallman.
Most distributions do not install gcc by default. We can check to see if the compiler is
present like this:

[me@linuxbox ~]$ which gcc
/usr/bin/gcc

The results in this example indicate that the compiler is installed.

Tip: Your distribution may have a meta-package (a collection of packages) for soft-
ware development. If so, consider installing it if you intend to compile programs on
your system. If your system does not provide a meta-package, try installing the
gcc and make packages. On many distributions, this is sufficient to carry out the
exercise below.

Obtaining The Source Code

For our compiling exercise, we are going to compile a program from the GNU Project
called diction. This is a handy little program that checks text files for writing quality
and style. As programs go, it is fairly small and easy to build.

Following convention, we’re first going to create a directory for our source code named
src and then download the source code into it using ftp:

342

Compiling A C Program

[me@linuxbox ~]$ mkdir src
[me@linuxbox ~]$ cd src
[me@linuxbox src]$ ftp ftp.gnu.org
Connected to ftp.gnu.org.
220 GNU FTP server ready.
Name (ftp.gnu.org:me): anonymous
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd gnu/diction
250 Directory successfully changed.
ftp> ls
200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r--r-- 1 1003 65534 68940 Aug 28 1998 diction-0.7.tar.gz
-rw-r--r-- 1 1003 65534 90957 Mar 04 2002 diction-1.02.tar.gz
-rw-r--r-- 1 1003 65534 141062 Sep 17 2007 diction-1.11.tar.gz
226 Directory send OK.
ftp> get diction-1.11.tar.gz
local: diction-1.11.tar.gz remote: diction-1.11.tar.gz
200 PORT command successful. Consider using PASV.
150 Opening BINARY mode data connection for diction-1.11.tar.gz
(141062 bytes).
226 File send OK.
141062 bytes received in 0.16 secs (847.4 kB/s)
ftp> bye
221 Goodbye.
[me@linuxbox src]$ ls
diction-1.11.tar.gz

Note: Since we are the “maintainer” of this source code while we compile it, we
will keep it in ~/src. Source code installed by your distribution will be installed
in /usr/src, while source code intended for use by multiple users is usually in-
stalled in /usr/local/src.

As we can see, source code is usually supplied in the form of a compressed tar file.
Sometimes called a tarball, this file contains the source tree, or hierarchy of directories
and files that comprise the source code. After arriving at the ftp site, we examine the list
of tar files available and select the newest version for download. Using the get com-
mand within ftp, we copy the file from the ftp server to the local machine.

Once the tar file is downloaded, it must be unpacked. This is done with the tar program:

[me@linuxbox src]$ tar xzf diction-1.11.tar.gz

343

ftp://ftp.gnu.org/
ftp://ftp.gnu.org/

23 – Compiling Programs

[me@linuxbox src]$ ls
diction-1.11 diction-1.11.tar.gz

Tip: The diction program, like all GNU Project software, follows certain stan-
dards for source code packaging. Most other source code available in the Linux
ecosystem also follows this standard. One element of the standard is that when the
source code tar file is unpacked, a directory will be created which contains the
source tree, and that this directory will be named project-x.xx, thus containing both
the project’s name and its version number. This scheme allows easy installation of
multiple versions of the same program. However, it is often a good idea to examine
the layout of the tree before unpacking it. Some projects will not create the direc-
tory, but instead will deliver the files directly into the current directory. This will
make a mess in your otherwise well-organized src directory. To avoid this, use the
following command to examine the contents of the tar file:

tar tzvf tarfile | head

Examining The Source Tree

Unpacking the tar file results in the creation of a new directory, named diction-1.11.
This directory contains the source tree. Let’s look inside:

[me@linuxbox src]$ cd diction-1.11
[me@linuxbox diction-1.11]$ ls
config.guess diction.c getopt.c nl
config.h.in diction.pot getopt.h nl.po
config.sub diction.spec getopt_int.h README
configure diction.spec.in INSTALL sentence.c
configure.in diction.texi.in install-sh sentence.h
COPYING en Makefile.in style.1.in
de en_GB misc.c style.c
de.po en_GB.po misc.h test
diction.1.in getopt1.c NEWS

In it, we see a number of files. Programs belonging to the GNU Project, as well as many
others, will supply the documentation files README, INSTALL, NEWS, and COPYING.
These files contain the description of the program, information on how to build and in-
stall it, and its licensing terms. It is always a good idea to carefully read the README and
INSTALL files before attempting to build the program.

344

Compiling A C Program

The other interesting files in this directory are the ones ending with .c and .h:

[me@linuxbox diction-1.11]$ ls *.c
diction.c getopt1.c getopt.c misc.c sentence.c style.c
[me@linuxbox diction-1.11]$ ls *.h
getopt.h getopt_int.h misc.h sentence.h

The .c files contain the two C programs supplied by the package (style and dic-
tion), divided into modules. It is common practice for large programs to be broken into
smaller, easier to manage pieces. The source code files are ordinary text and can be ex-
amined with less:

[me@linuxbox diction-1.11]$ less diction.c

The .h files are known as header files. These, too, are ordinary text. Header files contain
descriptions of the routines included in a source code file or library. In order for the com-
piler to connect the modules, it must receive a description of all the modules needed to
complete the entire program. Near the beginning of the diction.c file, we see this
line:

#include "getopt.h"

This instructs the compiler to read the file getopt.h as it reads the source code in
diction.c in order to “know” what’s in getopt.c. The getopt.c file supplies
routines that are shared by both the style and diction programs.

Above the include statement for getopt.h, we see some other include statements
such as these:

#include <regex.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

These also refer to header files, but they refer to header files that live outside the current
source tree. They are supplied by the system to support the compilation of every program.
If we look in /usr/include, we can see them:

345

23 – Compiling Programs

[me@linuxbox diction-1.11]$ ls /usr/include

The header files in this directory were installed when we installed the compiler.

Building The Program

Most programs build with a simple, two-command sequence:

./configure
make

The configure program is a shell script which is supplied with the source tree. Its job
is to analyze the build environment. Most source code is designed to be portable. That is,
it is designed to build on more than one kind of Unix-like system. But in order to do that,
the source code may need to undergo slight adjustments during the build to accommodate
differences between systems. configure also checks to see that necessary external
tools and components are installed. Let’s run configure. Since configure is not lo-
cated where the shell normally expects programs to be located, we must explicitly tell the
shell its location by prefixing the command with ./ to indicate that the program is lo-
cated in the current working directory:

[me@linuxbox diction-1.11]$./configure

configure will output a lot of messages as it tests and configures the build. When it
finishes, it will look something like this:

checking libintl.h presence... yes
checking for libintl.h... yes
checking for library containing gettext... none required
configure: creating ./config.status
config.status: creating Makefile
config.status: creating diction.1
config.status: creating diction.texi
config.status: creating diction.spec
config.status: creating style.1
config.status: creating test/rundiction
config.status: creating config.h
[me@linuxbox diction-1.11]$

346

23 – Compiling Programs

sentence.o: sentence.c config.h misc.h sentence.h
style.o: style.c config.h getopt.h misc.h sentence.h

However, we don’t see any command specified for them. This is handled by a general tar-
get, earlier in the file, that describes the command used to compile any .c file into a .o
file:

.c.o:
 $(CC) -c $(CPPFLAGS) $(CFLAGS) $<

This all seems very complicated. Why not simply list all the steps to compile the parts
and be done with it? The answer to this will become clear in a moment. In the meantime,
let’s run make and build our programs:

[me@linuxbox diction-1.11]$ make

The make program will run, using the contents of Makefile to guide its actions. It will
produce a lot of messages.

When it finishes, we will see that all the targets are now present in our directory:

[me@linuxbox diction-1.11]$ ls
config.guess de.po en install-sh sentence.c
config.h diction en_GB Makefile sentence.h
config.h.in diction.1 en_GB.mo Makefile.in sentence.o
config.log diction.1.in en_GB.po misc.c style
config.status diction.c getopt1.c misc.h style.1
config.sub diction.o getopt1.o misc.o style.1.in
configure diction.pot getopt.c NEWS style.c
configure.in diction.spec getopt.h nl style.o
COPYING diction.spec.in getopt_int.h nl.mo test
de diction.texi getopt.o nl.po
de.mo diction.texi.in INSTALL README

Among the files, we see diction and style, the programs that we set out to build.
Congratulations are in order! We just compiled our first programs from source code!

But just out of curiosity, let’s run make again:

348

Compiling A C Program

[me@linuxbox diction-1.11]$ make
make: Nothing to be done for `all'.

It only produces this strange message. What’s going on? Why didn’t it build the program
again? Ah, this is the magic of make. Rather than simply building everything again,
make only builds what needs building. With all of the targets present, make determined
that there was nothing to do. We can demonstrate this by deleting one of the targets and
running make again to see what it does. Let’s get rid of one of the intermediate targets:

[me@linuxbox diction-1.11]$ rm getopt.o
[me@linuxbox diction-1.11]$ make

We see that make rebuilds it and re-links the diction and style programs, since they
depend on the missing module. This behavior also points out another important feature of
make: it keeps targets up to date. make insists that targets be newer than their dependen-
cies. This makes perfect sense, as a programmer will often update a bit of source code
and then use make to build a new version of the finished product. make ensures that ev-
erything that needs building based on the updated code is built. If we use the touch pro-
gram to “update” one of the source code files, we can see this happen:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2007-03-30 17:45 getopt.c
[me@linuxbox diction-1.11]$ touch getopt.c
[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:14 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c
[me@linuxbox diction-1.11]$ make

After make runs, we see that it has restored the target to being newer than the depen-
dency:

[me@linuxbox diction-1.11]$ ls -l diction getopt.c
-rwxr-xr-x 1 me me 37164 2009-03-05 06:24 diction
-rw-r--r-- 1 me me 33125 2009-03-05 06:23 getopt.c

The ability of make to intelligently build only what needs building is a great benefit to
programmers. While the time savings may not be very apparent with our small project, it

349

23 – Compiling Programs

is very significant with larger projects. Remember, the Linux kernel (a program that un-
dergoes continuous modification and improvement) contains several million lines of
code.

Installing The Program

Well-packaged source code will often include a special make target called install.
This target will install the final product in a system directory for use. Usually, this direc-
tory is /usr/local/bin, the traditional location for locally built software. However,
this directory is not normally writable by ordinary users, so we must become the supe-
ruser to perform the installation:

[me@linuxbox diction-1.11]$ sudo make install

After we perform the installation, we can check that the program is ready to go:

[me@linuxbox diction-1.11]$ which diction
/usr/local/bin/diction
[me@linuxbox diction-1.11]$ man diction

And there we have it!

Summing Up

In this chapter, we have seen how three simple commands:

./configure

make

make install

can be used to build many source code packages. We have also seen the important role
that make plays in the maintenance of programs. The make program can be used for any
task that needs to maintain a target/dependency relationship, not just for compiling source
code.

Further Reading

● The Wikipedia has good articles on compilers and the make program:
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Make_(software)

350

http://en.wikipedia.org/wiki/Make_(software)
http://en.wikipedia.org/wiki/Compiler

Further Reading

● The GNU Make Manual:
http://www.gnu.org/software/make/manual/html_node/index.html

351

http://www.gnu.org/software/make/manual/html_node/index.html

Part 4 – Writing Shell Scripts

Part 4 – Writing Shell Scripts

353

24 – Writing Your First Script

24 – Writing Your First Script

In the preceding chapters, we have assembled an arsenal of command line tools. While
these tools can solve many kinds of computing problems, we are still limited to manually
using them one by one on the command line. Wouldn’t it be great if we could get the
shell to do more of the work? We can. By joining our tools together into programs of our
own design, the shell can carry out complex sequences of tasks all by itself. We can en-
able it to do this by writing shell scripts.

What Are Shell Scripts?

In the simplest terms, a shell script is a file containing a series of commands. The shell
reads this file and carries out the commands as though they have been entered directly on
the command line.

The shell is somewhat unique, in that it is both a powerful command line interface to the
system and a scripting language interpreter. As we will see, most of the things that can be
done on the command line can be done in scripts, and most of the things that can be done
in scripts can be done on the command line.

We have covered many shell features, but we have focused on those features most often
used directly on the command line. The shell also provides a set of features usually (but
not always) used when writing programs.

How To Write A Shell Script

To successfully create and run a shell script, we need to do three things:

1. Write a script. Shell scripts are ordinary text files. So we need a text editor to
write them. The best text editors will provide syntax highlighting, allowing us to
see a color-coded view of the elements of the script. Syntax highlighting will help
us spot certain kinds of common errors. vim, gedit, kate, and many other edi-
tors are good candidates for writing scripts.

2. Make the script executable. The system is rather fussy about not letting any old
text file be treated as a program, and for good reason! We need to set the script
file’s permissions to allow execution.

354

How To Write A Shell Script

3. Put the script somewhere the shell can find it. The shell automatically searches
certain directories for executable files when no explicit pathname is specified. For
maximum convenience, we will place our scripts in these directories.

Script File Format

In keeping with programming tradition, we’ll create a “hello world” program to demon-
strate an extremely simple script. So let’s fire up our text editors and enter the following
script:

#!/bin/bash

This is our first script.

echo 'Hello World!'

The last line of our script is pretty familiar, just an echo command with a string argu-
ment. The second line is also familiar. It looks like a comment that we have seen used in
many of the configuration files we have examined and edited. One thing about comments
in shell scripts is that they may also appear at the ends of lines, like so:

echo 'Hello World!' # This is a comment too

Everything from the # symbol onward on the line is ignored.

Like many things, this works on the command line, too:

[me@linuxbox ~]$ echo 'Hello World!' # This is a comment too
Hello World!

Though comments are of little use on the command line, they will work.

The first line of our script is a little mysterious. It looks as if it should be a comment,
since it starts with #, but it looks too purposeful to be just that. The #! character se-
quence is, in fact, a special construct called a shebang. The shebang is used to tell the
system the name of the interpreter that should be used to execute the script that follows.
Every shell script should include this as its first line.

Let’s save our script file as hello_world.

355

24 – Writing Your First Script

Executable Permissions

The next thing we have to do is make our script executable. This is easily done using
chmod:

[me@linuxbox ~]$ ls -l hello_world
-rw-r--r-- 1 me me 63 2009-03-07 10:10 hello_world
[me@linuxbox ~]$ chmod 755 hello_world
[me@linuxbox ~]$ ls -l hello_world
-rwxr-xr-x 1 me me 63 2009-03-07 10:10 hello_world

There are two common permission settings for scripts; 755 for scripts that everyone can
execute, and 700 for scripts that only the owner can execute. Note that scripts must be
readable in order to be executed.

Script File Location

With the permissions set, we can now execute our script:

[me@linuxbox ~]$./hello_world
Hello World!

In order for the script to run, we must precede the script name with an explicit path. If we
don’t, we get this:

[me@linuxbox ~]$ hello_world
bash: hello_world: command not found

Why is this? What makes our script different from other programs? As it turns out, noth-
ing. Our script is fine. Its location is the problem. Back in Chapter 11, we discussed the
PATH environment variable and its effect on how the system searches for executable pro-
grams. To recap, the system searches a list of directories each time it needs to find an exe-
cutable program, if no explicit path is specified. This is how the system knows to execute
/bin/ls when we type ls at the command line. The /bin directory is one of the di-
rectories that the system automatically searches. The list of directories is held within an
environment variable named PATH. The PATH variable contains a colon-separated list of
directories to be searched. We can view the contents of PATH:

356

Script File Location

[me@linuxbox ~]$ echo $PATH
/home/me/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin:/usr/games

Here we see our list of directories. If our script were located in any of the directories in
the list, our problem would be solved. Notice the first directory in the list,
/home/me/bin. Most Linux distributions configure the PATH variable to contain a
bin directory in the user’s home directory, to allow users to execute their own programs.
So if we create the bin directory and place our script within it, it should start to work
like other programs:

[me@linuxbox ~]$ mkdir bin
[me@linuxbox ~]$ mv hello_world bin
[me@linuxbox ~]$ hello_world
Hello World!

And so it does.

If the PATH variable does not contain the directory, we can easily add it by including this
line in our .bashrc file:

export PATH=~/bin:"$PATH"

After this change is made, it will take effect in each new terminal session. To apply the
change to the current terminal session, we must have the shell re-read the .bashrc file.
This can be done by “sourcing” it:

[me@linuxbox ~]$. .bashrc

The dot (.) command is a synonym for the source command, a shell builtin which
reads a specified file of shell commands and treats it like input from the keyboard.

Note: Ubuntu automatically adds the ~/bin directory to the PATH variable if the
~/bin directory exists when the user’s .bashrc file is executed. So, on Ubuntu
systems, if we create the ~/bin directory and then log out and log in again, every-
thing works.

357

24 – Writing Your First Script

Good Locations For Scripts

The ~/bin directory is a good place to put scripts intended for personal use. If we write
a script that everyone on a system is allowed to use, the traditional location is
/usr/local/bin. Scripts intended for use by the system administrator are often lo-
cated in /usr/local/sbin. In most cases, locally supplied software, whether scripts
or compiled programs, should be placed in the /usr/local hierarchy and not in /bin
or /usr/bin. These directories are specified by the Linux Filesystem Hierarchy Stan-
dard to contain only files supplied and maintained by the Linux distributor.

More Formatting Tricks

One of the key goals of serious script writing is ease of maintenance; that is, the ease
with which a script may be modified by its author or others to adapt it to changing needs.
Making a script easy to read and understand is one way to facilitate easy maintenance.

Long Option Names

Many of the commands we have studied feature both short and long option names. For
instance, the ls command has many options that can be expressed in either short or long
form. For example:

[me@linuxbox ~]$ ls -ad

and:

[me@linuxbox ~]$ ls --all --directory

are equivalent commands. In the interests of reduced typing, short options are preferred
when entering options on the command line, but when writing scripts, long options can
provide improved readability.

Indentation And line-continuation

When employing long commands, readability can be enhanced by spreading the com-
mand over several lines. In Chapter 17, we looked at a particularly long example of the
find command:

358

More Formatting Tricks

[me@linuxbox ~]$ find playground \(-type f -not -perm 0600 -exec
chmod 0600 ‘{}’ ‘;’ \) -or \(-type d -not -perm 0700 -exec chmod
0700 ‘{}’ ‘;’ \)

Obviously, this command is a little hard to figure out at first glance. In a script, this com-
mand might be easier to understand if written this way:

find playground \
\(\

-type f \
-not -perm 0600 \
-exec chmod 0600 ‘{}’ ‘;’ \

\) \
-or \
\(\

-type d \
-not -perm 0700 \
-exec chmod 0700 ‘{}’ ‘;’ \

\)

By using line-continuations (backslash-linefeed sequences) and indentation, the logic of
this complex command is more clearly described to the reader. This technique works on
the command line, too, though it is seldom used, as it is very awkward to type and edit.
One difference between a script and a command line is that the script may employ tab
characters to achieve indentation, whereas the command line cannot, since tabs are used
to activate completion.

Configuring vim For Script Writing

The vim text editor has many, many configuration settings. There are several
common options that can facilitate script writing:
:syntax on
turns on syntax highlighting. With this setting, different elements of shell syntax
will be displayed in different colors when viewing a script. This is helpful for
identifying certain kinds of programming errors. It looks cool, too. Note that for
this feature to work, you must have a complete version of vim installed, and the
file you are editing must have a shebang indicating the file is a shell script. If you
have difficulty with the command above, try :set syntax=sh instead.
:set hlsearch

359

24 – Writing Your First Script

turns on the option to highlight search results. Say we search for the word “echo.”
With this option on, each instance of the word will be highlighted.
:set tabstop=4
sets the number of columns occupied by a tab character. The default is 8 columns.
Setting the value to 4 (which is a common practice) allows long lines to fit more
easily on the screen.
:set autoindent
turns on the “auto indent” feature. This causes vim to indent a new line the same
amount as the line just typed. This speeds up typing on many kinds of program-
ming constructs. To stop indentation, type Ctrl-d.
These changes can be made permanent by adding these commands (without the
leading colon characters) to your ~/.vimrc file.

Summing Up

In this first chapter of scripting, we have looked at how scripts are written and made to
easily execute on our system. We also saw how we may use various formatting tech-
niques to improve the readability (and thus, the maintainability) of our scripts. In future
chapters, ease of maintenance will come up again and again as a central principle in good
script writing.

Further Reading

● For “Hello World” programs and examples in various programming languages,
see:
http://en.wikipedia.org/wiki/Hello_world

● This Wikipedia article talks more about the shebang mechanism:
http://en.wikipedia.org/wiki/Shebang_(Unix)

360

http://en.wikipedia.org/wiki/Shebang_(Unix)
http://en.wikipedia.org/wiki/Hello_world

25 – Starting A Project

25 – Starting A Project

Starting with this chapter, we will begin to build a program. The purpose of this project is
to see how various shell features are used to create programs and, more importantly, cre-
ate good programs.

The program we will write is a report generator. It will present various statistics about
our system and its status, and will produce this report in HTML format, so we can view it
with a web browser such as Firefox or Chrome.

Programs are usually built up in a series of stages, with each stage adding features and
capabilities. The first stage of our program will produce a very minimal HTML page that
contains no system information. That will come later.

First Stage: Minimal Document

The first thing we need to know is the format of a well-formed HTML document. It looks
like this:

<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>

If we enter this into our text editor and save the file as foo.html, we can use the fol-
lowing URL in Firefox to view the file:

file:///home/username/foo.html

The first stage of our program will be able to output this HTML file to standard output.
We can write a program to do this pretty easily. Let’s start our text editor and create a new
file named ~/bin/sys_info_page:

361

25 – Starting A Project

[me@linuxbox ~]$ vim ~/bin/sys_info_page

and enter the following program:

#!/bin/bash

Program to output a system information page

echo "<HTML>"
echo " <HEAD>"
echo " <TITLE>Page Title</TITLE>"
echo " </HEAD>"
echo " <BODY>"
echo " Page body."
echo " </BODY>"
echo "</HTML>"

Our first attempt at this problem contains a shebang, a comment (always a good idea) and
a sequence of echo commands, one for each line of output. After saving the file, we’ll
make it executable and attempt to run it:

[me@linuxbox ~]$ chmod 755 ~/bin/sys_info_page
[me@linuxbox ~]$ sys_info_page

When the program runs, we should see the text of the HTML document displayed on the
screen, since the echo commands in the script send their output to standard output. We’ll
run the program again and redirect the output of the program to the file
sys_info_page.html, so that we can view the result with a web browser:

[me@linuxbox ~]$ sys_info_page > sys_info_page.html
[me@linuxbox ~]$ firefox sys_info_page.html

So far, so good.

When writing programs, it’s always a good idea to strive for simplicity and clarity. Main-
tenance is easier when a program is easy to read and understand, not to mention that it
can make the program easier to write by reducing the amount of typing. Our current ver-
sion of the program works fine, but it could be simpler. We could actually combine all the
echo commands into one, which will certainly make it easier to add more lines to the pro-
gram’s output. So, let’s change our program to this:

362

First Stage: Minimal Document

#!/bin/bash

Program to output a system information page

echo "<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>"

A quoted string may include newlines, and therefore contain multiple lines of text. The
shell will keep reading the text until it encounters the closing quotation mark. It works
this way on the command line, too:

[me@linuxbox ~]$ echo "<HTML>
> <HEAD>
> <TITLE>Page Title</TITLE>
> </HEAD>
> <BODY>
> Page body.
> </BODY>
> </HTML>"

The leading “>” character is the shell prompt contained in the PS2 shell variable. It ap-
pears whenever we type a multi-line statement into the shell. This feature is a little ob-
scure right now, but later, when we cover multi-line programming statements, it will turn
out to be quite handy.

Second Stage: Adding A Little Data

Now that our program can generate a minimal document, let’s put some data in the re-
port. To do this, we will make the following changes:

#!/bin/bash

Program to output a system information page

echo "<HTML>
 <HEAD>
 <TITLE>System Information Report</TITLE>

363

25 – Starting A Project

 </HEAD>
 <BODY>
 <H1>System Information Report</H1>
 </BODY>
</HTML>"

We added a page title and a heading to the body of the report.

Variables And Constants

There is an issue with our script, however. Notice how the string “System Information
Report” is repeated? With our tiny script it’s not a problem, but let’s imagine that our
script was really long and we had multiple instances of this string. If we wanted to
change the title to something else, we would have to change it in multiple places, which
could be a lot of work. What if we could arrange the script so that the string only ap-
peared once and not multiple times? That would make future maintenance of the script
much easier. Here’s how we could do that:

#!/bin/bash

Program to output a system information page

title="System Information Report"

echo "<HTML>
 <HEAD>
 <TITLE>$title</TITLE>
 </HEAD>
 <BODY>
 <H1>$title</H1>
 </BODY>
</HTML>"

By creating a variable named title and assigning it the value “System Information Re-
port”, we can take advantage of parameter expansion and place the string in multiple lo-
cations.

So, how do we create a variable? Simple, we just use it. When the shell encounters a vari-
able, it automatically creates it. This differs from many programming languages in which
variables must be explicitly declared or defined before use. The shell is very lax about
this, which can lead to some problems. For example, consider this scenario played out on
the command line:

364

Variables And Constants

[me@linuxbox ~]$ foo="yes"
[me@linuxbox ~]$ echo $foo
yes
[me@linuxbox ~]$ echo $fool

[me@linuxbox ~]$

We first assign the value “yes” to the variable foo, and then display its value with echo.
Next we display the value of the variable name misspelled as “fool” and get a blank re-
sult. This is because the shell happily created the variable fool when it encountered it,
and gave it the default value of nothing, or empty. From this, we learn that we must pay
close attention to our spelling! It’s also important to understand what really happened in
this example. From our previous look at how the shell performs expansions, we know
that the command:

[me@linuxbox ~]$ echo $foo

undergoes parameter expansion and results in:

[me@linuxbox ~]$ echo yes

Whereas the command:

[me@linuxbox ~]$ echo $fool

expands into:

[me@linuxbox ~]$ echo

The empty variable expands into nothing! This can play havoc with commands that re-
quire arguments. Here’s an example:

[me@linuxbox ~]$ foo=foo.txt
[me@linuxbox ~]$ foo1=foo1.txt
[me@linuxbox ~]$ cp $foo $fool
cp: missing destination file operand after `foo.txt'

365

25 – Starting A Project

Try `cp --help' for more information.

We assign values to two variables, foo and foo1. We then perform a cp, but misspell
the name of the second argument. After expansion, the cp command is only sent one ar-
gument, though it requires two.

There are some rules about variable names:

1. Variable names may consist of alphanumeric characters (letters and numbers) and
underscore characters.

2. The first character of a variable name must be either a letter or an underscore.

3. Spaces and punctuation symbols are not allowed.

The word “variable” implies a value that changes, and in many applications, variables are
used this way. However, the variable in our application, title, is used as a constant. A
constant is just like a variable in that it has a name and contains a value. The difference is
that the value of a constant does not change. In an application that performs geometric
calculations, we might define PI as a constant, and assign it the value of 3.1415, in-
stead of using the number literally throughout our program. The shell makes no distinc-
tion between variables and constants; they are mostly for the programmer’s convenience.
A common convention is to use uppercase letters to designate constants and lower case
letters for true variables. We will modify our script to comply with this convention:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 </BODY>
</HTML>"

We also took the opportunity to jazz up our title by adding the value of the shell variable
HOSTNAME. This is the network name of the machine.

366

Variables And Constants

Note: The shell actually does provide a way to enforce the immutability of con-
stants, through the use of the declare builtin command with the -r (read-only)
option. Had we assigned TITLE this way:

declare -r TITLE="Page Title"

the shell would prevent any subsequent assignment to TITLE. This feature is rarely
used, but it exists for very formal scripts.

Assigning Values To Variables And Constants

Here is where our knowledge of expansion really starts to pay off. As we have seen, vari-
ables are assigned values this way:

variable=value

where variable is the name of the variable and value is a string. Unlike some other pro-
gramming languages, the shell does not care about the type of data assigned to a variable;
it treats them all as strings. You can force the shell to restrict the assignment to integers
by using the declare command with the -i option, but, like setting variables as read-
only, this is rarely done.

Note that in an assignment, there must be no spaces between the variable name, the
equals sign, and the value. So what can the value consist of? Anything that we can ex-
pand into a string:

a=z # Assign the string "z" to variable a.
b="a string" # Embedded spaces must be within quotes.
c="a string and $b" # Other expansions such as variables can be

expanded into the assignment.
d=$(ls -l foo.txt) # Results of a command.
e=$((5 * 7)) # Arithmetic expansion.
f="\t\ta string\n" # Escape sequences such as tabs and newlines.

Multiple variable assignments may be done on a single line:

a=5 b="a string"

During expansion, variable names may be surrounded by optional curly braces “{}”. This
is useful in cases where a variable name becomes ambiguous due to its surrounding con-

367

25 – Starting A Project

text. Here, we try to change the name of a file from myfile to myfile1, using a vari-
able:

[me@linuxbox ~]$ filename="myfile"
[me@linuxbox ~]$ touch $filename
[me@linuxbox ~]$ mv $filename $filename1
mv: missing destination file operand after `myfile'
Try `mv --help' for more information.

This attempt fails because the shell interprets the second argument of the mv command as
a new (and empty) variable. The problem can be overcome this way:

[me@linuxbox ~]$ mv $filename ${filename}1

By adding the surrounding braces, the shell no longer interprets the trailing 1 as part of
the variable name.

We’ll take this opportunity to add some data to our report, namely the date and time the
report was created and the username of the creator:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

echo "<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIMESTAMP</P>
 </BODY>
</HTML>"

Here Documents

We’ve looked at two different methods of outputting our text, both using the echo com-

368

Here Documents

mand. There is a third way called a here document or here script. A here document is an
additional form of I/O redirection in which we embed a body of text into our script and
feed it into the standard input of a command. It works like this:

command << token

text

token

where command is the name of command that accepts standard input and token is a string
used to indicate the end of the embedded text. We’ll modify our script to use a here docu-
ment:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>
 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIMESTAMP</P>
 </BODY>
</HTML>
EOF

Instead of using echo, our script now uses cat and a here document. The string _EOF_
(meaning “End Of File,” a common convention) was selected as the token, and marks the
end of the embedded text. Note that the token must appear alone and that there must not
be trailing spaces on the line.

So what’s the advantage of using a here document? It’s mostly the same as echo, except
that, by default, single and double quotes within here documents lose their special mean-
ing to the shell. Here is a command line example:

[me@linuxbox ~]$ foo="some text"
[me@linuxbox ~]$ cat << _EOF_
> $foo

369

25 – Starting A Project

> "$foo"
> '$foo'
> \$foo
> _EOF_
some text
"some text"
'some text'
$foo

As we can see, the shell pays no attention to the quotation marks. It treats them as ordi-
nary characters. This allows us to embed quotes freely within a here document. This
could turn out to be handy for our report program.

Here documents can be used with any command that accepts standard input. In this ex-
ample, we use a here document to pass a series of commands to the ftp program in or-
der to retrieve a file from a remote FTP server:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org
FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n << _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF
ls -l $REMOTE_FILE

If we change the redirection operator from “<<” to “<<-”, the shell will ignore leading
tab characters in the here document. This allows a here document to be indented, which
can improve readability:

#!/bin/bash

Script to retrieve a file via FTP

FTP_SERVER=ftp.nl.debian.org

370

Here Documents

FTP_PATH=/debian/dists/lenny/main/installer-i386/current/images/cdrom
REMOTE_FILE=debian-cd_info.tar.gz

ftp -n <<- _EOF_
open $FTP_SERVER
user anonymous me@linuxbox
cd $FTP_PATH
hash
get $REMOTE_FILE
bye
EOF

ls -l $REMOTE_FILE

Summing Up

In this chapter, we started a project that will carry us through the process of building a
successful script. We introduced the concept of variables and constants and how they can
be employed. They are the first of many applications we will find for parameter expan-
sion. We also looked at how to produce output from our script, and various methods for
embedding blocks of text.

Further Reading

● For more information about HTML, see the following articles and tutorials:
http://en.wikipedia.org/wiki/Html
http://en.wikibooks.org/wiki/HTML_Programming
http://html.net/tutorials/html/

● The bash man page includes a section entitled “HERE DOCUMENTS,” which
has a full description of this feature.

371

http://html.net/tutorials/html/
http://en.wikibooks.org/wiki/HTML_Programming
http://en.wikipedia.org/wiki/Html

26 – Top-Down Design

26 – Top-Down Design

As programs get larger and more complex, they become more difficult to design, code
and maintain. As with any large project, it is often a good idea to break large, complex
tasks into a series of small, simple tasks. Let’s imagine that we are trying to describe a
common, everyday task, going to the market to buy food, to a person from Mars. We
might describe the overall process as the following series of steps:

1. Get in car.

2. Drive to market.

3. Park car.

4. Enter market.

5. Purchase food.

6. Return to car.

7. Drive home.

8. Park car.

9. Enter house.

However, a person from Mars is likely to need more detail. We could further break down
the subtask “Park car” into this series of steps:

1. Find parking space.

2. Drive car into space.

3. Turn off motor.

4. Set parking brake.

5. Exit car.

6. Lock car.

The “Turn off motor” subtask could further be broken down into steps including “Turn
off ignition,” “Remove ignition key,” and so on, until every step of the entire process of
going to the market has been fully defined.

This process of identifying the top-level steps and developing increasingly detailed views
of those steps is called top-down design. This technique allows us to break large complex
tasks into many small, simple tasks. Top-down design is a common method of designing

372

26 – Top-Down Design

programs and one that is well suited to shell programming in particular.

In this chapter, we will use top-down design to further develop our report-generator
script.

Shell Functions

Our script currently performs the following steps to generate the HTML document:

1. Open page.

2. Open page header.

3. Set page title.

4. Close page header.

5. Open page body.

6. Output page heading.

7. Output timestamp.

8. Close page body.

9. Close page.

For our next stage of development, we will add some tasks between steps 7 and 8. These
will include:

● System uptime and load. This is the amount of time since the last shutdown or re-
boot and the average number of tasks currently running on the processor over sev-
eral time intervals.

● Disk space. The overall use of space on the system’s storage devices.

● Home space. The amount of storage space being used by each user.

If we had a command for each of these tasks, we could add them to our script simply
through command substitution:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

cat << _EOF_
<HTML>
 <HEAD>

373

26 – Top-Down Design

 <TITLE>$TITLE</TITLE>
 </HEAD>
 <BODY>
 <H1>$TITLE</H1>
 <P>$TIMESTAMP</P>
 $(report_uptime)
 $(report_disk_space)
 $(report_home_space)
 </BODY>
</HTML>
EOF

We could create these additional commands two ways. We could write three separate
scripts and place them in a directory listed in our PATH, or we could embed the scripts
within our program as shell functions. As we have mentioned before, shell functions are
“mini-scripts” that are located inside other scripts and can act as autonomous programs.
Shell functions have two syntactic forms:

function name {
commands
return

}

and

name () {
commands
return

}

where name is the name of the function and commands is a series of commands contained
within the function. Both forms are equivalent and may be used interchangeably. Below
we see a script that demonstrates the use of a shell function:

 1 #!/bin/bash
 2
 3 # Shell function demo
 4
 5 function funct {
 6 echo "Step 2"
 7 return
 8 }
 9
10 # Main program starts here
11
12 echo "Step 1"

374

Shell Functions

13 funct
14 echo "Step 3"

As the shell reads the script, it passes over lines 1 through 11, as those lines consist of
comments and the function definition. Execution begins at line 12, with an echo com-
mand. Line 13 calls the shell function funct and the shell executes the function just as
it would any other command. Program control then moves to line 6, and the second echo
command is executed. Line 7 is executed next. Its return command terminates the
function and returns control to the program at the line following the function call (line
14), and the final echo command is executed. Note that in order for function calls to be
recognized as shell functions and not interpreted as the names of external programs, shell
function definitions must appear in the script before they are called.

We’ll add minimal shell function definitions to our script:

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"
CURRENT_TIME=$(date +"%x %r %Z")
TIMESTAMP="Generated $CURRENT_TIME, by $USER"

report_uptime () {
return

}

report_disk_space () {

return
}

report_home_space () {
return

}

cat << _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIMESTAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

375

26 – Top-Down Design

</BODY>
</HTML>
EOF

Shell function names follow the same rules as variables. A function must contain at least
one command. The return command (which is optional) satisfies the requirement.

Local Variables

In the scripts we have written so far, all the variables (including constants) have been
global variables. Global variables maintain their existence throughout the program. This
is fine for many things, but it can sometimes complicate the use of shell functions. Inside
shell functions, it is often desirable to have local variables. Local variables are only ac-
cessible within the shell function in which they are defined and cease to exist once the
shell function terminates.

Having local variables allows the programmer to use variables with names that may al-
ready exist, either in the script globally or in other shell functions, without having to
worry about potential name conflicts.

Here is an example script that demonstrates how local variables are defined and used:

#!/bin/bash

local-vars: script to demonstrate local variables

foo=0 # global variable foo

funct_1 () {

local foo # variable foo local to funct_1

foo=1
echo "funct_1: foo = $foo"

}

funct_2 () {

local foo # variable foo local to funct_2

foo=2
echo "funct_2: foo = $foo"

}

echo "global: foo = $foo"
funct_1

376

Local Variables

echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"

As we can see, local variables are defined by preceding the variable name with the word
local. This creates a variable that is local to the shell function in which it is defined.
Once outside the shell function, the variable no longer exists. When we run this script, we
see the results:

[me@linuxbox ~]$ local-vars
global: foo = 0
funct_1: foo = 1
global: foo = 0
funct_2: foo = 2
global: foo = 0

We see that the assignment of values to the local variable foo within both shell functions
has no effect on the value of foo defined outside the functions.

This feature allows shell functions to be written so that they remain independent of each
other and of the script in which they appear. This is very valuable, as it helps prevent one
part of a program from interfering with another. It also allows shell functions to be writ-
ten so that they can be portable. That is, they may be cut and pasted from script to script,
as needed.

Keep Scripts Running

While developing our program, it is useful to keep the program in a runnable state. By
doing this, and testing frequently, we can detect errors early in the development process.
This will make debugging problems much easier. For example, if we run the program,
make a small change, then run the program again and find a problem, it’s very likely that
the most recent change is the source of the problem. By adding the empty functions,
called stubs in programmer-speak, we can verify the logical flow of our program at an
early stage. When constructing a stub, it’s a good idea to include something that provides
feedback to the programmer, which shows the logical flow is being carried out. If we
look at the output of our script now:

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For twin2</TITLE>

377

26 – Top-Down Design

</HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/19/2009 04:02:10 PM EDT, by me</P>

 </BODY>
</HTML>

we see that there are some blank lines in our output after the timestamp, but we can’t be
sure of the cause. If we change the functions to include some feedback:

report_uptime () {
 echo "Function report_uptime executed."
 return
}

report_disk_space () {
 echo "Function report_disk_space executed."
 return
}

report_home_space () {
 echo "Function report_home_space executed."
 return
}

and run the script again:

[me@linuxbox ~]$ sys_info_page
<HTML>

<HEAD>
<TITLE>System Information Report For linuxbox</TITLE>

 </HEAD>
<BODY>

<H1>System Information Report For linuxbox</H1>
<P>Generated 03/20/2009 05:17:26 AM EDT, by me</P>
Function report_uptime executed.
Function report_disk_space executed.
Function report_home_space executed.

</BODY>
</HTML>

378

Keep Scripts Running

we now see that, in fact, our three functions are being executed.

With our function framework in place and working, it’s time to flesh out some of the
function code. First, the report_uptime function:

report_uptime () {
cat <<- _EOF_

 <H2>System Uptime</H2>
 <PRE>$(uptime)</PRE>
 EOF

return
}

It’s pretty straightforward. We use a here document to output a section header and the
output of the uptime command, surrounded by <PRE> tags to preserve the formatting
of the command. The report_disk_space function is similar:

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
EOF

return
}

This function uses the df -h command to determine the amount of disk space. Lastly,
we’ll build the report_home_space function:

report_home_space () {
cat <<- _EOF_

<H2>Home Space Utilization</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

return
}

We use the du command with the -sh options to perform this task. This, however, is not
a complete solution to the problem. While it will work on some systems (Ubuntu, for ex-
ample), it will not work on others. The reason is that many systems set the permissions of
home directories to prevent them from being world-readable, which is a reasonable secu-
rity measure. On these systems, the report_home_space function, as written, will

379

26 – Top-Down Design

only work if our script is run with superuser privileges. A better solution would be to
have the script adjust its behavior according to the privileges of the user. We will take this
up in the next chapter.

Shell Functions In Your .bashrc File

Shell functions make excellent replacements for aliases, and are actually the pre-
ferred method of creating small commands for personal use. Aliases are very lim-
ited in the kind of commands and shell features they support, whereas shell func-
tions allow anything that can be scripted. For example, if we liked the
report_disk_space shell function that we developed for our script, we
could create a similar function named ds for our .bashrc file:
ds () {

echo “Disk Space Utilization For $HOSTNAME”
df -h

}

Summing Up

In this chapter, we have introduced a common method of program design called top-
down design, and we have seen how shell functions are used to build the stepwise refine-
ment that it requires. We have also seen how local variables can be used to make shell
functions independent from one another and from the program in which they are placed.
This makes it possible for shell functions to be written in a portable manner and to be re-
usable by allowing them to be placed in multiple programs; a great time saver.

Further Reading

● The Wikipedia has many articles on software design philosophy. Here are a cou-
ple of good ones:
http://en.wikipedia.org/wiki/Top-down_design
http://en.wikipedia.org/wiki/Subroutines

380

http://en.wikipedia.org/wiki/Subroutines
http://en.wikipedia.org/wiki/Top-down_design

27 – Flow Control: Branching With if

27 – Flow Control: Branching With if

In the last chapter, we were presented with a problem. How can we make our report-gen-
erator script adapt to the privileges of the user running the script? The solution to this
problem will require us to find a way to “change directions” within our script, based on
the results of a test. In programming terms, we need the program to branch.

Let’s consider a simple example of logic expressed in pseudocode, a simulation of a com-
puter language intended for human consumption:

X = 5

If X = 5, then:

Say “X equals 5.”

Otherwise:

Say “X is not equal to 5.”

This is an example of a branch. Based on the condition, “Does X = 5?” do one thing,
“Say X equals 5,” otherwise do another thing, “Say X is not equal to 5.”

if

Using the shell, we can code the logic above as follows:

x=5

if [$x -eq 5]; then
echo "x equals 5."

else
echo "x does not equal 5."

fi

or we can enter it directly at the command line (slightly shortened):

381

27 – Flow Control: Branching With if

[me@linuxbox ~]$ x=5
[me@linuxbox ~]$ if [$x -eq 5]; then echo "equals 5"; else echo
"does not equal 5"; fi
equals 5
[me@linuxbox ~]$ x=0
[me@linuxbox ~]$ if [$x -eq 5]; then echo "equals 5"; else echo
"does not equal 5"; fi
does not equal 5

In this example, we execute the command twice. Once, with the value of x set to 5,
which results in the string “equals 5” being output, and the second time with the value of
x set to 0, which results in the string “does not equal 5” being output.

The if statement has the following syntax:

if commands; then
commands

[elif commands; then
commands...]

[else
commands]

fi

where commands is a list of commands. This is a little confusing at first glance. But be-
fore we can clear this up, we have to look at how the shell evaluates the success or failure
of a command.

Exit Status

Commands (including the scripts and shell functions we write) issue a value to the system
when they terminate, called an exit status. This value, which is an integer in the range of
0 to 255, indicates the success or failure of the command’s execution. By convention, a
value of zero indicates success and any other value indicates failure. The shell provides a
parameter that we can use to examine the exit status. Here we see it in action:

[me@linuxbox ~]$ ls -d /usr/bin
/usr/bin
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
[me@linuxbox ~]$ echo $?
2

382

Exit Status

In this example, we execute the ls command twice. The first time, the command exe-
cutes successfully. If we display the value of the parameter $?, we see that it is zero. We
execute the ls command a second time, producing an error, and examine the parameter
$? again. This time it contains a 2, indicating that the command encountered an error.
Some commands use different exit status values to provide diagnostics for errors, while
many commands simply exit with a value of one when they fail. Man pages often include
a section entitled “Exit Status,” describing what codes are used. However, a zero always
indicates success.

The shell provides two extremely simple builtin commands that do nothing except termi-
nate with either a zero or one exit status. The true command always executes success-
fully and the false command always executes unsuccessfully:

[me@linuxbox ~]$ true
[me@linuxbox ~]$ echo $?
0
[me@linuxbox ~]$ false
[me@linuxbox ~]$ echo $?
1

We can use these commands to see how the if statement works. What the if statement
really does is evaluate the success or failure of commands:

[me@linuxbox ~]$ if true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if false; then echo "It's true."; fi
[me@linuxbox ~]$

The command echo "It's true." is executed when the command following if exe-
cutes successfully, and is not executed when the command following if does not execute
successfully. If a list of commands follows if, the last command in the list is evaluated:

[me@linuxbox ~]$ if false; true; then echo "It's true."; fi
It's true.
[me@linuxbox ~]$ if true; false; then echo "It's true."; fi
[me@linuxbox ~]$

383

27 – Flow Control: Branching With if

test

By far, the command used most frequently with if is test. The test command per-
forms a variety of checks and comparisons. It has two equivalent forms:

test expression

and the more popular:

[expression]

where expression is an expression that is evaluated as either true or false. The test com-
mand returns an exit status of zero when the expression is true and a status of one when
the expression is false.

File Expressions

The following expressions are used to evaluate the status of files:

Table 27-1: test File Expressions

Expression Is True If:

file1 -ef file2 file1 and file2 have the same inode numbers (the two
filenames refer to the same file by hard linking).

file1 -nt file2 file1 is newer than file2.

file1 -ot file2 file1 is older than file2.

-b file file exists and is a block-special (device) file.

-c file file exists and is a character-special (device) file.

-d file file exists and is a directory.

-e file file exists.

-f file file exists and is a regular file.

-g file file exists and is set-group-ID.

-G file file exists and is owned by the effective group ID.

-k file file exists and has its “sticky bit” set.

-L file file exists and is a symbolic link.

-O file file exists and is owned by the effective user ID.

-p file file exists and is a named pipe.

-r file file exists and is readable (has readable permission for

384

test

the effective user).

-s file file exists and has a length greater than zero.

-S file file exists and is a network socket.

-t fd fd is a file descriptor directed to/from the terminal. This
can be used to determine whether standard
input/output/error is being redirected.

-u file file exists and is setuid.

-w file file exists and is writable (has write permission for the
effective user).

-x file file exists and is executable (has execute/search
permission for the effective user).

Here we have a script that demonstrates some of the file expressions:

#!/bin/bash

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then
if [-f "$FILE"]; then

echo "$FILE is a regular file."
fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi
if [-x "$FILE"]; then

echo "$FILE is executable/searchable."
fi

else
echo "$FILE does not exist"
exit 1

fi

exit

385

27 – Flow Control: Branching With if

The script evaluates the file assigned to the constant FILE and displays its results as the
evaluation is performed. There are two interesting things to note about this script. First,
notice how the parameter $FILE is quoted within the expressions. This is not required,

test

fi

}

String Expressions

The following expressions are used to evaluate strings:

Table 27-2: test String Expressions

Expression Is True If...

string string is not null.

-n string The length of string is greater than zero.

-z string The length of string is zero.

string1 = string2
string1 == string2

string1 and string2 are equal. Single or double
equal signs may be used, but the use of double
equal signs is greatly preferred.

string1 != string2 string1 and string2 are not equal.

string1 > string2 string1 sorts after string2.

string1 < string2 string1 sorts before string2.

Warning: the > and < expression operators must be quoted (or escaped with a
backslash) when used with test. If they are not, they will be interpreted by the
shell as redirection operators, with potentially destructive results. Also note that
while the bash documentation states that the sorting order conforms to the colla-
tion order of the current locale, it does not. ASCII (POSIX) order is used in ver-
sions of bash up to and including 4.0.

Here is a script that incorporates string expressions:

#!/bin/bash

test-string: evaluate the value of a string

ANSWER=maybe

if [-z "$ANSWER"]; then

387

27 – Flow Control: Branching With if

echo "There is no answer." >&2
exit 1

fi

if ["$ANSWER" = "yes"]; then
echo "The answer is YES."

elif ["$ANSWER" = "no"]; then
echo "The answer is NO."

elif ["$ANSWER" = "maybe"]; then
echo "The answer is MAYBE."

else
echo "The answer is UNKNOWN."

fi

In this script, we evaluate the constant ANSWER. We first determine if the string is empty.
If it is, we terminate the script and set the exit status to one. Notice the redirection that is
applied to the echo command. This redirects the error message “There is no answer.” to
standard error, which is the “proper” thing to do with error messages. If the string is not
empty, we evaluate the value of the string to see if it is equal to either “yes,” “no,” or
“maybe.” We do this by using elif, which is short for “else if.” By using elif, we are
able to construct a more complex logical test.

Integer Expressions

The following expressions are used with integers:

Table 27-3: test Integer Expressions

Expression Is True If...

integer1 -eq integer2 integer1 is equal to integer2.

integer1 -ne integer2 integer1 is not equal to integer2.

integer1 -le integer2 integer1 is less than or equal to integer2.

integer1 -lt integer2 integer1 is less than integer2.

integer1 -ge integer2 integer1 is greater than or equal to integer2.

integer1 -gt integer2 integer1 is greater than integer2.

Here is a script that demonstrates them:

#!/bin/bash

388

test

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then
echo "INT is empty." >&2
exit 1

fi

if [$INT -eq 0]; then
echo "INT is zero."

else
if [$INT -lt 0]; then

echo "INT is negative."
else

echo "INT is positive."
fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi

The interesting part of the script is how it determines whether an integer is even or odd.
By performing a modulo 2 operation on the number, which divides the number by two
and returns the remainder, it can tell if the number is odd or even.

A More Modern Version Of test

Recent versions of bash include a compound command that acts as an enhanced replace-
ment for test. It uses the following syntax:

[[expression]]

where, like test, expression is an expression that evaluates to either a true or false re-
sult. The [[]] command is very similar to test (it supports all of its expressions), but
adds an important new string expression:

string1 =~ regex

which returns true if string1 is matched by the extended regular expression regex. This
opens up a lot of possibilities for performing such tasks as data validation. In our earlier
example of the integer expressions, the script would fail if the constant INT contained
anything except an integer. The script needs a way to verify that the constant contains an
integer. Using [[]] with the =~ string expression operator, we could improve the

389

27 – Flow Control: Branching With if

script this way:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

By applying the regular expression, we are able to limit the value of INT to only strings
that begin with an optional minus sign, followed by one or more numerals. This expres-
sion also eliminates the possibility of empty values.

Another added feature of [[]] is that the == operator supports pattern matching the
same way pathname expansion does. For example:

[me@linuxbox ~]$ FILE=foo.bar
[me@linuxbox ~]$ if [[$FILE == foo.*]]; then
> echo "$FILE matches pattern 'foo.*'"
> fi
foo.bar matches pattern 'foo.*'

This makes [[]] useful for evaluating file and pathnames.

390

(()) - Designed For Integers

(()) - Designed For Integers

In addition to the [[]] compound command, bash also provides the (()) com-
pound command, which is useful for operating on integers. It supports a full set of arith-
metic evaluations, a subject we will cover fully in Chapter 34.

(()) is used to perform arithmetic truth tests. An arithmetic truth test results in true if
the result of the arithmetic evaluation is non-zero.

[me@linuxbox ~]$ if ((1)); then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ if ((0)); then echo "It is true."; fi
[me@linuxbox ~]$

Using (()), we can slightly simplify the test-integer2 script like this:

#!/bin/bash

test-integer2a: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if ((INT == 0)); then

echo "INT is zero."
else

if ((INT < 0)); then
echo "INT is negative."

else
echo "INT is positive."

fi
if ((((INT % 2)) == 0)); then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

Notice that we use less-than and greater-than signs and that == is used to test for equiva-
lence. This is a more natural-looking syntax for working with integers. Notice too, that
because the compound command (()) is part of the shell syntax rather than an ordi-

391

27 – Flow Control: Branching With if

nary command, and it deals only with integers, it is able to recognize variables by name
and does not require expansion to be performed. We’ll discuss (()) and the related
arithmetic expansion further in Chapter 34.

Combining Expressions

It’s also possible to combine expressions to create more complex evaluations. Expres-
sions are combined by using logical operators. We saw these in Chapter 17, when we
learned about the find command. There are three logical operations for test and
[[]]. They are AND, OR and NOT. test and [[]] use different operators to repre-
sent these operations :

Table 27-4: Logical Operators

Operation test [[]] and (())

AND -a &&

OR -o ||

NOT ! !

Here’s an example of an AND operation. The following script determines if an integer is
within a range of values:

#!/bin/bash

test-integer3: determine if an integer is within a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[INT -ge MIN_VAL && INT -le MAX_VAL]]; then

echo "$INT is within $MIN_VAL to $MAX_VAL."
else

echo "$INT is out of range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

392

Combining Expressions

In this script, we determine if the value of integer INT lies between the values of
MIN_VAL and MAX_VAL. This is performed by a single use of [[]], which includes
two expressions separated by the && operator. We could have also coded this using
test:

 if [$INT -ge $MIN_VAL -a $INT -le $MAX_VAL]; then
echo "$INT is within $MIN_VAL to $MAX_VAL."

else
echo "$INT is out of range."

fi

The ! negation operator reverses the outcome of an expression. It returns true if an ex-
pression is false, and it returns false if an expression is true. In the following script, we
modify the logic of our evaluation to find values of INT that are outside the specified
range:

#!/bin/bash

test-integer4: determine if an integer is outside a
specified range of values.

MIN_VAL=1
MAX_VAL=100

INT=50

if [["$INT" =~ ^-?[0-9]+$]]; then
if [[! (INT -ge MIN_VAL && INT -le MAX_VAL)]]; then

echo "$INT is outside $MIN_VAL to $MAX_VAL."
else

echo "$INT is in range."
fi

else
 echo "INT is not an integer." >&2
 exit 1
fi

We also include parentheses around the expression, for grouping. If these were not in-
cluded, the negation would only apply to the first expression and not the combination of
the two. Coding this with test would be done this way:

if [! \($INT -ge $MIN_VAL -a $INT -le $MAX_VAL \)]; then

393

27 – Flow Control: Branching With if

echo "$INT is outside $MIN_VAL to $MAX_VAL."
else

echo "$INT is in range."
fi

Since all expressions and operators used by test are treated as command arguments by
the shell (unlike [[]] and (())), characters which have special meaning to bash,
such as <, >, (, and), must be quoted or escaped.

Seeing that test and [[]] do roughly the same thing, which is preferable? test is
traditional (and part of POSIX), whereas [[]] is specific to bash. It’s important to
know how to use test, since it is very widely used, but [[]] is clearly more useful
and is easier to code.

Portability Is The Hobgoblin Of Little Minds

If you talk to “real” Unix people, you quickly discover that many of them don’t
like Linux very much. They regard it as impure and unclean. One tenet of Unix
followers is that everything should be “portable.” This means that any script you
write should be able to run, unchanged, on any Unix-like system.
Unix people have good reason to believe this. Having seen what proprietary ex-
tensions to commands and shells did to the Unix world before POSIX, they are
naturally wary of the effect of Linux on their beloved OS.
But portability has a serious downside. It prevents progress. It requires that things
are always done using “lowest common denominator” techniques. In the case of
shell programming, it means making everything compatible with sh, the original
Bourne shell.
This downside is the excuse that proprietary vendors use to justify their propri-
etary extensions, only they call them “innovations.” But they are really just lock-
-in devices for their customers.
The GNU tools, such as bash, have no such restrictions. They encourage porta-
bility by supporting standards and by being universally available. You can install
bash and the other GNU tools on almost any kind of system, even Windows,
without cost. So feel free to use all the features of bash. It’s really portable.

Control Operators: Another Way To Branch

bash provides two control operators that can perform branching. The && (AND) and ||
(OR) operators work like the logical operators in the [[]] compound command. This
is the syntax:

394

Control Operators: Another Way To Branch

command1 && command2

and

command1 || command2

It is important to understand the behavior of these. With the && operator, command1 is
executed and command2 is executed if, and only if, command1 is successful. With the ||
operator, command1 is executed and command2 is executed if, and only if, command1 is
unsuccessful.

In practical terms, it means that we can do something like this:

[me@linuxbox ~]$ mkdir temp && cd temp

This will create a directory named temp, and if it succeeds, the current working directory
will be changed to temp. The second command is attempted only if the mkdir com-
mand is successful. Likewise, a command like this:

[me@linuxbox ~]$ [-d temp] || mkdir temp

will test for the existence of the directory temp, and only if the test fails, will the direc-
tory be created. This type of construct is very handy for handling errors in scripts, a sub-
ject we will discuss more in later chapters. For example, we could do this in a script:

[-d temp] || exit 1

If the script requires the directory temp, and it does not exist, then the script will termi-
nate with an exit status of one.

Summing Up

We started this chapter with a question. How could we make our sys_info_page
script detect if the user had permission to read all the home directories? With our knowl-
edge of if, we can solve the problem by adding this code to the
report_home_space function:

report_home_space () {
if [[$(id -u) -eq 0]]; then

395

27 – Flow Control: Branching With if

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

We evaluate the output of the id command. With the -u option, id outputs the numeric
user ID number of the effective user. The superuser is always zero and every other user is
a number greater than zero. Knowing this, we can construct two different here docu-
ments, one taking advantage of superuser privileges, and the other, restricted to the user’s
own home directory.

We are going to take a break from the sys_info_page program, but don’t worry. It
will be back. In the meantime, we’ll cover some topics that we’ll need when we resume
our work.

Further Reading

There are several sections of the bash man page that provide further detail on the topics
covered in this chapter:

● Lists (covers the control operators || and &&)

● Compound Commands (covers [[]], (()) and if)

● CONDITIONAL EXPRESSIONS

● SHELL BUILTIN COMMANDS (covers test)

Further, the Wikipedia has a good article on the concept of pseudocode:

http://en.wikipedia.org/wiki/Pseudocode

396

http://en.wikipedia.org/wiki/Pseudocode

28 – Reading Keyboard Input

28 – Reading Keyboard Input

The scripts we have written so far lack a feature common in most computer programs—   
interactivity. That is, the ability of the program to interact with the user. While many pro-
grams don’t need to be interactive, some programs benefit from being able to accept input
directly from the user. Take, for example, this script from the previous chapter:

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi
else

echo "INT is not an integer." >&2
exit 1

fi

Each time we want to change the value of INT, we have to edit the script. It would be
much more useful if the script could ask the user for a value. In this chapter, we will be-
gin to look at how we can add interactivity to our programs.

397

28 – Reading Keyboard Input

read – Read Values From Standard Input

The read builtin command is used to read a single line of standard input. This command
can be used to read keyboard input or, when redirection is employed, a line of data from a
file. The command has the following syntax:

read [-options] [variable...]

where options is one or more of the available options listed below and variable is the
name of one or more variables used to hold the input value. If no variable name is sup-
plied, the shell variable REPLY contains the line of data.

Basically, read assigns fields from standard input to the specified variables. If we mod-
ify our integer evaluation script to use read, it might look like this:

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "
read int

if [["$int" =~ ^-?[0-9]+$]]; then
if [$int -eq 0]; then

echo "$int is zero."
else

if [$int -lt 0]; then
echo "$int is negative."

else
echo "$int is positive."

fi
if [$((int % 2)) -eq 0]; then

echo "$int is even."
else

echo "$int is odd."
fi

fi
else

echo "Input value is not an integer." >&2
exit 1

fi

We use echo with the -n option (which suppresses the trailing newline on output) to
display a prompt, and then use read to input a value for the variable int. Running this
script results in this:

398

read – Read Values From Standard Input

[me@linuxbox ~]$ read-integer
Please enter an integer -> 5
5 is positive.
5 is odd.

read can assign input to multiple variables, as shown in this script:

#!/bin/bash

read-multiple: read multiple values from keyboard

echo -n "Enter one or more values > "
read var1 var2 var3 var4 var5

echo "var1 = '$var1'"
echo "var2 = '$var2'"
echo "var3 = '$var3'"
echo "var4 = '$var4'"
echo "var5 = '$var5'"

In this script, we assign and display up to five values. Notice how read behaves when
given different numbers of values:

[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e'
[me@linuxbox ~]$ read-multiple
Enter one or more values > a
var1 = 'a'
var2 = ''
var3 = ''
var4 = ''
var5 = ''
[me@linuxbox ~]$ read-multiple
Enter one or more values > a b c d e f g
var1 = 'a'
var2 = 'b'
var3 = 'c'
var4 = 'd'
var5 = 'e f g'

399

28 – Reading Keyboard Input

If read receives fewer than the expected number, the extra variables are empty, while an
excessive amount of input results in the final variable containing all of the extra input.

If no variables are listed after the read command, a shell variable, REPLY, will be as-
signed all the input:

#!/bin/bash

read-single: read multiple values into default variable

echo -n "Enter one or more values > "
read

echo "REPLY = '$REPLY'"

Running this script results in this:

[me@linuxbox ~]$ read-single
Enter one or more values > a b c d
REPLY = 'a b c d'

Options

read supports the following options:

Table 28-1: read Options

Option Description

-a array Assign the input to array, starting with index zero. We
will cover arrays in Chapter 35.

-d delimiter The first character in the string delimiter is used to
indicate end of input, rather than a newline character.

-e Use Readline to handle input. This permits input editing
in the same manner as the command line.

-i string Use string as a default reply if the user simply presses
Enter. Requires the -e option.

-n num Read num characters of input, rather than an entire line.

-p prompt Display a prompt for input using the string prompt.

400

read – Read Values From Standard Input

-r Raw mode. Do not interpret backslash characters as
escapes.

-s Silent mode. Do not echo characters to the display as
they are typed. This is useful when inputting passwords
and other confidential information.

-t seconds Timeout. Terminate input after seconds. read returns a
non-zero exit status if an input times out.

-u fd Use input from file descriptor fd, rather than standard
input.

Using the various options, we can do interesting things with read. For example, with the
-p option, we can provide a prompt string:

#!/bin/bash

read-single: read multiple values into default variable

read -p "Enter one or more values > "

echo "REPLY = '$REPLY'"

With the -t and -s options we can write a script that reads “secret” input and times out
if the input is not completed in a specified time:

#!/bin/bash

read-secret: input a secret passphrase

if read -t 10 -sp "Enter secret passphrase > " secret_pass; then
echo -e "\nSecret passphrase = '$secret_pass'"

else
echo -e "\nInput timed out" >&2
exit 1

fi

The script prompts the user for a secret passphrase and waits 10 seconds for input. If the
entry is not completed within the specified time, the script exits with an error. Since the
-s option is included, the characters of the passphrase are not echoed to the display as
they are typed.

401

28 – Reading Keyboard Input

It's possible to supply the user with a default response using the -e and -i options to-
gether:

#!/bin/bash

read-default: supply a default value if user presses Enter key.

read -e -p "What is your user name? " -i $USER
echo "You answered: '$REPLY'"

In this script, we prompt the user to enter his/her user name and use the environment vari-
able USER to provide a default value. When the script is run it displays the default string
and if the user simply presses the Enter key, read will assign the default string to the
REPLY variable.

[me@linuxbox ~]$ read-default
What is your user name? me
You answered: 'me'

IFS

Normally, the shell performs word splitting on the input provided to read. As we have
seen, this means that multiple words separated by one or more spaces become separate
items on the input line, and are assigned to separate variables by read. This behavior is
configured by a shell variable named IFS (for Internal Field Separator). The default
value of IFS contains a space, a tab, and a newline character, each of which will separate
items from one another.

We can adjust the value of IFS to control the separation of fields input to read. For ex-
ample, the /etc/passwd file contains lines of data that use the colon character as a
field separator. By changing the value of IFS to a single colon, we can use read to input
the contents of /etc/passwd and successfully separate fields into different variables.
Here we have a script that does just that:

#!/bin/bash

read-ifs: read fields from a file

FILE=/etc/passwd

402

read – Read Values From Standard Input

read -p "Enter a username > " user_name

file_info=$(grep "^$user_name:" $FILE)

if [-n "$file_info"]; then
IFS=":" read user pw uid gid name home shell <<< "$file_info"
echo "User = '$user'"
echo "UID = '$uid'"
echo "GID = '$gid'"
echo "Full Name = '$name'"
echo "Home Dir. = '$home'"
echo "Shell = '$shell'"

else
echo "No such user '$user_name'" >&2
exit 1

fi

This script prompts the user to enter the username of an account on the system, then dis-
plays the different fields found in the user’s record in the /etc/passwd file. The script
contains two interesting lines. The first is:

file_info=$(grep "^$user_name:" $FILE)

This line assigns the results of a grep command to the variable file_info. The regu-
lar expression used by grep assures that the username will only match a single line in
the /etc/passwd file.

The second interesting line is this one:

IFS=":" read user pw uid gid name home shell <<< "$file_info"

The line consists of three parts: a variable assignment, a read command with a list of
variable names as arguments, and a strange new redirection operator. We’ll look at the
variable assignment first.

The shell allows one or more variable assignments to take place immediately before a
command. These assignments alter the environment for the command that follows. The
effect of the assignment is temporary; only changing the environment for the duration of
the command. In our case, the value of IFS is changed to a colon character. Alternately,
we could have coded it this way:

OLD_IFS="$IFS"
IFS=":"
read user pw uid gid name home shell <<< "$file_info"
IFS="$OLD_IFS"

where we store the value of IFS, assign a new value, perform the read command, and
then restore IFS to its original value. Clearly, placing the variable assignment in front of

403

28 – Reading Keyboard Input

the command is a more concise way of doing the same thing.

The <<< operator indicates a here string. A here string is like a here document, only
shorter, consisting of a single string. In our example, the line of data from the
/etc/passwd file is fed to the standard input of the read command. We might won-
der why this rather oblique method was chosen rather than:

echo "$file_info" | IFS=":" read user pw uid gid name home shell

Well, there’s a reason...

You Can’t Pipe read

While the read command normally takes input from standard input, you cannot
do this:
echo "foo" | read

We would expect this to work, but it does not. The command will appear to suc-
ceed but the REPLY variable will always be empty. Why is this?
The explanation has to do with the way the shell handles pipelines. In bash (and
other shells such as sh), pipelines create subshells. These are copies of the shell
and its environment which are used to execute the command in the pipeline. In
our example above, read is executed in a subshell.
Subshells in Unix-like systems create copies of the environment for the processes
to use while they execute. When the processes finishes the copy of the environ-
ment is destroyed. This means that a subshell can never alter the environment of
its parent process. read assigns variables, which then become part of the envi-
ronment. In the example above, read assigns the value “foo” to the variable RE-
PLY in its subshell’s environment, but when the command exits, the subshell and
its environment are destroyed, and the effect of the assignment is lost.
Using here strings is one way to work around this behavior. Another method is
discussed in Chapter 36.

Validating Input

With our new ability to have keyboard input comes an additional programming challenge,
validating input. Very often the difference between a well-written program and a poorly
written one lies in the program’s ability to deal with the unexpected. Frequently, the un-
expected appears in the form of bad input. We’ve done a little of this with our evaluation
programs in the previous chapter, where we checked the values of integers and screened
out empty values and non-numeric characters. It is important to perform these kinds of
programming checks every time a program receives input, to guard against invalid data.
This is especially important for programs that are shared by multiple users. Omitting

404

Validating Input

these safeguards in the interests of economy might be excused if a program is to be used
once and only by the author to perform some special task. Even then, if the program per-
forms dangerous tasks such as deleting files, it would be wise to include data validation,
just in case.

Here we have an example program that validates various kinds of input:

#!/bin/bash

read-validate: validate input

invalid_input () {
echo "Invalid input '$REPLY'" >&2
exit 1

}

read -p "Enter a single item > "

input is empty (invalid)
[[-z $REPLY]] && invalid_input

input is multiple items (invalid)
(($(echo $REPLY | wc -w) > 1)) && invalid_input

is input a valid filename?
if [[$REPLY =~ ^[-[:alnum:]\._]+$]]; then

echo "'$REPLY' is a valid filename."
if [[-e $REPLY]]; then

echo "And file '$REPLY' exists."
else

echo "However, file '$REPLY' does not exist."
fi

is input a floating point number?
if [[$REPLY =~ ^-?[[:digit:]]*\.[[:digit:]]+$]]; then

echo "'$REPLY' is a floating point number."
else

echo "'$REPLY' is not a floating point number."
fi

is input an integer?
if [[$REPLY =~ ^-?[[:digit:]]+$]]; then

echo "'$REPLY' is an integer."
else

echo "'$REPLY' is not an integer."
fi

else
echo "The string '$REPLY' is not a valid filename."

fi

405

28 – Reading Keyboard Input

This script prompts the user to enter an item. The item is subsequently analyzed to deter-
mine its contents. As we can see, the script makes use of many of the concepts that we
have covered thus far, including shell functions, [[]], (()), the control operator
&&, and if, as well as a healthy dose of regular expressions.

Menus

A common type of interactivity is called menu-driven. In menu-driven programs, the user
is presented with a list of choices and is asked to choose one. For example, we could
imagine a program that presented the following:

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

Enter selection [0-3] >

Using what we learned from writing our sys_info_page program, we can construct a
menu-driven program to perform the tasks on the above menu:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 0]]; then

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

406

Menus

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi
else

echo "Invalid entry." >&2
exit 1

fi

This script is logically divided into two parts. The first part displays the menu and inputs
the response from the user. The second part identifies the response and carries out the se-
lected action. Notice the use of the exit command in this script. It is used here to pre-
vent the script from executing unnecessary code after an action has been carried out. The
presence of multiple exit points in a program is generally a bad idea (it makes program
logic harder to understand), but it works in this script.

Summing Up

In this chapter, we took our first steps toward interactivity; allowing users to input data
into our programs via the keyboard. Using the techniques presented thus far, it is possible
to write many useful programs, such as specialized calculation programs and easy-to-use
front-ends for arcane command line tools. In the next chapter, we will build on the menu-
driven program concept to make it even better.

Extra Credit

It is important to study the programs in this chapter carefully and have a complete under-
standing of the way they are logically structured, as the programs to come will be increas-
ingly complex. As an exercise, rewrite the programs in this chapter using the test com-
mand rather than the [[]] compound command. Hint: Use grep to evaluate the regu-
lar expressions and evaluate the exit status. This will be good practice.

407

28 – Reading Keyboard Input

Further Reading

● The Bash Reference Manual contains a chapter on builtins, which includes the
read command:
http://www.gnu.org/software/bash/manual/bashref.html#Bash-Builtins

408

http://www.gnu.org/software/bash/manual/bashref.html#Bash-Builtins

29 – Flow Control: Looping With while / until

29 – Flow Control: Looping With while / until

In the previous chapter, we developed a menu-driven program to produce various kinds
of system information. The program works, but it still has a significant usability problem.
It only executes a single choice and then terminates. Even worse, if an invalid selection is
made, the program terminates with an error, without giving the user an opportunity to try
again. It would be better if we could somehow construct the program so that it could re-
peat the menu display and selection over and over, until the user chooses to exit the pro-
gram.

In this chapter, we will look at a programming concept called looping, which can be used
to make portions of programs repeat. The shell provides three compound commands for
looping. We will look at two of them in this chapter, and the third in a later one.

Looping

Daily life is full of repeated activities. Going to work each day, walking the dog, slicing a
carrot are all tasks that involve repeating a series of steps. Let’s consider slicing a carrot.
If we express this activity in pseudocode, it might look something like this:

1. get cutting board

2. get knife

3. place carrot on cutting board

4. lift knife

5. advance carrot

6. slice carrot

7. if entire carrot sliced, then quit, else go to step 4

Steps 4 through 7 form a loop. The actions within the loop are repeated until the condi-
tion, “entire carrot sliced,” is reached.

while

bash can express a similar idea. Let’s say we wanted to display five numbers in sequen-

409

29 – Flow Control: Looping With while / until

tial order from one to five. a bash script could be constructed as follows:

#!/bin/bash

while-count: display a series of numbers

count=1

while [[$count -le 5]]; do
echo $count
count=$((count + 1))

done
echo "Finished."

When executed, this script displays the following:

[me@linuxbox ~]$ while-count
1
2
3
4
5
Finished.

The syntax of the while command is:

while commands; do commands; done

Like if, while evaluates the exit status of a list of commands. As long as the exit status
is zero, it performs the commands inside the loop. In the script above, the variable
count is created and assigned an initial value of 1. The while command evaluates the
exit status of the test command. As long as the test command returns an exit status of
zero, the commands within the loop are executed. At the end of each cycle, the test
command is repeated. After six iterations of the loop, the value of count has increased
to 6, the test command no longer returns an exit status of zero and the loop terminates.

Looping

DELAY=3 # Number of seconds to display results

while [[$REPLY != 0]]; do
clear
cat <<- _EOF_

Please Select:

 1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY

fi
if [[$REPLY == 2]]; then

df -h
sleep $DELAY

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY

fi
else

echo "Invalid entry."
sleep $DELAY

fi
done
echo "Program terminated."

By enclosing the menu in a while loop, we are able to have the program repeat the menu
display after each selection. The loop continues as long as REPLY is not equal to “0” and
the menu is displayed again, giving the user the opportunity to make another selection. At
the end of each action, a sleep command is executed so the program will pause for a
few seconds to allow the results of the selection to be seen before the screen is cleared
and the menu is redisplayed. Once REPLY is equal to “0,” indicating the “quit” selection,

411

29 – Flow Control: Looping With while / until

the loop terminates and execution continues with the line following done.

Breaking Out Of A Loop

bash provides two builtin commands that can be used to control program flow inside
loops. The break command immediately terminates a loop, and program control re-
sumes with the next statement following the loop. The continue command causes the
remainder of the loop to be skipped, and program control resumes with the next iteration
of the loop. Here we see a version of the while-menu program incorporating both
break and continue:

#!/bin/bash

while-menu2: a menu driven system information program

DELAY=3 # Number of seconds to display results

while true; do
clear
cat <<- _EOF_

Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit

EOF
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
sleep $DELAY
continue

fi
if [[$REPLY == 2]]; then

df -h
sleep $DELAY
continue

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else

412

Breaking Out Of A Loop

echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
sleep $DELAY
continue

fi
if [[$REPLY == 0]]; then

break
fi

else
echo "Invalid entry."
sleep $DELAY

fi
done
echo "Program terminated."

In this version of the script, we set up an endless loop (one that never terminates on its
own) by using the true command to supply an exit status to while. Since true will
always exit with a exit status of zero, the loop will never end. This is a surprisingly com-
mon scripting technique. Since the loop will never end on its own, it’s up to the program-
mer to provide some way to break out of the loop when the time is right. In this script, the
break command is used to exit the loop when the “0” selection is chosen. The con-
tinue command has been included at the end of the other script choices to allow for
more efficient execution. By using continue, the script will skip over code that is not
needed when a selection is identified. For example, if the “1” selection is chosen and
identified, there is no reason to test for the other selections.

until

The until command is much like while, except instead of exiting a loop when a non-
zero exit status is encountered, it does the opposite. An until loop continues until it re-
ceives a zero exit status. In our while-count script, we continued the loop as long as
the value of the count variable was less than or equal to 5. We could get the same result
by coding the script with until:

#!/bin/bash

until-count: display a series of numbers

count=1

until [[$count -gt 5]]; do
echo $count

413

29 – Flow Control: Looping With while / until

count=$((count + 1))
done
echo "Finished."

By changing the test expression to $count -gt 5, until will terminate the loop at
the correct time. The decision of whether to use the while or until loop is usually a
matter of choosing the one that allows the clearest test to be written.

Reading Files With Loops

while and until can process standard input. This allows files to be processed with
while and until loops. In the following example, we will display the contents of the dis-
tros.txt file used in earlier chapters:

#!/bin/bash

while-read: read lines from a file

while read distro version release; do
printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

$distro \
$version \
$release

done < distros.txt

To redirect a file to the loop, we place the redirection operator after the done statement.
The loop will use read to input the fields from the redirected file. The read command
will exit after each line is read, with a zero exit status until the end-of-file is reached. At
that point, it will exit with a non-zero exit status, thereby terminating the loop. It is also
possible to pipe standard input into a loop:

#!/bin/bash

while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | while read distro version release; do

printf "Distro: %s\tVersion: %s\tReleased: %s\n" \
$distro \
$version \
$release

done

414

Reading Files With Loops

Here we take the output of the sort command and display the stream of text. However,
it is important to remember that since a pipe will execute the loop in a subshell, any vari-
ables created or assigned within the loop will be lost when the loop terminates.

Summing Up

With the introduction of loops, and our previous encounters with branching, subroutines
and sequences, we have covered the major types of flow control used in programs. bash
has some more tricks up its sleeve, but they are refinements on these basic concepts.

Further Reading

● The Bash Guide for Beginners from the Linux Documentation Project has some
more examples of while loops:
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html

● The Wikipedia has an article on loops, which is part of a larger article on flow
control:
http://en.wikipedia.org/wiki/Control_flow#Loops

415

http://en.wikipedia.org/wiki/Control_flow#Loops
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html

30 – Troubleshooting

30 – Troubleshooting

As our scripts become more complex, it’s time to take a look at what happens when
things go wrong and they don’t do what we want. In this chapter, we’ll look at some of
the common kinds of errors that occur in scripts, and describe a few useful techniques
that can be used to track down and eradicate problems.

Syntactic Errors

One general class of errors is syntactic. Syntactic errors involve mistyping some element
of shell syntax. In most cases, these kinds of errors will lead to the shell refusing to exe-
cute the script.

In the following discussions, we will use this script to demonstrate common types of er-
rors:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

As written, this script runs successfully:

[me@linuxbox ~]$ trouble
Number is equal to 1.

416

Syntactic Errors

Missing Quotes

If we edit our script and remove the trailing quote from the argument following the first
echo command:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1]; then
echo "Number is equal to 1.

else
echo "Number is not equal to 1."

fi

watch what happens:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 10: unexpected EOF while looking for
matching `"'
/home/me/bin/trouble: line 13: syntax error: unexpected end of file

It generates two errors. Interestingly, the line numbers reported are not where the missing
quote was removed, but rather much later in the program. We can see why, if we follow
the program after the missing quote. bash will continue looking for the closing quote
until it finds one, which it does immediately after the second echo command. bash be-
comes very confused after that, and the syntax of the if command is broken because the
fi statement is now inside a quoted (but open) string.

In long scripts, this kind of error can be quite hard to find. Using an editor with syntax
highlighting will help. If a complete version of vim is installed, syntax highlighting can
be enabled by entering the command:

:syntax on

Missing Or Unexpected Tokens

Another common mistake is forgetting to complete a compound command, such as if or

417

30 – Troubleshooting

while. Let’s look at what happens if we remove the semicolon after the test in the if
command:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

if [$number = 1] then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

The result is this:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 9: syntax error near unexpected token
`else'
/home/me/bin/trouble: line 9: `else'

Again, the error message points to a error that occurs later than the actual problem. What
happens is really pretty interesting. As we recall, if accepts a list of commands and eval-
uates the exit code of the last command in the list. In our program, we intend this list to
consist of a single command, [, a synonym for test. The [command takes what follows
it as a list of arguments; in our case, four arguments: $number, 1, =, and]. With the
semicolon removed, the word then is added to the list of arguments, which is syntacti-
cally legal. The following echo command is legal, too. It’s interpreted as another com-
mand in the list of commands that if will evaluate for an exit code. The else is en-
countered next, but it’s out of place, since the shell recognizes it as a reserved word (a
word that has special meaning to the shell) and not the name of a command, hence the er-
ror message.

Unanticipated Expansions

It’s possible to have errors that only occur intermittently in a script. Sometimes the script
will run fine and other times it will fail because of the results of an expansion. If we re-
turn our missing semicolon and change the value of number to an empty variable, we
can demonstrate:

418

Syntactic Errors

#!/bin/bash

trouble: script to demonstrate common errors

number=

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

Running the script with this change results in the output:

[me@linuxbox ~]$ trouble
/home/me/bin/trouble: line 7: [: =: unary operator expected
 Number is not equal to 1.

We get this rather cryptic error message, followed by the output of the second echo
command. The problem is the expansion of the number variable within the test com-
mand. When the command:

[$number = 1]

undergoes expansion with number being empty, the result is this:

[= 1]

which is invalid and the error is generated. The = operator is a binary operator (it requires
a value on each side), but the first value is missing, so the test command expects a
unary operator (such as -z) instead. Further, since the test failed (because of the error),
the if command receives a non-zero exit code and acts accordingly, and the second
echo command is executed.

This problem can be corrected by adding quotes around the first argument in the test
command:

["$number" = 1]

419

30 – Troubleshooting

Then when expansion occurs, the result will be this:

["" = 1]

which yields the correct number of arguments. In addition to empty strings, quotes should
be used in cases where a value could expand into multi-word strings, as with filenames
containing embedded spaces.

Logical Errors

Unlike syntactic errors, logical errors do not prevent a script from running. The script
will run, but it will not produce the desired result, due to a problem with its logic. There
are countless numbers of possible logical errors, but here are a few of the most common
kinds found in scripts:

1. Incorrect conditional expressions. It’s easy to incorrectly code an if/then/else
and have the wrong logic carried out. Sometimes the logic will be reversed, or it
will be incomplete.

2. “Off by one” errors. When coding loops that employ counters, it is possible to
overlook that the loop may require that the counting start with zero, rather than
one, for the count to conclude at the correct point. These kinds of errors result in
either a loop “going off the end” by counting too far, or else missing the last itera-
tion of the loop by terminating one iteration too soon.

3. Unanticipated situations. Most logic errors result from a program encountering
data or situations that were unforeseen by the programmer. This can also include
unanticipated expansions, such as a filename that contains embedded spaces that
expands into multiple command arguments rather than a single filename.

Defensive Programming

It is important to verify assumptions when programming. This means a careful evaluation
of the exit status of programs and commands that are used by a script. Here is an exam-
ple, based on a true story. An unfortunate system administrator wrote a script to perform a
maintenance task on an important server. The script contained the following two lines of
code:

cd $dir_name
rm *

420

Logical Errors

There is nothing intrinsically wrong with these two lines, as long as the directory named
in the variable, dir_name, exists. But what happens if it does not? In that case, the cd
command fails and the script continues to the next line and deletes the files in the current
working directory. Not the desired outcome at all! The hapless administrator destroyed an
important part of the server because of this design decision.

Let’s look at some ways this design could be improved. First, it might be wise to make
the execution of rm contingent on the success of cd:

cd $dir_name && rm *

This way, if the cd command fails, the rm command is not carried out. This is better, but
still leaves open the possibility that the variable, dir_name, is unset or empty, which
would result in the files in the user’s home directory being deleted. This could also be
avoided by checking to see that dir_name actually contains the name of an existing di-
rectory:

[[-d $dir_name]] && cd $dir_name && rm *

Often, it is best to terminate the script with an error when an situation such as the one
above occurs:

Delete files in directory $dir_name
if [[! -d "$dir_name"]]; then

echo "No such directory: '$dir_name'" >&2
exit 1

fi
if ! cd $dir_name; then

echo "Cannot cd to '$dir_name'" >&2
exit 1

fi
if ! rm *; then

echo "File deletion failed. Check results" >&2
exit 1

fi

Here, we check both the name, to see that it is that of an existing directory, and the suc-
cess of the cd command. If either fails, a descriptive error message is sent to standard er-
ror and the script terminates with an exit status of one to indicate a failure.

421

30 – Troubleshooting

Verifying Input

A general rule of good programming is that if a program accepts input, it must be able to
deal with anything it receives. This usually means that input must be carefully screened,
to ensure that only valid input is accepted for further processing. We saw an example of
this in the previous chapter when we studied the read command. One script contained
the following test to verify a menu selection:

[[$REPLY =~ ^[0-3]$]]

This test is very specific. It will only return a zero exit status if the string returned by the
user is a numeral in the range of zero to three. Nothing else will be accepted. Sometimes
these sorts of tests can be very challenging to write, but the effort is necessary to produce
a high quality script.

Design Is A Function Of Time

When I was a college student studying industrial design, a wise professor stated
that the degree of design on a project was determined by the amount of time given
to the designer. If you were given five minutes to design a device “that kills flies,”
you designed a flyswatter. If you were given five months, you might come up
with a laser-guided “anti-fly system” instead.
The same principle applies to programming. Sometimes a “quick-and-dirty”
script will do if it’s only going to be used once and only used by the programmer.
That kind of script is common and should be developed quickly to make the effort
economical. Such scripts don’t need a lot of comments and defensive checks. On
the other hand, if a script is intended for production use, that is, a script that will
be used over and over for an important task or by multiple users, it needs much
more careful development.

Testing

Testing is an important step in every kind of software development, including scripts.
There is a saying in the open-source world, “release early, release often,” which reflects
this fact. By releasing early and often, software gets more exposure to use and testing.
Experience has shown that bugs are much easier to find, and much less expensive to fix,
if they are found early in the development cycle.

In a previous discussion, we saw how stubs can be used to verify program flow. From the
earliest stages of script development, they are a valuable technique to check the progress

422

Testing

of our work.

Let’s look at the file-deletion problem above and see how this could be coded for easy
testing. Testing the original fragment of code would be dangerous, since its purpose is to
delete files, but we could modify the code to make the test safe:

if [[-d $dir_name]]; then
if cd $dir_name; then

echo rm * # TESTING
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi
exit # TESTING

Since the error conditions already output useful messages, we don't have to add any. The
most important change is placing an echo command just before the rm command to al-
low the command and its expanded argument list to be displayed, rather than the com-
mand actually being executed. This change allows safe execution of the code. At the end
of the code fragment, we place an exit command to conclude the test and prevent any
other part of the script from being carried out. The need for this will vary according to the
design of the script.

We also include some comments that act as “markers” for our test-related changes. These
can be used to help find and remove the changes when testing is complete.

Test Cases

To perform useful testing, it's important to develop and apply good test cases. This is
done by carefully choosing input data or operating conditions that reflect edge and cor-
ner cases. In our code fragment (which is very simple), we want to know how the code
performs under three specific conditions:

1. dir_name contains the name of an existing directory

2. dir_name contains the name of a non-existent directory

3. dir_name is empty

By performing the test with each of these conditions, good test coverage is achieved.

Just as with design, testing is a function of time, as well. Not every script feature needs to

423

30 – Troubleshooting

be extensively tested. It's really a matter of determining what is most important. Since it
could be so potentially destructive if it malfunctioned, our code fragment deserves careful
consideration during both its design and testing.

Debugging

If testing reveals a problem with a script, the next step is debugging. “A problem” usually
means that the script is, in some way, not performing to the programmer's expectations. If
this is the case, we need to carefully determine exactly what the script is actually doing
and why. Finding bugs can sometimes involve a lot of detective work.

A well designed script will try to help. It should be programmed defensively, to detect ab-
normal conditions and provide useful feedback to the user. Sometimes, however, prob-
lems are quite strange and unexpected, and more involved techniques are required.

Finding The Problem Area

In some scripts, particularly long ones, it is sometimes useful to isolate the area of the
script that is related to the problem. This won’t always be the actual error, but isolation
will often provide insights into the actual cause. One technique that can be used to isolate
code is “commenting out” sections of a script. For example, our file deletion fragment
could be modified to determine if the removed section was related to an error:

if [[-d $dir_name]]; then
if cd $dir_name; then

rm *
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else
echo "no such directory: '$dir_name'" >&2
exit 1
fi

By placing comment symbols at the beginning of each line in a logical section of a script,
we prevent that section from being executed. Testing can then be performed again, to see
if the removal of the code has any impact on the behavior of the bug.

Tracing

Bugs are often cases of unexpected logical flow within a script. That is, portions of the
script are either never being executed, or are being executed in the wrong order or at the

424

Debugging

wrong time. To view the actual flow of the program, we use a technique called tracing.

One tracing method involves placing informative messages in a script that display the lo-
cation of execution. We can add messages to our code fragment:

echo "preparing to delete files" >&2
if [[-d $dir_name]]; then

if cd $dir_name; then
echo "deleting files" >&2

rm *
else

echo "cannot cd to '$dir_name'" >&2
exit 1

fi
else

echo "no such directory: '$dir_name'" >&2
exit 1

fi
echo "file deletion complete" >&2

We send the messages to standard error to separate them from normal output. We also do
not indent the lines containing the messages, so it is easier to find when it’s time to re-
move them.

Now when the script is executed, it’s possible to see that the file deletion has been per-
formed:

[me@linuxbox ~]$ deletion-script
preparing to delete files
deleting files
file deletion complete
[me@linuxbox ~]$

bash also provides a method of tracing, implemented by the -x option and the set
command with the -x option. Using our earlier trouble script, we can activate tracing
for the entire script by adding the -x option to the first line:

#!/bin/bash -x

trouble: script to demonstrate common errors

number=1

425

30 – Troubleshooting

if [$number = 1]; then
echo "Number is equal to 1."

else
echo "Number is not equal to 1."

fi

When executed, the results look like this:

[me@linuxbox ~]$ trouble
+ number=1
+ '[' 1 = 1 ']'
+ echo 'Number is equal to 1.'
Number is equal to 1.

With tracing enabled, we see the commands performed with expansions applied. The
leading plus signs indicate the display of the trace to distinguish them from lines of regu-
lar output. The plus sign is the default character for trace output. It is contained in the
PS4 (prompt string 4) shell variable. The contents of this variable can be adjusted to
make the prompt more useful. Here, we modify the contents of the variable to include the
current line number in the script where the trace is performed. Note that single quotes are
required to prevent expansion until the prompt is actually used:

[me@linuxbox ~]$ export PS4='$LINENO + '
[me@linuxbox ~]$ trouble
5 + number=1
7 + '[' 1 = 1 ']'
8 + echo 'Number is equal to 1.'
Number is equal to 1.

To perform a trace on a selected portion of a script, rather than the entire script, we can
use the set command with the -x option:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."

426

Debugging

else
echo "Number is not equal to 1."

fi
set +x # Turn off tracing

We use the set command with the -x option to activate tracing and the +x option to de-
activate tracing. This technique can be used to examine multiple portions of a trouble-
some script.

Examining Values During Execution

It is often useful, along with tracing, to display the content of variables to see the internal
workings of a script while it is being executed. Applying additional echo statements will
usually do the trick:

#!/bin/bash

trouble: script to demonstrate common errors

number=1

echo "number=$number" # DEBUG
set -x # Turn on tracing
if [$number = 1]; then

echo "Number is equal to 1."
else

echo "Number is not equal to 1."
fi
set +x # Turn off tracing

In this trivial example, we simply display the value of the variable number and mark the
added line with a comment to facilitate its later identification and removal. This tech-
nique is particularly useful when watching the behavior of loops and arithmetic within
scripts.

Summing Up

In this chapter, we looked at just a few of the problems that can crop up during script de-
velopment. Of course, there are many more. The techniques described here will enable
finding most common bugs. Debugging is a fine art that can be developed through expe-
rience, both in knowing how to avoid bugs (testing constantly throughout development)
and in finding bugs (effective use of tracing).

427

30 – Troubleshooting

Further Reading

● The Wikipedia has a couple of short articles on syntactic and logical errors:
http://en.wikipedia.org/wiki/Syntax_error
http://en.wikipedia.org/wiki/Logic_error

● There are many online resources for the technical aspects of bash programming:
http://mywiki.wooledge.org/BashPitfalls
http://tldp.org/LDP/abs/html/gotchas.html
http://www.gnu.org/software/bash/manual/html_node/Reserved-Word-Index.html

● Eric Raymond’s The Art of Unix Programming is a great resource for learning the
basic concepts found in well-written Unix programs. Many of these ideas apply to
shell scripts:
http://www.faqs.org/docs/artu/
http://www.faqs.org/docs/artu/ch01s06.html

● For really heavy-duty debugging, there is the Bash Debugger:
http://bashdb.sourceforge.net/

428

http://bashdb.sourceforge.net/
http://www.faqs.org/docs/artu/ch01s06.html
http://www.faqs.org/docs/artu/
http://www.gnu.org/software/bash/manual/html_node/Reserved-Word-Index.html
http://tldp.org/LDP/abs/html/gotchas.html
http://mywiki.wooledge.org/BashPitfalls
http://en.wikipedia.org/wiki/Logic_error
http://en.wikipedia.org/wiki/Syntax_error

31 – Flow Control: Branching With case

31 – Flow Control: Branching With case

In this chapter, we will continue to look at flow control. In Chapter 28, we constructed
some simple menus and built the logic used to act on a user’s selection. To do this, we
used a series of if commands to identify which of the possible choices has been se-
lected. This type of construct appears frequently in programs, so much so that many pro-
gramming languages (including the shell) provide a flow control mechanism for multiple-
choice decisions.

case

The bash multiple-choice compound command is called case. It has the following syn-
tax:

case word in
[pattern [| pattern]...) commands ;;]...

esac

If we look at the read-menu program from Chapter 28, we see the logic used to act on
a user’s selection:

#!/bin/bash

read-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

if [[$REPLY =~ ^[0-3]$]]; then
if [[$REPLY == 0]]; then

429

31 – Flow Control: Branching With case

echo "Program terminated."
exit

fi
if [[$REPLY == 1]]; then

echo "Hostname: $HOSTNAME"
uptime
exit

fi
if [[$REPLY == 2]]; then

df -h
exit

fi
if [[$REPLY == 3]]; then

if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
exit

fi
else

echo "Invalid entry." >&2
exit 1

fi

Using case, we can replace this logic with something simpler:

#!/bin/bash

case-menu: a menu driven system information program

clear
echo "
Please Select:

1. Display System Information
2. Display Disk Space
3. Display Home Space Utilization
0. Quit
"
read -p "Enter selection [0-3] > "

case $REPLY in
0) echo "Program terminated."

exit
;;

430

case

1) echo "Hostname: $HOSTNAME"
uptime
;;

2) df -h
;;

3) if [[$(id -u) -eq 0]]; then
echo "Home Space Utilization (All Users)"
du -sh /home/*

else
echo "Home Space Utilization ($USER)"
du -sh $HOME

fi
;;

*) echo "Invalid entry" >&2
exit 1
;;

esac

The case command looks at the value of word, in our example, the value of the REPLY
variable, and then attempts to match it against one of the specified patterns. When a
match is found, the commands associated with the specified pattern are executed. After a
match is found, no further matches are attempted.

Patterns

The patterns used by case are the same as those used by pathname expansion. Patterns
are terminated with a “)” character. Here are some valid patterns:

Table32- 1: case Pattern Examples

Pattern Description

a) Matches if word equals “a”.

[[:alpha:]]) Matches if word is a single alphabetic character.

???) Matches if word is exactly three characters long.

*.txt) Matches if word ends with the characters “.txt”.

*) Matches any value of word. It is good practice to include this
as the last pattern in a case command, to catch any values of
word that did not match a previous pattern; that is, to catch any
possible invalid values.

Here is an example of patterns at work:

431

case

;;
*) echo "Invalid entry" >&2

exit 1
;;

esac

Here, we modify the case-menu program to use letters instead of digits for menu selec-
tion. Notice how the new patterns allow for entry of both upper- and lowercase letters.

Performing Multiple Actions

In versions of bash prior to 4.0, case allowed only one action to be performed on a
successful match. After a successful match, the command would terminate. Here we see
a script that tests a character:

#!/bin/bash

case4-1: test a character

read -n 1 -p "Type a character > "
echo
case $REPLY in
 [[:upper:]]) echo "'$REPLY' is upper case." ;;
 [[:lower:]]) echo "'$REPLY' is lower case." ;;
 [[:alpha:]]) echo "'$REPLY' is alphabetic." ;;
 [[:digit:]]) echo "'$REPLY' is a digit." ;;
 [[:graph:]]) echo "'$REPLY' is a visible character." ;;
 [[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;
 [[:space:]]) echo "'$REPLY' is a whitespace character." ;;
 [[:xdigit:]]) echo "'$REPLY' is a hexadecimal digit." ;;
esac

Running this script produces this:

[me@linuxbox ~]$ case4-1
Type a character > a
'a' is lower case.

The script works for the most part, but fails if a character matches more than one of the
POSIX characters classes. For example, the character "a" is both lower case and alpha-
betic, as well as a hexadecimal digit. In bash prior to version 4.0 there was no way for
case to match more than one test. Modern versions of bash, add the “;;&” notation to

433

31 – Flow Control: Branching With case

terminate each action, so now we can do this:

#!/bin/bash

case4-2: test a character

read -n 1 -p "Type a character > "
echo
case $REPLY in
 [[:upper:]]) echo "'$REPLY' is upper case." ;;&
 [[:lower:]]) echo "'$REPLY' is lower case." ;;&
 [[:alpha:]]) echo "'$REPLY' is alphabetic." ;;&
 [[:digit:]]) echo "'$REPLY' is a digit." ;;&
 [[:graph:]]) echo "'$REPLY' is a visible character." ;;&
 [[:punct:]]) echo "'$REPLY' is a punctuation symbol." ;;&
 [[:space:]]) echo "'$REPLY' is a whitespace character." ;;&
 [[:xdigit:]]) echo "'$REPLY' is a hexadecimal digit." ;;&
esac

When we run this script, we get this:

[me@linuxbox ~]$ case4-2
Type a character > a
'a' is lower case.
'a' is alphabetic.
'a' is a visible character.
'a' is a hexadecimal digit.

The addition of the ";;&" syntax allows case to continue on to the next test rather than
simply terminating.

Summing Up

The case command is a handy addition to our bag of programming tricks. As we will
see in the next chapter, it’s the perfect tool for handling certain types of problems.

Further Reading

● The Bash Reference Manual section on Conditional Constructs describes the
case command in detail:
http://tiswww.case.edu/php/chet/bash/bashref.html#SEC21

● The Advanced Bash-Scripting Guide provides further examples of case applica-

434

http://tiswww.case.edu/php/chet/bash/bashref.html#SEC21

Further Reading

tions:
http://tldp.org/LDP/abs/html/testbranch.html

435

http://tldp.org/LDP/abs/html/testbranch.html

32 – Positional Parameters

32 – Positional Parameters

One feature that has been missing from our programs is the ability to accept and process
command line options and arguments. In this chapter, we will examine the shell features
that allow our programs to get access to the contents of the command line.

Accessing The Command Line

The shell provides a set of variables called positional parameters that contain the individ-
ual words on the command line. The variables are named 0 through 9. They can be
demonstrated this way:

#!/bin/bash

posit-param: script to view command line parameters

echo "
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

A very simple script that displays the values of the variables $0-$9. When executed
with no command line arguments:

[me@linuxbox ~]$ posit-param

$0 = /home/me/bin/posit-param

436

Accessing The Command Line

$1 =
$2 =
$3 =
$4 =
$5 =
$6 =
$7 =
$8 =
$9 =

Even when no arguments are provided, $0 will always contain the first item appearing on
the command line, which is the pathname of the program being executed. When argu-
ments are provided, we see the results:

[me@linuxbox ~]$ posit-param a b c d

$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

Note: You can actually access more than nine parameters using parameter expan-
sion. To specify a number greater than nine, surround the number in braces. For ex-
ample ${10}, ${55}, ${211}, and so on.

Determining The Number of Arguments

The shell also provides a variable, $#, that yields the number of arguments on the com-
mand line:

#!/bin/bash

posit-param: script to view command line parameters

echo "

437

32 – Positional Parameters

Number of arguments: $#
\$0 = $0
\$1 = $1
\$2 = $2
\$3 = $3
\$4 = $4
\$5 = $5
\$6 = $6
\$7 = $7
\$8 = $8
\$9 = $9
"

The result:

[me@linuxbox ~]$ posit-param a b c d

Number of arguments: 4
$0 = /home/me/bin/posit-param
$1 = a
$2 = b
$3 = c
$4 = d
$5 =
$6 =
$7 =
$8 =
$9 =

shift – Getting Access To Many Arguments

But what happens when we give the program a large number of arguments such as this:

[me@linuxbox ~]$ posit-param *

Number of arguments: 82
$0 = /home/me/bin/posit-param
$1 = addresses.ldif
$2 = bin
$3 = bookmarks.html
$4 = debian-500-i386-netinst.iso
$5 = debian-500-i386-netinst.jigdo
$6 = debian-500-i386-netinst.template
$7 = debian-cd_info.tar.gz

438

Accessing The Command Line

$8 = Desktop
$9 = dirlist-bin.txt

On this example system, the wildcard * expands into 82 arguments. How can we process
that many? The shell provides a method, albeit a clumsy one, to do this. The shift
command causes all the parameters to “move down one” each time it is executed. In fact,
by using shift, it is possible to get by with only one parameter (in addition to $0,
which never changes):

#!/bin/bash

posit-param2: script to display all arguments

count=1

while [[$# -gt 0]]; do
echo "Argument $count = $1"
count=$((count + 1))
shift

done

Each time shift is executed, the value of $2 is moved to $1, the value of $3 is moved
to $2 and so on. The value of $# is also reduced by one.

In the posit-param2 program, we create a loop that evaluates the number of argu-
ments remaining and continues as long as there is at least one. We display the current ar-
gument, increment the variable count with each iteration of the loop to provide a run-
ning count of the number of arguments processed and, finally, execute a shift to load
$1 with the next argument. Here is the program at work:

[me@linuxbox ~]$ posit-param2 a b c d
Argument 1 = a
Argument 2 = b
Argument 3 = c
Argument 4 = d

Simple Applications

Even without shift, it’s possible to write useful applications using positional parame-
ters. By way of example, here is a simple file information program:

439

32 – Positional Parameters

#!/bin/bash

file_info: simple file information program

PROGNAME=$(basename $0)

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1
echo -e "\nFile Status:"
stat $1

else
echo "$PROGNAME: usage: $PROGNAME file" >&2
exit 1

fi

This program displays the file type (determined by the file command) and the file sta-
tus (from the stat command) of a specified file. One interesting feature of this program
is the PROGNAME variable. It is given the value that results from the basename $0
command. The basename command removes the leading portion of a pathname, leav-
ing only the base name of a file. In our example, basename removes the leading portion
of the pathname contained in the $0 parameter, the full pathname of our example pro-
gram. This value is useful when constructing messages such as the usage message at the
end of the program. By coding it this way, the script can be renamed and the message au-
tomatically adjusts to contain the name of the program.

Using Positional Parameters With Shell Functions

Just as positional parameters are used to pass arguments to shell scripts, they can also be
used to pass arguments to shell functions. To demonstrate, we will convert the
file_info script into a shell function:

file_info () {

file_info: function to display file information

if [[-e $1]]; then
echo -e "\nFile Type:"
file $1
echo -e "\nFile Status:"
stat $1

else
echo "$FUNCNAME: usage: $FUNCNAME file" >&2
return 1

440

Accessing The Command Line

fi
}

Now, if a script that incorporates the file_info shell function calls the function with a
filename argument, the argument will be passed to the function.

With this capability, we can write many useful shell functions that can not only be used in
scripts, but also within the .bashrc file.

Notice that the PROGNAME variable was changed to the shell variable FUNCNAME. The
shell automatically updates this variable to keep track of the currently executed shell
function. Note that $0 always contains the full pathname of the first item on the com-
mand line (i.e., the name of the program) and does not contain the name of the shell func-
tion as we might expect.

Handling Positional Parameters En Masse

It is sometimes useful to manage all the positional parameters as a group. For example,
we might want to write a “wrapper” around another program. This means that we create a
script or shell function that simplifies the execution of another program. The wrapper
supplies a list of arcane command line options and then passes a list of arguments to the
lower-level program.

The shell provides two special parameters for this purpose. They both expand into the
complete list of positional parameters, but differ in rather subtle ways. They are:

Table 32-1: The * And @ Special Parameters

Parameter Description

$* Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands into a double
quoted string containing all of the positional parameters, each
separated by the first character of the IFS shell variable (by default
a space character).

$@ Expands into the list of positional parameters, starting with 1.
When surrounded by double quotes, it expands each positional
parameter into a separate word surrounded by double quotes.

Here is a script that shows these special paramaters in action:

441

32 – Positional Parameters

#!/bin/bash

posit-params3 : script to demonstrate $* and $@

print_params () {
echo "\$1 = $1"
echo "\$2 = $2"
echo "\$3 = $3"
echo "\$4 = $4"

}

pass_params () {
echo -e "\n" '$* :'; print_params $*
echo -e "\n" '"$*" :'; print_params "$*"
echo -e "\n" '$@ :'; print_params $@
echo -e "\n" '"$@" :'; print_params "$@"

}

pass_params "word" "words with spaces"

In this rather convoluted program, we create two arguments: “word” and “words with
spaces”, and pass them to the pass_params function. That function, in turn, passes
them on to the print_params function, using each of the four methods available with
the special parameters $! and $@. When executed, the script reveals the differences:

[me@linuxbox ~]$ posit-param3

 $* :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$*" :
$1 = word words with spaces
$2 =
$3 =
$4 =

 $@ :
$1 = word
$2 = words
$3 = with
$4 = spaces

 "$@" :
$1 = word

442

Handling Positional Parameters En Masse

$2 = words with spaces
$3 =
$4 =

With our arguments, both $! and $@ produce a four word result:

word words with spaces

"$*" produces a one word result:

"word words with spaces"

"$@" produces a two word result:

"word" "words with spaces"

which matches our actual intent. The lesson to take from this is that even though the shell
provides four different ways of getting the list of positional parameters, "$@" is by far
the most useful for most situations, because it preserves the integrity of each positional
parameter.

A More Complete Application

After a long hiatus, we are going to resume work on our sys_info_page program.
Our next addition will add several command line options to the program as follows:

● Output file. We will add an option to specify a name for a file to contain the pro-
gram’s output. It will be specified as either -f file or --file file.

● Interactive mode. This option will prompt the user for an output filename and
will determine if the specified file already exists. If it does, the user will be
prompted before the existing file is overwritten. This option will be specified by
either -i or --interactive.

● Help. Either -h or --help may be specified to cause the program to output an
informative usage message.

Here is the code needed to implement the command line processing:

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

process command line options

interactive=

443

32 – Positional Parameters

filename=

while [[-n $1]]; do
case $1 in

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

First, we add a shell function called usage to display a message when the help option is
invoked or an unknown option is attempted.

Next, we begin the processing loop. This loop continues while the positional parameter
$1 is not empty. At the bottom of the loop, we have a shift command to advance the
positional parameters to ensure that the loop will eventually terminate.

Within the loop, we have a case statement that examines the current positional parame-
ter to see if it matches any of the supported choices. If a supported parameter is found, it
is acted upon. If not, the usage message is displayed and the script terminates with an er-
ror.

The -f parameter is handled in an interesting way. When detected, it causes an additional
shift to occur, which advances the positional parameter $1 to the filename argument
supplied to the -f option.

We next add the code to implement the interactive mode:

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break

444

A More Complete Application

;;
Q|q) echo "Program terminated."

exit
;;

*) continue
;;

esac
elif [[-z $filename]]; then

continue
else

break
fi

done
fi

If the interactive variable is not empty, an endless loop is started, which contains
the filename prompt and subsequent existing file-handling code. If the desired output file
already exists, the user is prompted to overwrite, choose another filename, or quit the
program. If the user chooses to overwrite an existing file, a break is executed to termi-
nate the loop. Notice how the case statement only detects if the user chooses to over-
write or quit. Any other choice causes the loop to continue and prompts the user again.

In order to implement the output filename feature, we must first convert the existing
page-writing code into a shell function, for reasons that will become clear in a moment:

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIMESTAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

output html page

if [[-n $filename]]; then

445

32 – Positional Parameters

if touch $filename && [[-f $filename]]; then
write_html_page > $filename

else
echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

write_html_page
fi

The code that handles the logic of the -f option appears at the end of the listing shown
above. In it, we test for the existence of a filename and, if one is found, a test is per-
formed to see if the file is indeed writable. To do this, a touch is performed, followed
by a test to determine if the resulting file is a regular file. These two tests take care of sit -
uations where an invalid pathname is input (touch will fail), and, if the file already ex-
ists, that it’s a regular file.

As we can see, the write_html_page function is called to perform the actual gener-

Summing Up

}

report_disk_space () {
cat <<- _EOF_

<H2>Disk Space Utilization</H2>
<PRE>$(df -h)</PRE>
EOF

return
}

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

usage () {
echo "$PROGNAME: usage: $PROGNAME [-f file | -i]"
return

}

write_html_page () {
cat <<- _EOF_
<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>$TIMESTAMP</P>
$(report_uptime)
$(report_disk_space)
$(report_home_space)

</BODY>
</HTML>
EOF
return

}

process command line options

447

32 – Positional Parameters

interactive=
filename=

while [[-n $1]]; do
case $1 in

-f | --file) shift
filename=$1
;;

-i | --interactive) interactive=1
;;

-h | --help) usage
exit
;;

*) usage >&2
exit 1
;;

esac
shift

done

interactive mode

if [[-n $interactive]]; then
while true; do

read -p "Enter name of output file: " filename
if [[-e $filename]]; then

read -p "'$filename' exists. Overwrite? [y/n/q] > "
case $REPLY in

Y|y) break
;;

Q|q) echo "Program terminated."
exit
;;

*) continue
;;

esac
fi

done
fi

output html page

if [[-n $filename]]; then
if touch $filename && [[-f $filename]]; then

write_html_page > $filename
else

echo "$PROGNAME: Cannot write file '$filename'" >&2
exit 1

fi
else

448

Summing Up

write_html_page
fi

We’re not done yet. There are still more things we can do and improvements we can
make.

Further Reading

● The Bash Hackers Wiki has a good article on positional parameters:
http://wiki.bash-hackers.org/scripting/posparams

● The Bash Reference Manual has an article on the special parameters, including
$* and $@:
http://www.gnu.org/software/bash/manual/bashref.html#Special-Parameters

● In addition to the techniques discussed in this chapter, bash includes a builtin
command called getopts, which can also be used for process command line ar-
guments. It is described in the SHELL BUILTIN COMMANDS section of the
bash man page and at the Bash Hackers Wiki:
http://wiki.bash-hackers.org/howto/getopts_tutorial

449

http://wiki.bash-hackers.org/howto/getopts_tutorial
http://www.gnu.org/software/bash/manual/bashref.html#Special-Parameters
http://wiki.bash-hackers.org/scripting/posparams

33 – Flow Control: Looping With for

33 – Flow Control: Looping With for

In this final chapter on flow control, we will look at another of the shell’s looping con-
structs. The for loop differs from the while and until loops in that it provides a means of
processing sequences during a loop. This turns out to be very useful when programming.
Accordingly, the for loop is a very popular construct in bash scripting.

A for loop is implemented, naturally enough, with the for command. In modern versions
of bash, for is available in two forms.

for: Traditional Shell Form

The original for command’s syntax is:

for variable [in words]; do
commands

done

Where variable is the name of a variable that will increment during the execution of the
loop, words is an optional list of items that will be sequentially assigned to variable, and
commands are the commands that are to be executed on each iteration of the loop.

The for command is useful on the command line. We can easily demonstrate how it
works:

[me@linuxbox ~]$ for i in A B C D; do echo $i; done
A
B
C
D

In this example, for is given a list of four words: “A”, “B”, “C”, and “D”. With a list of
four words, the loop is executed four times. Each time the loop is executed, a word is as-
signed to the variable i. Inside the loop, we have an echo command that displays the
value of i to show the assignment. As with the while and until loops, the done key-
word closes the loop.

450

for: Traditional Shell Form

The really powerful feature of for is the number of interesting ways we can create the
list of words. For example, through brace expansion:

[me@linuxbox ~]$ for i in {A..D}; do echo $i; done
A
B
C
D

or pathname expansion:

[me@linuxbox ~]$ for i in distros*.txt; do echo $i; done
distros-by-date.txt
distros-dates.txt
distros-key-names.txt
distros-key-vernums.txt
distros-names.txt
distros.txt
distros-vernums.txt
distros-versions.txt

or command substitution:

#!/bin/bash

longest-word : find longest string in a file

while [[-n $1]]; do
if [[-r $1]]; then

max_word=
max_len=0
for i in $(strings $1); do

len=$(echo $i | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$i

fi
done
echo "$1: '$max_word' ($max_len characters)"

fi
shift

done

451

33 – Flow Control: Looping With for

In this example, we look for the longest string found within a file. When given one or
more filenames on the command line, this program uses the strings program (which is
included in the GNU binutils package) to generate a list of readable text “words” in each
file. The for loop processes each word in turn and determines if the current word is the
longest found so far. When the loop concludes, the longest word is displayed.

If the optional in words portion of the for command is omitted, for defaults to pro-
cessing the positional parameters. We will modify our longest-word script to use this
method:

#!/bin/bash

longest-word2 : find longest string in a file

for i; do
if [[-r $i]]; then

max_word=
max_len=0
for j in $(strings $i); do

len=$(echo $j | wc -c)
if ((len > max_len)); then

max_len=$len
max_word=$j

fi
done
echo "$i: '$max_word' ($max_len characters)"

fi
done

As we can see, we have changed the outermost loop to use for in place of while. By
omitting the list of words in the for command, the positional parameters are used in-
stead. Inside the loop, previous instances of the variable i have been changed to the vari-
able j. The use of shift has also been eliminated.

Why i?

You may have noticed that the variable i was chosen for each of the for loop
examples above. Why? No specific reason actually, besides tradition. The variable
used with for can be any valid variable, but i is the most common, followed by
j and k.

452

for: Traditional Shell Form

The basis of this tradition comes from the Fortran programming language. In For-
tran, undeclared variables starting with the letters I, J, K, L, and M are automati-
cally typed as integers, while variables beginning with any other letter are typed
as real (numbers with decimal fractions). This behavior led programmers to use
the variables I, J, and K for loop variables, since it was less work to use them
when a temporary variable (as loop variables often are) was needed.
It also led to the following Fortran-based witticism:
“GOD is real, unless declared integer.”

for: C Language Form

Recent versions of bash have added a second form of for command syntax, one that
resembles the form found in the C programming language. Many other languages support
this form, as well:

for ((expression1; expression2; expression3)); do
commands

done

where expression1, expression2, and expression3 are arithmetic expressions and com-
mands are the commands to be performed during each iteration of the loop.

In terms of behavior, this form is equivalent to the following construct:

((expression1))
while ((expression2)); do

commands
((expression3))

done

expression1 is used to initialize conditions for the loop, expression2 is used to determine
when the loop is finished, and expression3 is carried out at the end of each iteration of the
loop.

Here is a typical application:

#!/bin/bash

simple_counter : demo of C style for command

for ((i=0; i<5; i=i+1)); do
echo $i

done

453

33 – Flow Control: Looping With for

When executed, it produces the following output:

[me@linuxbox ~]$ simple_counter
0
1
2
3
4

In this example, expression1 initializes the variable i with the value of zero, expression2
allows the loop to continue as long as the value of i remains less than 5, and expression3
increments the value of i by one each time the loop repeats.

The C language form of for is useful anytime a numeric sequence is needed. We will see
several applications for this in the next two chapters.

Summing Up

With our knowledge of the for command, we will now apply the final improvements to
our sys_info_page script. Currently, the report_home_space function looks
like this:

report_home_space () {
if [[$(id -u) -eq 0]]; then

cat <<- _EOF_
<H2>Home Space Utilization (All Users)</H2>
<PRE>$(du -sh /home/*)</PRE>
EOF

else
cat <<- _EOF_

<H2>Home Space Utilization ($USER)</H2>
<PRE>$(du -sh $HOME)</PRE>
EOF

fi
return

}

Next, we will rewrite it to provide more detail for each user’s home directory, and include
the total number of files and subdirectories in each:

report_home_space () {

454

Summing Up

local format="%8s%10s%10s\n"
local i dir_list total_files total_dirs total_size user_name

if [[$(id -u) -eq 0]]; then
dir_list=/home/*
user_name="All Users"

else
dir_list=$HOME
user_name=$USER

fi

echo "<H2>Home Space Utilization ($user_name)</H2>"

for i in $dir_list; do

total_files=$(find $i -type f | wc -l)
total_dirs=$(find $i -type d | wc -l)
total_size=$(du -sh $i | cut -f 1)

echo "<H3>$i</H3>"
echo "<PRE>"
printf "$format" "Dirs" "Files" "Size"
printf "$format" "----" "-----" "----"
printf "$format" $total_dirs $total_files $total_size
echo "</PRE>"

done
return

}

This rewrite applies much of what we have learned so far. We still test for the superuser,
but instead of performing the complete set of actions as part of the if, we set some vari-
ables used later in a for loop. We have added several local variables to the function and
made use of printf to format some of the output.

Further Reading

● The Advanced Bash-Scripting Guide has a chapter on loops, with a variety of ex-
amples using for:
http://tldp.org/LDP/abs/html/loops1.html

● The Bash Reference Manual describes the looping compound commands, includ-
ing for:
http://www.gnu.org/software/bash/manual/bashref.html#Looping-Constructs

455

http://www.gnu.org/software/bash/manual/bashref.html#Looping-Constructs
http://tldp.org/LDP/abs/html/loops1.html

34 – Strings And Numbers

34 – Strings And Numbers

Computer programs are all about working with data. In past chapters, we have focused on
processing data at the file level. However, many programming problems need to be
solved using smaller units of data such as strings and numbers.

In this chapter, we will look at several shell features that are used to manipulate strings
and numbers. The shell provides a variety of parameter expansions that perform string
operations. In addition to arithmetic expansion (which we touched upon in Chapter 7),
there is a common command line program called bc, which performs higher level math.

Parameter Expansion

Though parameter expansion came up in Chapter 7, we did not cover it in detail because
most parameter expansions are used in scripts rather than on the command line. We have
already worked with some forms of parameter expansion; for example, shell variables.
The shell provides many more.

Basic Parameters

The simplest form of parameter expansion is reflected in the ordinary use of variables.
For example:

$a

when expanded, becomes whatever the variable a contains. Simple parameters may also
be surrounded by braces:

${a}

This has no effect on the expansion, but is required if the variable is adjacent to other
text, which may confuse the shell. In this example, we attempt to create a filename by ap-
pending the string “_file” to the contents of the variable a.

[me@linuxbox ~]$ a="foo"
[me@linuxbox ~]$ echo "$a_file"

456

Parameter Expansion

If we perform this sequence, the result will be nothing, because the shell will try to ex-
pand a variable named a_file rather than a. This problem can be solved by adding
braces:

[me@linuxbox ~]$ echo "${a}_file"
foo_file

We have also seen that positional parameters greater than 9 can be accessed by surround-
ing the number in braces. For example, to access the eleventh positional parameter, we
can do this:

${11}

Expansions To Manage Empty Variables

Several parameter expansions deal with nonexistent and empty variables. These expan-
sions are handy for handling missing positional parameters and assigning default values
to parameters.

${parameter:-word}

If parameter is unset (i.e., does not exist) or is empty, this expansion results in the value
of word. If parameter is not empty, the expansion results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
substitute value if unset
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:-"substitute value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

${parameter:=word}

If parameter is unset or empty, this expansion results in the value of word. In addition,
the value of word is assigned to parameter. If parameter is not empty, the expansion re-
sults in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:="default value if unset"}

457

34 – Strings And Numbers

default value if unset
[me@linuxbox ~]$ echo $foo
default value if unset
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:="default value if unset"}
bar
[me@linuxbox ~]$ echo $foo
bar

Note: Positional and other special parameters cannot be assigned this way.

${parameter:?word}

If parameter is unset or empty, this expansion causes the script to exit with an error, and
the contents of word are sent to standard error. If parameter is not empty, the expansion
results in the value of parameter.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bash: foo: parameter is empty
[me@linuxbox ~]$ echo $?
1
[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:?"parameter is empty"}
bar
[me@linuxbox ~]$ echo $?
0

${parameter:+word}

If parameter is unset or empty, the expansion results in nothing. If parameter is not
empty, the value of word is substituted for parameter; however, the value of parameter is
not changed.

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}

[me@linuxbox ~]$ foo=bar
[me@linuxbox ~]$ echo ${foo:+"substitute value if set"}
substitute value if set

458

Parameter Expansion

Expansions That Return Variable Names

The shell has the ability to return the names of variables. This is used in some rather ex-
otic situations.

${!prefix*}
${!prefix@}

This expansion returns the names of existing variables with names beginning with prefix.
According to the bash documentation, both forms of the expansion perform identically.
Here, we list all the variables in the environment with names that begin with BASH:

[me@linuxbox ~]$ echo ${!BASH*}
BASH BASH_ARGC BASH_ARGV BASH_COMMAND BASH_COMPLETION
BASH_COMPLETION_DIR BASH_LINENO BASH_SOURCE BASH_SUBSHELL
BASH_VERSINFO BASH_VERSION

String Operations

There is a large set of expansions that can be used to operate on strings. Many of these
expansions are particularly well suited for operations on pathnames.

${#parameter}

expands into the length of the string contained by parameter. Normally, parameter is a
string; however, if parameter is either @ or *, then the expansion results in the number of
positional parameters.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo "'$foo' is ${#foo} characters long."
'This string is long.' is 20 characters long.

${parameter:offset}
${parameter:offset:length}

These expansions are used to extract a portion of the string contained in parameter. The
extraction begins at offset characters from the beginning of the string and continues until
the end of the string, unless the length is specified.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo:5}
string is long.

459

34 – Strings And Numbers

[me@linuxbox ~]$ echo ${foo:5:6}
string

If the value of offset is negative, it is taken to mean it starts from the end of the string
rather than the beginning. Note that negative values must be preceded by a space to pre-
vent confusion with the ${parameter:-word} expansion. length, if present, must not
be less than zero.

If parameter is @, the result of the expansion is length positional parameters, starting at
offset.

[me@linuxbox ~]$ foo="This string is long."
[me@linuxbox ~]$ echo ${foo: -5}
long.
[me@linuxbox ~]$ echo ${foo: -5:2}
lo

${parameter#pattern}
${parameter##pattern}

These expansions remove a leading portion of the string contained in parameter defined
by pattern. pattern is a wildcard pattern like those used in pathname expansion. The dif-
ference in the two forms is that the # form removes the shortest match, while the ## form
removes the longest match.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo#*.}
txt.zip
[me@linuxbox ~]$ echo ${foo##*.}
zip

${parameter%pattern}
${parameter%%pattern}

These expansions are the same as the # and ## expansions above, except they remove
text from the end of the string contained in parameter rather than from the beginning.

[me@linuxbox ~]$ foo=file.txt.zip
[me@linuxbox ~]$ echo ${foo%.*}
file.txt
[me@linuxbox ~]$ echo ${foo%%.*}

460

Parameter Expansion

file

${parameter/pattern/string}
${parameter//pattern/string}
${parameter/#pattern/string}
${parameter/%pattern/string}

This expansion performs a search-and-replace upon the contents of parameter. If text is
found matching wildcard pattern, it is replaced with the contents of string. In the normal
form, only the first occurrence of pattern is replaced. In the // form, all occurrences are
replaced. The /# form requires that the match occur at the beginning of the string, and
the /% form requires the match to occur at the end of the string. /string may be omitted,
which causes the text matched by pattern to be deleted.

[me@linuxbox ~]$ foo=JPG.JPG
[me@linuxbox ~]$ echo ${foo/JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo//JPG/jpg}
jpg.jpg
[me@linuxbox ~]$ echo ${foo/#JPG/jpg}
jpg.JPG
[me@linuxbox ~]$ echo ${foo/%JPG/jpg}
JPG.jpg

Parameter expansion is a good thing to know. The string manipulation expansions can be
used as substitutes for other common commands such as sed and cut. Expansions im-
prove the efficiency of scripts by eliminating the use of external programs. As an exam-
ple, we will modify the longest-word program discussed in the previous chapter to
use the parameter expansion ${#j} in place of the command substitution $(echo $j
| wc -c) and its resulting subshell, like so:

#!/bin/bash

longest-word3 : find longest string in a file

for i; do
if [[-r $i]]; then

max_word=
max_len=
for j in $(strings $i); do

len=${#j}
if ((len > max_len)); then

461

Parameter Expansion

verting all of the characters in the user's input to either lower or uppercase and ensure that
the database entries are normalized the same way.

The declare command can be used to normalize strings to either upper or lowercase.
Using declare, we can force a variable to always contain the desired format no matter
what is assigned to it:

#!/bin/bash

ul-declare: demonstrate case conversion via declare

declare -u upper
declare -l lower

if [[$1]]; then
 upper="$1"
 lower="$1"
 echo $upper
 echo $lower
fi

In the above script, we use declare to create two variables, upper and lower. We
assign the value of the first command line argument (positional parameter 1) to each of
the variables and then display them on the screen:

[me@linuxbox ~]$ ul-declare aBc
ABC
abc

As we can see, the command line argument ("aBc") has been normalized.

There are four parameter expansions that perform upper/lowercase conversion:

Table 34-1: Case Conversion Parameter Expansions

Format Result

${parameter,,} Expand the value of parameter into all lowercase.

${parameter,} Expand the value of parameter changing only the first
character to lowercase.

${parameter^^} Expand the value of parameter into all uppercase letters.

${parameter^} Expand the value of parameter changing only the first

463

34 – Strings And Numbers

character to uppercase (capitalization).

Here is a script that demonstrates these expansions:

#!/bin/bash

ul-param - demonstrate case conversion via parameter expansion

if [[$1]]; then
 echo ${1,,}
 echo ${1,}
 echo ${1^^}
 echo ${1^}
fi

Here is the script in action:

[me@linuxbox ~]$ ul-param aBc
abc
aBc
ABC
ABc

Again, we process the first command line argument and output the four variations sup-
ported by the parameter expansions. While this script uses the first positional parameter,
parameter my be any string, variable, or string expression.

Arithmetic Evaluation And Expansion

We looked at arithmetic expansion in Chapter 7. It is used to perform various arithmetic
operations on integers. Its basic form is:

$((expression))

where expression is a valid arithmetic expression.

This is related to the compound command (()) used for arithmetic evaluation (truth
tests) we encountered in Chapter 27.

In previous chapters, we saw some of the common types of expressions and operators.
Here, we will look at a more complete list.

464

Arithmetic Evaluation And Expansion

Number Bases

Back in Chapter 9, we got a look at octal (base 8) and hexadecimal (base 16) numbers. In
arithmetic expressions, the shell supports integer constants in any base.

Table 34-2: Specifying Different Number Bases

Notation Description

number By default, numbers without any notation are treated as decimal
(base 10) integers.

0number In arithmetic expressions, numbers with a leading zero are
considered octal.

0xnumber Hexadecimal notation

base#number number is in base

Some examples:

[me@linuxbox ~]$ echo $((0xff))
255
[me@linuxbox ~]$ echo $((2#11111111))
255

In the examples above, we print the value of the hexadecimal number ff (the largest
two-digit number) and the largest eight-digit binary (base 2) number.

Unary Operators

There are two unary operators, the + and -, which are used to indicate if a number is pos-
itive or negative, respectively. For example, -5.

Simple Arithmetic

The ordinary arithmetic operators are listed in the table below:

Table 34-3: Arithmetic Operators

Operator Description

+ Addition

- Subtraction

465

34 – Strings And Numbers

* Multiplication

/ Integer division

** Exponentiation

% Modulo (remainder)

Most of these are self-explanatory, but integer division and modulo require further dis-
cussion.

Since the shell’s arithmetic only operates on integers, the results of division are always
whole numbers:

[me@linuxbox ~]$ echo $((5 / 2))
2

This makes the determination of a remainder in a division operation more important:

[me@linuxbox ~]$ echo $((5 % 2))
1

By using the division and modulo operators, we can determine that 5 divided by 2 results
in 2, with a remainder of 1.

Calculating the remainder is useful in loops. It allows an operation to be performed at
specified intervals during the loop's execution. In the example below, we display a line of
numbers, highlighting each multiple of 5:

#!/bin/bash

modulo : demonstrate the modulo operator

for ((i = 0; i <= 20; i = i + 1)); do
remainder=$((i % 5))
if ((remainder == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

466

Arithmetic Evaluation And Expansion

When executed, the results look like this:

[me@linuxbox ~]$ modulo
<0> 1 2 3 4 <5> 6 7 8 9 <10> 11 12 13 14 <15> 16 17 18 19 <20>

Assignment

Although its uses may not be immediately apparent, arithmetic expressions may perform
assignment. We have performed assignment many times, though in a different context.
Each time we give a variable a value, we are performing assignment. We can also do it
within arithmetic expressions:

[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo $foo

[me@linuxbox ~]$ if ((foo = 5));then echo "It is true."; fi
It is true.
[me@linuxbox ~]$ echo $foo
5

In the example above, we first assign an empty value to the variable foo and verify that
it is indeed empty. Next, we perform an if with the compound command ((foo = 5
)). This process does two interesting things: 1) it assigns the value of 5 to the variable
foo, and 2) it evaluates to true because foo was assigned a nonzero value.

Note: It is important to remember the exact meaning of the = in the expression
above. A single = performs assignment. foo = 5 says “make foo equal to 5,”
while == evaluates equivalence. foo == 5 says “does foo equal 5?” This can
be very confusing because the test command accepts a single = for string equiva-
lence. This is yet another reason to use the more modern [[]] and (()) com-
pound commands in place of test.

In addition to the =, the shell also provides notations that perform some very useful as-
signments:

Table 34-4: Assignment Operators

Notation Description

467

34 – Strings And Numbers

parameter = value Simple assignment. Assigns value to parameter.

parameter += value Addition. Equivalent to parameter = parameter +
value.

parameter -= value Subtraction. Equivalent to parameter = parameter –
value.

parameter *= value Multiplication. Equivalent to parameter = parameter
* value.

parameter /= value Integer division. Equivalent to parameter =
parameter / value.

parameter %= value Modulo. Equivalent to parameter = parameter %
value.

parameter++ Variable post-increment. Equivalent to parameter =
parameter + 1 (however, see discussion below).

parameter−− Variable post-decrement. Equivalent to parameter =
parameter − 1.

++parameter Variable pre-increment. Equivalent to parameter =
parameter + 1.

--parameter Variable pre-decrement. Equivalent to parameter =
parameter − 1.

These assignment operators provide a convenient shorthand for many common arithmetic
tasks. Of special interest are the increment (++) and decrement (−−) operators, which in-
crease or decrease the value of their parameters by one. This style of notation is taken
from the C programming language and has been incorporated by several other program-
ming languages, including bash.

The operators may appear either at the front of a parameter or at the end. While they both
either increment or decrement the parameter by one, the two placements have a subtle
difference. If placed at the front of the parameter, the parameter is incremented (or decre-
mented) before the parameter is returned. If placed after, the operation is performed after
the parameter is returned. This is rather strange, but it is the intended behavior. Here is a
demonstration:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((foo++))
1
[me@linuxbox ~]$ echo $foo

468

Arithmetic Evaluation And Expansion

2

If we assign the value of one to the variable foo and then increment it with the ++ opera-
tor placed after the parameter name, foo is returned with the value of one. However, if
we look at the value of the variable a second time, we see the incremented value. If we
place the ++ operator in front of the parameter, we get the more expected behavior:

[me@linuxbox ~]$ foo=1
[me@linuxbox ~]$ echo $((++foo))
2
[me@linuxbox ~]$ echo $foo
2

For most shell applications, prefixing the operator will be the most useful.

The ++ and -- operators are often used in conjunction with loops. We will make some im-
provements to our modulo script to tighten it up a bit:

#!/bin/bash

modulo2 : demonstrate the modulo operator

for ((i = 0; i <= 20; ++i)); do
if (((i % 5) == 0)); then

printf "<%d> " $i
else

printf "%d " $i
fi

done
printf "\n"

Bit Operations

One class of operators manipulates numbers in an unusual way. These operators work at
the bit level. They are used for certain kinds of low level tasks, often involving setting or
reading bit-flags.

Table 34-5: Bit Operators

Operator Description

~ Bitwise negation. Negate all the bits in a number.

469

34 – Strings And Numbers

<< Left bitwise shift. Shift all the bits in a number to the left.

>> Right bitwise shift. Shift all the bits in a number to the right.

& Bitwise AND. Perform an AND operation on all the bits in two
numbers.

| Bitwise OR. Perform an OR operation on all the bits in two
numbers.

^ Bitwise XOR. Perform an exclusive OR operation on all the
bits in two numbers.

Note that there are also corresponding assignment operators (for example, <<=) for all
but bitwise negation.

Here we will demonstrate producing a list of powers of 2, using the left bitwise shift op-
erator:

[me@linuxbox ~]$ for ((i=0;i<8;++i)); do echo $((1<<i)); done
1
2
4
8
16
32
64
128

Logic

As we discovered in Chapter 27, the (()) compound command supports a variety of
comparison operators. There are a few more that can be used to evaluate logic. Here is
the complete list:

Table 34-6: Comparison Operators

Operator Description

<= Less than or equal to

>= Greater than or equal to

< Less than

> Greater than

470

Arithmetic Evaluation And Expansion

== Equal to

!= Not equal to

&& Logical AND

|| Logical OR

expr1?expr2:expr3 Comparison (ternary) operator. If expression expr1
evaluates to be non-zero (arithmetic true) then expr2,
else expr3.

When used for logical operations, expressions follow the rules of arithmetic logic; that is,
expressions that evaluate as zero are considered false, while non-zero expressions are
considered true. The (()) compound command maps the results into the shell’s normal
exit codes:

[me@linuxbox ~]$ if ((1)); then echo "true"; else echo "false"; fi
true
[me@linuxbox ~]$ if ((0)); then echo "true"; else echo "false"; fi
false

The strangest of the logical operators is the ternary operator. This operator (which is
modeled after the one in the C programming language) performs a standalone logical test.
It can be used as a kind of if/then/else statement. It acts on three arithmetic expressions
(strings won’t work), and if the first expression is true (or non-zero) the second expres-
sion is performed. Otherwise, the third expression is performed. We can try this on the
command line:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
1
[me@linuxbox ~]$ ((a<1?++a:--a))
[me@linuxbox ~]$ echo $a
0

Here we see a ternary operator in action. This example implements a toggle. Each time
the operator is performed, the value of the variable a switches from zero to one or vice
versa.

Please note that performing assignment within the expressions is not straightforward.

471

34 – Strings And Numbers

When attempted, bash will declare an error:

[me@linuxbox ~]$ a=0
[me@linuxbox ~]$ ((a<1?a+=1:a-=1))
bash: ((: a<1?a+=1:a-=1: attempted assignment to non-variable (error
token is "-=1")

This problem can be mitigated by surrounding the assignment expression with parenthe-
ses:

[me@linuxbox ~]$ ((a<1?(a+=1):(a-=1)))

Next, we see a more complete example of using arithmetic operators in a script that pro-
duces a simple table of numbers:

#!/bin/bash

arith-loop: script to demonstrate arithmetic operators

finished=0
a=0
printf "a\ta**2\ta**3\n"
printf "=\t====\t====\n"

until ((finished)); do
b=$((a**2))
c=$((a**3))
printf "%d\t%d\t%d\n" $a $b $c
((a<10?++a:(finished=1)))

done

In this script, we implement an until loop based on the value of the finished variable.
Initially, the variable is set to zero (arithmetic false) and we continue the loop until it be-
comes non-zero. Within the loop, we calculate the square and cube of the counter variable
a. At the end of the loop, the value of the counter variable is evaluated. If it is less than
10 (the maximum number of iterations), it is incremented by one, else the variable fin-
ished is given the value of one, making finished arithmetically true, thereby termi-
nating the loop. Running the script gives this result:

472

Arithmetic Evaluation And Expansion

[me@linuxbox ~]$ arith-loop
a a**2 a**3
= ==== ====
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

bc – An Arbitrary Precision Calculator Language

We have seen how the shell can handle all types of integer arithmetic, but what if we
need to perform higher math or even just use floating point numbers? The answer is, we
can’t. At least not directly with the shell. To do this, we need to use an external program.
There are several approaches we can take. Embedding Perl or AWK programs is one pos-
sible solution, but unfortunately, outside the scope of this book.

Another approach is to use a specialized calculator program. One such program found on
most Linux systems is called bc.

The bc program reads a file written in its own C-like language and executes it. A bc
script may be a separate file or it may be read from standard input. The bc language sup-
ports quite a few features including variables, loops, and programmer-defined functions.
We won’t cover bc entirely here, just enough to get a taste. bc is well documented by its
man page.

Let’s start with a simple example. We’ll write a bc script to add 2 plus 2:

/* A very simple bc script */

2 + 2

The first line of the script is a comment. bc uses the same syntax for comments as the C
programming language. Comments, which may span multiple lines, begin with /* and
end with */.

473

34 – Strings And Numbers

Using bc

If we save the bc script above as foo.bc, we can run it this way:

[me@linuxbox ~]$ bc foo.bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software
Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
4

If we look carefully, we can see the result at the very bottom, after the copyright message.
This message can be suppressed with the -q (quiet) option.

bc can also be used interactively:

[me@linuxbox ~]$ bc -q
2 + 2
4
quit

When using bc interactively, we simply type the calculations we wish to perform, and
the results are immediately displayed. The bc command quit ends the interactive ses-
sion.

It is also possible to pass a script to bc via standard input:

[me@linuxbox ~]$ bc < foo.bc
4

The ability to take standard input means that we can use here documents, here strings,
and pipes to pass scripts. This is a here string example:

[me@linuxbox ~]$ bc <<< "2+2"
4

474

bc – An Arbitrary Precision Calculator Language

An Example Script

As a real-world example, we will construct a script that performs a common calculation,
monthly loan payments. In the script below, we use a here document to pass a script to
bc:

#!/bin/bash

loan-calc : script to calculate monthly loan payments

PROGNAME=$(basename $0)

usage () {
cat <<- EOF
Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

Where:

PRINCIPAL is the amount of the loan.
INTEREST is the APR as a number (7% = 0.07).
MONTHS is the length of the loan's term.

EOF
}

if (($# != 3)); then
usage
exit 1

fi

principal=$1
interest=$2
months=$3

bc <<- EOF
scale = 10
i = $interest / 12
p = $principal
n = $months
a = p * ((i * ((1 + i) ^ n)) / (((1 + i) ^ n) - 1))
print a, "\n"

EOF

When executed, the results look like this:

[me@linuxbox ~]$ loan-calc 135000 0.0775 180

475

34 – Strings And Numbers

1270.7222490000

This example calculates the monthly payment for a $135,000 loan at 7.75% APR for 180
months (15 years). Notice the precision of the answer. This is determined by the value
given to the special scale variable in the bc script. A full description of the bc script-
ing language is provided by the bc man page. While its mathematical notation is slightly
different from that of the shell (bc more closely resembles C), most of it will be quite fa-
miliar, based on what we have learned so far.

Summing Up

In this chapter, we have learned about many of the little things that can be used to get the
“real work” done in scripts. As our experience with scripting grows, the ability to effec-
tively manipulate strings and numbers will prove extremely valuable. Our loan-calc
script demonstrates that even simple scripts can be created to do some really useful
things.

Extra Credit

While the basic functionality of the loan-calc script is in place, the script is far from
complete. For extra credit, try improving the loan-calc script with the following fea-
tures:

● Full verification of the command line arguments

● A command line option to implement an “interactive” mode that will prompt the
user to input the principal, interest rate, and term of the loan.

● A better format for the output.

Further Reading

● The Bash Hackers Wiki has a good discussion of parameter expansion:
http://wiki.bash-hackers.org/syntax/pe

● The Bash Reference Manual covers this, too:
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expan-
sion

● The Wikipedia has a good article describing bit operations:
http://en.wikipedia.org/wiki/Bit_operation

● and an article on ternary operations:
http://en.wikipedia.org/wiki/Ternary_operation

476

http://en.wikipedia.org/wiki/Ternary_operation
http://en.wikipedia.org/wiki/Bit_operation
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expansion
http://www.gnu.org/software/bash/manual/bashref.html#Shell-Parameter-Expansion
http://wiki.bash-hackers.org/syntax/pe

Further Reading

● as well as a description of the formula for calculating loan payments used in our
loan-calc script:
http://en.wikipedia.org/wiki/Amortization_calculator

477

http://en.wikipedia.org/wiki/Amortization_calculator

35 – Arrays

35 – Arrays

In the last chapter, we looked at how the shell can manipulate strings and numbers. The
data types we have looked at so far are known in computer science circles as scalar vari-
ables; that is, variables that contain a single value.

In this chapter, we will look at another kind of data structure called an array, which holds
multiple values. Arrays are a feature of virtually every programming language. The shell
supports them, too, though in a rather limited fashion. Even so, they can be very useful
for solving programming problems.

What Are Arrays?

Arrays are variables that hold more than one value at a time. Arrays are organized like a
table. Let’s consider a spreadsheet as an example. A spreadsheet acts like a two-dimen-
sional array. It has both rows and columns, and an individual cell in the spreadsheet can
be located according to its row and column address. An array behaves the same way. An
array has cells, which are called elements, and each element contains data. An individual
array element is accessed using an address called an index or subscript.

Most programming languages support multidimensional arrays. A spreadsheet is an ex-
ample of a multidimensional array with two dimensions, width and height. Many lan-
guages support arrays with an arbitrary number of dimensions, though two- and three-di-
mensional arrays are probably the most commonly used.

Arrays in bash are limited to a single dimension. We can think of them as a spreadsheet
with a single column. Even with this limitation, there are many applications for them. Ar-
ray support first appeared in bash version 2. The original Unix shell program, sh, did
not support arrays at all.

Creating An Array

Array variables are named just like other bash variables, and are created automatically
when they are accessed. Here is an example:

478

Creating An Array

[me@linuxbox ~]$ a[1]=foo
[me@linuxbox ~]$ echo ${a[1]}
foo

Here we see an example of both the assignment and access of an array element. With the
first command, element 1 of array a is assigned the value “foo”. The second command
displays the stored value of element 1. The use of braces in the second command is re-
quired to prevent the shell from attempting pathname expansion on the name of the array
element.

An array can also be created with the declare command:

[me@linuxbox ~]$ declare -a a

Using the -a option, this example of declare creates the array a.

Assigning Values To An Array

Values may be assigned in one of two ways. Single values may be assigned using the fol-
lowing syntax:

name[subscript]=value

where name is the name of the array and subscript is an integer (or arithmetic expression)
greater than or equal to zero. Note that the first element of an array is subscript zero, not
one. value is a string or integer assigned to the array element.

Multiple values may be assigned using the following syntax:

name=(value1 value2 ...)

where name is the name of the array and value... are values assigned sequentially to ele-
ments of the array, starting with element zero. For example, if we wanted to assign abbre-
viated days of the week to the array days, we could do this:

[me@linuxbox ~]$ days=(Sun Mon Tue Wed Thu Fri Sat)

It is also possible to assign values to a specific element by specifying a subscript for each
value:

[me@linuxbox ~]$ days=([0]=Sun [1]=Mon [2]=Tue [3]=Wed [4]=Thu

479

35 – Arrays

[5]=Fri [6]=Sat)

Accessing Array Elements

So what are arrays good for? Just as many data-management tasks can be performed with
a spreadsheet program, many programming tasks can be performed with arrays.

Let’s consider a simple data-gathering and presentation example. We will construct a
script that examines the modification times of the files in a specified directory. From this
data, our script will output a table showing at what hour of the day the files were last
modified. Such a script could be used to determine when a system is most active. This
script, called hours, produces this result:

[me@linuxbox ~]$ hours .
Hour Files Hour Files
---- ----- ---- -----
00 0 12 11
01 1 13 7
02 0 14 1
03 0 15 7
04 1 16 6
05 1 17 5
06 6 18 4
07 3 19 4
08 1 20 1
09 14 21 0
10 2 22 0
11 5 23 0

Total files = 80

We execute the hours program, specifying the current directory as the target. It pro-
duces a table showing, for each hour of the day (0-23), how many files were last modi-
fied. The code to produce this is as follows:

#!/bin/bash

hours : script to count files by modification time

usage () {
echo "usage: $(basename $0) directory" >&2

}

480

Accessing Array Elements

Check that argument is a directory
if [[! -d $1]]; then

usage
exit 1

fi

Initialize array
for i in {0..23}; do hours[i]=0; done

Collect data
for i in $(stat -c %y "$1"/* | cut -c 12-13); do

j=${i/#0}
((++hours[j]))
((++count))

done

Display data
echo -e "Hour\tFiles\tHour\tFiles"
echo -e "----\t-----\t----\t-----"
for i in {0..11}; do

j=$((i + 12))
printf "%02d\t%d\t%02d\t%d\n" $i ${hours[i]} $j ${hours[j]}

done
printf "\nTotal files = %d\n" $count

The script consists of one function (usage) and a main body with four sections. In the
first section, we check that there is a command line argument and that it is a directory. If
it is not, we display the usage message and exit.

The second section initializes the array hours. It does this by assigning each element a
value of zero. There is no special requirement to prepare arrays prior to use, but our script
needs to ensure that no element is empty. Note the interesting way the loop is con-
structed. By employing brace expansion ({0..23}), we are able to easily generate a se-
quence of words for the for command.

The next section gathers the data by running the stat program on each file in the direc-
tory. We use cut to extract the two-digit hour from the result. Inside the loop, we need to
remove leading zeros from the hour field, since the shell will try (and ultimately fail) to
interpret values “00” through “09” as octal numbers (see Table 34-1). Next, we increment
the value of the array element corresponding with the hour of the day. Finally, we incre-
ment a counter (count) to track the total number of files in the directory.

The last section of the script displays the contents of the array. We first output a couple of
header lines and then enter a loop that produces two columns of output. Lastly, we output
the final tally of files.

481

35 – Arrays

Array Operations

There are many common array operations. Such things as deleting arrays, determining
their size, sorting, etc. have many applications in scripting.

Outputting The Entire Contents Of An Array

The subscripts * and @ can be used to access every element in an array. As with posi-
tional parameters, the @ notation is the more useful of the two. Here is a demonstration:

[me@linuxbox ~]$ animals=("a dog" "a cat" "a fish")
[me@linuxbox ~]$ for i in ${animals[*]}; do echo $i; done
a
dog
a
cat
a
fish
[me@linuxbox ~]$ for i in ${animals[@]}; do echo $i; done
a
dog
a
cat
a
fish
[me@linuxbox ~]$ for i in "${animals[*]}"; do echo $i; done
a dog a cat a fish
[me@linuxbox ~]$ for i in "${animals[@]}"; do echo $i; done
a dog
a cat
a fish

We create the array animals and assign it three two-word strings. We then execute four
loops to see the affect of word-splitting on the array contents. The behavior of notations $
{animals[*]} and ${animals[@]} is identical until they are quoted. The * nota-
tion results in a single word containing the array’s contents, while the @ notation results
in three words, which matches the arrays “real” contents.

Determining The Number Of Array Elements

Using parameter expansion, we can determine the number of elements in an array in
much the same way as finding the length of a string. Here is an example:

482

Array Operations

[me@linuxbox ~]$ a[100]=foo
[me@linuxbox ~]$ echo ${#a[@]} # number of array elements
1
[me@linuxbox ~]$ echo ${#a[100]} # length of element 100
3

We create array a and assign the string “foo” to element 100. Next, we use parameter ex-
pansion to examine the length of the array, using the @ notation. Finally, we look at the
length of element 100 which contains the string “foo”. It is interesting to note that while
we assigned our string to element 100, bash only reports one element in the array. This
differs from the behavior of some other languages in which the unused elements of the ar-
ray (elements 0-99) would be initialized with empty values and counted.

Finding The Subscripts Used By An Array

As bash allows arrays to contain “gaps” in the assignment of subscripts, it is sometimes
useful to determine which elements actually exist. This can be done with a parameter ex-
pansion using the following forms:

${!array[*]}

${!array[@]}

where array is the name of an array variable. Like the other expansions that use * and @,
the @ form enclosed in quotes is the most useful, as it expands into separate words:

[me@linuxbox ~]$ foo=([2]=a [4]=b [6]=c)
[me@linuxbox ~]$ for i in "${foo[@]}"; do echo $i; done
a
b
c
[me@linuxbox ~]$ for i in "${!foo[@]}"; do echo $i; done
2
4
6

Adding Elements To The End Of An Array

Knowing the number of elements in an array is no help if we need to append values to the
end of an array, since the values returned by the * and @ notations do not tell us the maxi-
mum array index in use. Fortunately, the shell provides us with a solution. By using the
+= assignment operator, we can automatically append values to the end of an array. Here,
we assign three values to the array foo, and then append three more.

483

35 – Arrays

[me@linuxbox ~]$ foo=(a b c)
[me@linuxbox ~]$ echo ${foo[@]}
a b c
[me@linuxbox ~]$ foo+=(d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f

Sorting An Array

Just as with spreadsheets, it is often necessary to sort the values in a column of data. The
shell has no direct way of doing this, but it's not hard to do with a little coding:

#!/bin/bash

array-sort : Sort an array

a=(f e d c b a)

echo "Original array: ${a[@]}"
a_sorted=($(for i in "${a[@]}"; do echo $i; done | sort))
echo "Sorted array: ${a_sorted[@]}"

When executed, the script produces this:

[me@linuxbox ~]$ array-sort
Original array: f e d c b a
Sorted array: a b c d e f

The script operates by copying the contents of the original array (a) into a second array
(a_sorted) with a tricky piece of command substitution. This basic technique can be
used to perform many kinds of operations on the array by changing the design of the
pipeline.

Deleting An Array

To delete an array, use the unset command:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f

484

Array Operations

[me@linuxbox ~]$ unset foo
[me@linuxbox ~]$ echo ${foo[@]}

[me@linuxbox ~]$

unset may also be used to delete single array elements:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ unset 'foo[2]'
[me@linuxbox ~]$ echo ${foo[@]}
a b d e f

In this example, we delete the third element of the array, subscript 2. Remember, arrays
start with subscript zero, not one! Notice also that the array element must be quoted to
prevent the shell from performing pathname expansion.

Interestingly, the assignment of an empty value to an array does not empty its contents:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ foo=
[me@linuxbox ~]$ echo ${foo[@]}
b c d e f

Any reference to an array variable without a subscript refers to element zero of the array:

[me@linuxbox ~]$ foo=(a b c d e f)
[me@linuxbox ~]$ echo ${foo[@]}
a b c d e f
[me@linuxbox ~]$ foo=A
[me@linuxbox ~]$ echo ${foo[@]}
A b c d e f

Associative Arrays

Recent versions of bash now support associative arrays. Associative arrays use strings
rather than integers as array indexes. This capability allow interesting new approaches to
managing data. For example, we can create an array called “colors” and use color names
as indexes:

485

35 – Arrays

declare -A colors
colors["red"]="#ff0000"
colors["green"]="#00ff00"
colors["blue"]="#0000ff"

Unlike integer indexed arrays, which are created by merely referencing them, associative
arrays must be created with the declare command using the new -A option. Associa-
tive array elements are accessed in much the same way as integer indexed arrays:

echo ${colors["blue"]}

In the next chapter, we will look at a script that makes good use of associative arrays to
produce an interesting report.

Summing Up

If we search the bash man page for the word “array,” we find many instances of where
bash makes use of array variables. Most of these are rather obscure, but they may pro-
vide occasional utility in some special circumstances. In fact, the entire topic of arrays is
rather under-utilized in shell programming owing largely to the fact that the traditional
Unix shell programs (such as sh) lacked any support for arrays. This lack of popularity is
unfortunate because arrays are widely used in other programming languages and provide
a powerful tool for solving many kinds of programming problems.

Arrays and loops have a natural affinity and are often used together. The

for ((expr; expr; expr))

form of loop is particularly well-suited to calculating array subscripts.

Further Reading

● A couple of Wikipedia articles about the data structures found in this chapter:
http://en.wikipedia.org/wiki/Scalar_(computing)

http://en.wikipedia.org/wiki/Associative_array

486

http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Scalar_(computing)

36 – Exotica

36 – Exotica

In this, the final chapter of our journey, we will look at some odds and ends. While we
have certainly covered a lot of ground in the previous chapters, there are many bash fea-
tures that we have not covered. Most are fairly obscure, and useful mainly to those inte-
grating bash into a Linux distribution. However, there are a few that, while not in com-
mon use, are helpful for certain programming problems. We will cover them here.

Group Commands And Subshells

bash allows commands to be grouped together. This can be done in one of two ways; ei-
ther with a group command or with a subshell. Here are examples of the syntax of each:

Group command:

{ command1; command2; [command3; ...] }

Subshell:

(command1; command2; [command3;...])

The two forms differ in that a group command surrounds its commands with braces and a
subshell uses parentheses. It is important to note that, due to the way bash implements
group commands, the braces must be separated from the commands by a space and the
last command must be terminated with either a semicolon or a newline prior to the clos-
ing brace.

So what are group commands and subshells good for? While they have an important dif-
ference (which we will get to in a moment), they are both used to manage redirection.
Let’s consider a script segment that performs redirections on multiple commands:

ls -l > output.txt
echo "Listing of foo.txt" >> output.txt
cat foo.txt >> output.txt

This is pretty straightforward. Three commands with their output redirected to a file
named output.txt. Using a group command, we could code this as follows:

487

36 – Exotica

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } > output.txt

Using a subshell is similar:

(ls -l; echo "Listing of foo.txt"; cat foo.txt) > output.txt

Using this technique we have saved ourselves some typing, but where a group command
or subshell really shines is with pipelines. When constructing a pipeline of commands, it
is often useful to combine the results of several commands into a single stream. Group
commands and subshells make this easy:

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } | lpr

Here we have combined the output of our three commands and piped them into the input
of lpr to produce a printed report.

In the script that follows, we will use groups commands and look at several programming
techniques that can be employed in conjunction with associative arrays. This script,
called array-2, when given the name of a directory, prints a listing of the files in the
directory along with the names of the the file's owner and group owner. At the end of
listing, the script prints a tally of the number of files belonging to each owner and group.
Here we see the results (condensed for brevity) when the script is given the directory
/usr/bin:

[me@linuxbox ~]$ array-2 /usr/bin
/usr/bin/2to3-2.6 root root
/usr/bin/2to3 root root
/usr/bin/a2p root root
/usr/bin/abrowser root root
/usr/bin/aconnect root root
/usr/bin/acpi_fakekey root root
/usr/bin/acpi_listen root root
/usr/bin/add-apt-repository root root
.
.
.
/usr/bin/zipgrep root root
/usr/bin/zipinfo root root
/usr/bin/zipnote root root
/usr/bin/zip root root

488

Group Commands And Subshells

/usr/bin/zipsplit root root
/usr/bin/zjsdecode root root
/usr/bin/zsoelim root root

File owners:
daemon : 1 file(s)
root : 1394 file(s)

File group owners:
crontab : 1 file(s)
daemon : 1 file(s)
lpadmin : 1 file(s)
mail : 4 file(s)
mlocate : 1 file(s)
root : 1380 file(s)
shadow : 2 file(s)
ssh : 1 file(s)
tty : 2 file(s)
utmp : 2 file(s)

Here is a listing (with line numbers) of the script:

 1 #!/bin/bash
 2
 3 # array-2: Use arrays to tally file owners
 4
 5 declare -A files file_group file_owner groups owners
 6
 7 if [[! -d "$1"]]; then
 8 echo "Usage: array-2 dir" >&2
 9 exit 1
 10 fi
 11
 12 for i in "$1"/*; do
 13 owner=$(stat -c %U "$i")
 14 group=$(stat -c %G "$i")
 15 files["$i"]="$i"
 16 file_owner["$i"]=$owner
 17 file_group["$i"]=$group
 18 ((++owners[$owner]))
 19 ((++groups[$group]))
 20 done
 21
 22 # List the collected files
 23 { for i in "${files[@]}"; do
 24 printf "%-40s %-10s %-10s\n" \
 25 "$i" ${file_owner["$i"]} ${file_group["$i"]}
 26 done } | sort

489

36 – Exotica

 27 echo
 28
 29 # List owners
 30 echo "File owners:"
 31 { for i in "${!owners[@]}"; do
 32 printf "%-10s: %5d file(s)\n" "$i" ${owners["$i"]}
 33 done } | sort
 34 echo
 35
 36 # List groups
 37 echo "File group owners:"
 38 { for i in "${!groups[@]}"; do
 39 printf "%-10s: %5d file(s)\n" "$i" ${groups["$i"]}
 40 done } | sort

Let's take a look at the mechanics of this script:

Line 5: Associative arrays must be created with the declare command using the -A
option. In this script we create five arrays as follows:

files contains the names of the files in the directory, indexed by filename

file_group contains the group owner of each file, indexed by filename

file_owner contains the owner of each file, indexed by file name

groups contains the number of files belonging to the indexed group

owners contains the number of files belonging to the indexed owner

Lines 7-10: Checks to see that a valid directory name was passed as a positional parame-
ter. If not, a usage message is displayed and the script exits with an exit status of 1.

Lines 12-20: Loop through the files in the directory. Using the stat command, lines
13 and 14 extract the names of the file owner and group owner and assign the values to
their respective arrays (lines 16, 17) using the name of the file as the array index. Like-
wise the file name itself is assigned to the files array (line 15).

Lines 18-19: The total number of files belonging to the file owner and group owner are
incremented by one.

Lines 22-27: The list of files is output. This is done using the "${array[@]}" parameter
expansion which expands into the entire list of array element with each element treated as
a separate word. This allows for the possibility that a file name may contain embedded
spaces. Also note that the entire loop is enclosed in braces thus forming a group com-
mand. This permits the entire output of the loop to be piped into the sort command.
This is necessary because the expansion of the array elements is not sorted.

Lines 29-40: These two loops are similar to the file list loop except that they use the "${!

490

Group Commands And Subshells

array[@]}" expansion which expands into the list of array indexes rather than the list of
array elements.

Process Substitution

While they look similar and can both be used to combine streams for redirection, there is
an important difference between group commands and subshells. Whereas a group com-
mand executes all of its commands in the current shell, a subshell (as the name suggests)
executes its commands in a child copy of the current shell. This means that the environ-
ment is copied and given to a new instance of the shell. When the subshell exits, the copy
of the environment is lost, so any changes made to the subshell’s environment (including
variable assignment) is lost as well. Therefore, in most cases, unless a script requires a
subshell, group commands are preferable to subshells. Group commands are both faster
and require less memory.

We saw an example of the subshell environment problem in Chapter 28, when we discov-
ered that a read command in a pipeline does not work as we might intuitively expect. To
recap, if we construct a pipeline like this:

echo "foo" | read
echo $REPLY

The content of the REPLY variable is always empty because the read command is exe-
cuted in a subshell, and its copy of REPLY is destroyed when the subshell terminates.

Because commands in pipelines are always executed in subshells, any command that as-
signs variables will encounter this issue. Fortunately, the shell provides an exotic form of
expansion called process substitution that can be used to work around this problem.

Process substitution is expressed in two ways:

For processes that produce standard output:

<(list)

or, for processes that intake standard input:

>(list)

where list is a list of commands.

To solve our problem with read, we can employ process substitution like this:

read < <(echo "foo")
echo $REPLY

491

36 – Exotica

Process substitution allows us to treat the output of a subshell as an ordinary file for pur-
poses of redirection. In fact, since it is a form of expansion, we can examine its real
value:

[me@linuxbox ~]$ echo <(echo "foo")
/dev/fd/63

By using echo to view the result of the expansion, we see that the output of the subshell
is being provided by a file named /dev/fd/63.

Process substitution is often used with loops containing read. Here is an example of a
read loop that processes the contents of a directory listing created by a subshell:

#!/bin/bash

pro-sub : demo of process substitution

while read attr links owner group size date time filename; do
cat <<- EOF

Filename: $filename
Size: $size
Owner: $owner
Group: $group
Modified: $date $time
Links: $links
Attributes: $attr

EOF
done < <(ls -l | tail -n +2)

The loop executes read for each line of a directory listing. The listing itself is produced
on the final line of the script. This line redirects the output of the process substitution into
the standard input of the loop. The tail command is included in the process substitution
pipeline to eliminate the first line of the listing, which is not needed.

When executed, the script produces output like this:

[me@linuxbox ~]$ pro_sub | head -n 20
Filename: addresses.ldif
Size: 14540
Owner: me
Group: me
Modified: 2009-04-02 11:12

492

Group Commands And Subshells

Links: 1
Attributes: -rw-r--r--

Filename: bin
Size: 4096
Owner: me
Group: me
Modified: 2009-07-10 07:31
Links: 2
Attributes: drwxr-xr-x

Filename: bookmarks.html
Size: 394213
Owner: me
Group: me

Traps

In Chapter 10, we saw how programs can respond to signals. We can add this capability
to our scripts, too. While the scripts we have written so far have not needed this capabil-
ity (because they have very short execution times, and do not create temporary files),
larger and more complicated scripts may benefit from having a signal handling routine.

When we design a large, complicated script, it is important to consider what happens if
the user logs off or shuts down the computer while the script is running. When such an
event occurs, a signal will be sent to all affected processes. In turn, the programs repre-
senting those processes can perform actions to ensure a proper and orderly termination of
the program. Let’s say, for example, that we wrote a script that created a temporary file
during its execution. In the course of good design, we would have the script delete the file
when the script finishes its work. It would also be smart to have the script delete the file
if a signal is received indicating that the program was going to be terminated prematurely.

bash provides a mechanism for this purpose known as a trap. Traps are implemented
with the appropriately named builtin command, trap. trap uses the following syntax:

trap argument signal [signal...]

where argument is a string which will be read and treated as a command and signal is the
specification of a signal that will trigger the execution of the interpreted command.

Here is a simple example:

#!/bin/bash

trap-demo : simple signal handling demo

493

36 – Exotica

trap "echo 'I am ignoring you.'" SIGINT SIGTERM

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script defines a trap that will execute an echo command each time either the SIG-
INT or SIGTERM signal is received while the script is running. Execution of the pro-
gram looks like this when the user attempts to stop the script by pressing Ctrl-c:

[me@linuxbox ~]$ trap-demo
Iteration 1 of 5
Iteration 2 of 5
I am ignoring you.
Iteration 3 of 5
I am ignoring you.
Iteration 4 of 5
Iteration 5 of 5

As we can see, each time the user attempts to interrupt the program, the message is
printed instead.

Constructing a string to form a useful sequence of commands can be awkward, so it is
common practice to specify a shell function as the command. In this example, a separate
shell function is specified for each signal to be handled:

#!/bin/bash

trap-demo2 : simple signal handling demo

exit_on_signal_SIGINT () {
echo "Script interrupted." 2>&1
exit 0

}

exit_on_signal_SIGTERM () {
echo "Script terminated." 2>&1
exit 0

}

trap exit_on_signal_SIGINT SIGINT
trap exit_on_signal_SIGTERM SIGTERM

494

Traps

for i in {1..5}; do
echo "Iteration $i of 5"
sleep 5

done

This script features two trap commands, one for each signal. Each trap, in turn, speci-
fies a shell function to be executed when the particular signal is received. Note the inclu-
sion of an exit command in each of the signal-handling functions. Without an exit,
the script would continue after completing the function.

When the user presses Ctrl-c during the execution of this script, the results look like
this:

[me@linuxbox ~]$ trap-demo2
Iteration 1 of 5
Iteration 2 of 5
Script interrupted.

Temporary Files

One reason signal handlers are included in scripts is to remove temporary files
that the script may create to hold intermediate results during execution. There is
something of an art to naming temporary files. Traditionally, programs on Unix-
like systems create their temporary files in the /tmp directory, a shared directory
intended for such files. However, since the directory is shared, this poses certain
security concerns, particularly for programs running with superuser privileges.
Aside from the obvious step of setting proper permissions for files exposed to all
users of the system, it is important to give temporary files non-predictable file-
names. This avoids an exploit known as a temp race attack. One way to create a
non-predictable (but still descriptive) name is to do something like this:
tempfile=/tmp/$(basename $0).$$.$RANDOM

This will create a filename consisting of the program’s name, followed by its
process ID (PID), followed by a random integer. Note, however, that the $RAN-
DOM shell variable only returns a value in the range of 1-32767, which is not a
very large range in computer terms, so a single instance of the variable is not suf-
ficient to overcome a determined attacker.

495

36 – Exotica

A better way is to use the mktemp program (not to be confused with the mktemp
standard library function) to both name and create the temporary file. The mk-
temp program accepts a template as an argument that is used to build the file-
name. The template should include a series of “X” characters, which are replaced
by a corresponding number of random letters and numbers. The longer the series
of “X” characters, the longer the series of random characters. Here is an example:
tempfile=$(mktemp /tmp/foobar.$$.XXXXXXXXXX)

This creates a temporary file and assigns its name to the variable tempfile.
The “X” characters in the template are replaced with random letters and numbers
so that the final filename (which, in this example, also includes the expanded
value of the special parameter $$ to obtain the PID) might be something like:
/tmp/foobar.6593.UOZuvM6654

For scripts that are executed by regular users, it may be wise to avoid the use of
the /tmp directory and create a directory for temporary files within the user’s
home directory, with a line of code such as this:
[[-d $HOME/tmp]] || mkdir $HOME/tmp

Asynchronous Execution

It is sometimes desirable to perform more than one task at the same time. We have seen
how all modern operating systems are at least multitasking if not multiuser as well.
Scripts can be constructed to behave in a multitasking fashion.

Usually this involves launching a script that, in turn, launches one or more child scripts
that perform an additional task while the parent script continues to run. However, when a
series of scripts runs this way, there can be problems keeping the parent and child coordi-
nated. That is, what if the parent or child is dependent on the other, and one script must
wait for the other to finish its task before finishing its own?

bash has a builtin command to help manage asynchronous execution such as this. The
wait command causes a parent script to pause until a specified process (i.e., the child
script) finishes.

wait

We will demonstrate the wait command first. To do this, we will need two scripts, a par-
ent script:

496

Asynchronous Execution

#!/bin/bash

async-parent : Asynchronous execution demo (parent)

echo "Parent: starting..."

echo "Parent: launching child script..."
async-child &
pid=$!
echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."
sleep 2

echo "Parent: pausing to wait for child to finish..."
wait $pid

echo "Parent: child is finished. Continuing..."
echo "Parent: parent is done. Exiting."

and a child script:

#!/bin/bash

async-child : Asynchronous execution demo (child)

echo "Child: child is running..."
sleep 5
echo "Child: child is done. Exiting."

In this example, we see that the child script is very simple. The real action is being per-
formed by the parent. In the parent script, the child script is launched and put into the
background. The process ID of the child script is recorded by assigning the pid variable
with the value of the $! shell parameter, which will always contain the process ID of the
last job put into the background.

The parent script continues and then executes a wait command with the PID of the child
process. This causes the parent script to pause until the child script exits, at which point
the parent script concludes.

When executed, the parent and child scripts produce the following output:

[me@linuxbox ~]$ async-parent
Parent: starting...

497

36 – Exotica

Parent: launching child script...
Parent: child (PID= 6741) launched.
Parent: continuing...
Child: child is running...
Parent: pausing to wait for child to finish...
Child: child is done. Exiting.
Parent: child is finished. Continuing...
Parent: parent is done. Exiting.

Named Pipes

In most Unix-like systems, it is possible to create a special type of file called a named
pipe. Named pipes are used to create a connection between two processes and can be
used just like other types of files. They are not that popular, but they’re good to know
about.

There is a common programming architecture called client-server, which can make use of
a communication method such as named pipes, as well as other kinds of interprocess
communication such as network connections.

The most widely used type of client-server system is, of course, a web browser communi-
cating with a web server. The web browser acts as the client, making requests to the
server and the server responds to the browser with web pages.

Named pipes behave like files, but actually form first-in first-out (FIFO) buffers. As with
ordinary (unnamed) pipes, data goes in one end and emerges out the other. With named
pipes, it is possible to set up something like this:

process1 > named_pipe

and

process2 < named_pipe

and it will behave as if:

process1 | process2

Setting Up A Named Pipe

First, we must create a named pipe. This is done using the mkfifo command:

[me@linuxbox ~]$ mkfifo pipe1
[me@linuxbox ~]$ ls -l pipe1
prw-r--r-- 1 me me 0 2009-07-17 06:41 pipe1

498

Named Pipes

Here we use mkfifo to create a named pipe called pipe1. Using ls, we examine the
file and see that the first letter in the attributes field is “p”, indicating that it is a named
pipe.

Using Named Pipes

To demonstrate how the named pipe works, we will need two terminal windows (or alter-
nately, two virtual consoles). In the first terminal, we enter a simple command and redi-
rect its output to the named pipe:

[me@linuxbox ~]$ ls -l > pipe1

After we press the Enter key, the command will appear to hang. This is because there is
nothing receiving data from the other end of the pipe yet. When this occurs, it is said that
the pipe is blocked. This condition will clear once we attach a process to the other end
and it begins to read input from the pipe. Using the second terminal window, we enter
this command:

[me@linuxbox ~]$ cat < pipe1

and the directory listing produced from the first terminal window appears in the second
terminal as the output from the cat command. The ls command in the first terminal
successfully completes once it is no longer blocked.

Summing Up

Well, we have completed our journey. The only thing left to do now is practice, practice,
practice. Even though we covered a lot of ground in our trek, we barely scratched the sur-
face as far as the command line goes. There are still thousands of command line pro-
grams left to be discovered and enjoyed. Start digging around in /usr/bin and you’ll
see!

Further Reading

● The “Compound Commands” section of the bash man page contains a full de-
scription of group command and subshell notations.

● The EXPANSION section of the bash man page contains a subsection of process
substitution.

499

36 – Exotica

● The Advanced Bash-Scripting Guide also has a discussion of process substitution:
http://tldp.org/LDP/abs/html/process-sub.html

● Linux Journal has two good articles on named pipes. The first, from September
1997:
http://www.linuxjournal.com/article/2156

● and the second, from March 2009:
http://www.linuxjournal.com/content/using-named-pipes-fifos-bash

500

http://www.linuxjournal.com/article/2156
http://www.linuxjournal.com/article/2156
http://tldp.org/LDP/abs/html/process-sub.html

Index

Index

A
a2ps command...333
absolute pathnames..9
alias command...50, 126
aliases...42, 50, 124
American National Standards Institute (see ANSI)
..160
American Standard Code for Information
Interchange (see ASCII).......................................17
anchors...247
anonymous FTP servers.....................................200
ANSI..160
ANSI escape codes....................................160, 164
ANSI.SYS..160
Apache web server...118
apropos command..47
apt-cache command...169
apt-get command...168p.
aptitude command..168
archiving..230
arithmetic expansion..............70, 75, 367, 456, 464
arithmetic expressions..................70, 453, 464, 467
arithmetic operators.....................................70, 465
arithmetic truth tests...................................391, 464
arrays..

append values to the end..............................483
assigning values..479
associative..485, 488
creating...478
deleting...484
determine number of elements.....................482
finding used subscripts.................................483
index...478
multidimensional..478
reading variables into...................................400
sorting...484
subscript...478
two-dimensional...478

ASCII.............................77, 81, 221, 251, 263, 333
bell character..157
carriage return..267
collation order..............................251, 253, 387
control codes..................................77, 251, 327
groff output driver..320
linefeed character...267
null character..221
printable characters......................................251
text..17

aspell command...299
assembler..341
assembly language...341
assignment operators..467
associative arrays.......................................485, 488
asynchronous execution.....................................496
audio CDs...180, 191
AWK programming language....................299, 473

B
back references..263, 294p.
backslash escape sequences.................................78
backslash-escaped special characters.................156
backups, incremental..234
basename command...440
bash..2, 124

man page..48
basic regular expressions 254, 262p., 292, 296, 306
bc command...473
Berkeley Software Distribution.........................331
bg command...116
binary...93, 97, 341, 465
bit mask..96
bit operators...469
Bourne, Steve...2, 6
brace expansion......................................71, 75, 451
branching..381

501

Index

break command..412, 445
broken links..39
BSD style..111
buffering...182
bugs..422, 424
build environment..346
bzip2 command..229

C
C programming language...........341, 453, 468, 471
C++..341
cal command..4
cancel command...338
carriage return. .18, 77p., 157, 251p., 266, 298, 330
case compound command..................................429
case conversion..462
cat command..57, 266
cd command...9, 11
CD-ROMs...179p., 191
cdrecord command...192
cdrtools...192
character classes...26p., 248, 250p., 253, 257, 289,
299
character ranges................................27, 249p., 299
chgrp command..103
child process...108
chmod command..................................92, 105, 356
chown command..102, 105
Chrome...361
chronological sorting...273
cleartext..200, 202
client-server architecture....................................498
COBOL programming language........................341
collation order....................126, 251, 253, 289, 387

ASCII...253, 387
dictionary..251
traditional...253

comm command...284
command history..3, 83
command line...

arguments...436
editing...3, 79
expansion..67
history...3, 84
interfaces..xvii, 28

command options...14
command substitution............................73, 75, 451
commands..

arguments...14, 436
determining type...43

documentation..44
executable program files........................42, 341
executing as another user...............................99
long options..14
options..14

comments...........................128, 134, 298, 355, 424
Common Unix Printing System.................329, 339
comparison operators...470
compiler...341
compiling...340
completions..81
compound commands..

case...429
for...450
if...381
until...413
while...410
(())..391, 406, 464
[[]]..389, 406

compression algorithms.....................................227
conditional expressions..............................396, 420
configuration files..................................18, 21, 124
configure command...346
constants...366
continue command...412
control characters.......................................157, 266
control codes..77, 251
control operators..

&&..394, 406
||..394

controlling terminal..109
COPYING..344
copying and pasting...

in vim..145
on the command line......................................80
with X Window System....................................3

coreutils package.........................45, 48p., 279, 303
counting words in a file..62
cp command...................................28, 35, 131, 207
CPU...108p., 340
cron job...211
crossword puzzles..247
csplit command..304
CUPS..329, 339
current working directory......................................8
cursor movement..79
cut command..276, 461

D
daemon programs.......................................108, 118

502

Index

data compression..226
data redundancy...226
data validation..389
date command..4
date formats..273
dd command...190
Debian..166
Debian Style (.deb)..167
debugging...377, 424
declare command...463
defensive programming.............................420, 424
delimiters..76, 271, 274
dependencies..168, 349
design..422p.
device drivers...174, 341
device names..182
device nodes...20
df command...4, 379
diction..342
dictionary collation order...................................251
diff command...284
Digital Restrictions Management (DRM)..........168
directories...

archiving...230
changing...9
copying...28
creating...28, 34
current working..8
deleting...31, 39
hierarchical...7
home...21, 90, 379
listing..13
moving..30, 36
navigating...7
OLD_PWD variable.....................................126
parent..8
PATH variable..126
PWD variable...127
removing...31, 39
renaming...30, 36
root...7
shared...103
sticky bit...98
synchronizing...238
transferring over a network..........................238
viewing contents...8

disk partitions...177
DISPLAY variable...126
Dolphin..27
dos2unix command..267
double quotes...75

dpkg command...168
du command...269, 379
Dynamic Host Configuration Protocol (DHCP) 199

E
echo command.....................................67, 125, 362

-e option..78
-n option...398

edge and corner cases...423
EDITOR variable...126
effective group ID..98
effective user ID...98, 109
elif statement..388
email...265
embedded systems...341
empty variables..457
encrypted tunnels...206
encryption..290
end of file...59, 369
endless loop..413
enscript command..336
environment...99, 124, 404

aliases...124
establishing...127
examining...124
login shell...127
shell functions..124
shell variables...124
startup files...127
subshells...491
variables...124

eqn command...318
executable files...347
executable program files..............................42, 341
executable programs..

determining location.......................................43
PATH variable..126

exit command...5, 386, 407
exit status...382, 386
expand command...279
expansions..67

arithmetic..........................70, 75, 367, 456, 464
brace...71, 75, 451
command substitution......................73, 75, 451
delimiters..76
errors resulting from.....................................418
history...84, 86
parameter..........................72, 75, 365, 371, 456
pathname..68, 75, 451
tilde...69, 75

503

Index

word-splitting..74p.
expressions...

arithmetic........................70, 453, 464, 467, 479
conditional..396, 420

ext3...188
extended regular expressions.............................254
Extensible Markup Language............................265

F
false command...383
fdformat command...190
fdisk command...185
fg command..116
FIFO...498
file command...17
file descriptor...56
file system corruption..182
File Transfer Protocol (FTP)..............................199
filenames..221

case sensitive..11
embedded spaces in................................12, 260
extensions...12
hidden...11

files...
access..89
archiving...230, 236
attributes...90
block special...91
block special device.....................................212
changing file mode...92
changing owner and group owner................102
character special...91
character special device................................212
compression..226
configuration..................................18, 124, 264
copying...28, 34
copying over a network................................199
creating empty..55
deb..166
deleting...31, 39, 218
determining contents......................................17
device nodes...20
execution access...90
expressions...384
finding..209
hidden...11
iso image...191p.
listing..8, 13
mode...91
moving..30, 35

owner..92
permissions...89
read access..90
regular...212
removing...31, 39
renaming...30, 35
rpm...166
shared library..21
startup...127
sticky bit...98
symbolic links..212
synchronizing...238
temporary...495
text..17
transferring over a network..........199, 235, 238
truncating..55
type...90
viewing contents...17
write access..90

filters..61
find command...211, 234
findutils package..225
Firefox..361
firewalls..196
first-in first-out...498
floppy disks..176, 183, 189
flow control..

branching..381
case compound command............................429
elif statement..388
endless loop..413
for compound command...............................450
for loop...450
function statement..374
if compound command.................................381
looping..409
menu-driven...406
multiple-choice decisions.............................429
reading files with while and until loops.......414
terminating a loop...412
traps..493
until loop..413
while loop...410

fmt command...309
focus policy..4
fold command..309
for compound command....................................450
for loop...450
Foresight..166
Fortran programming language..................341, 453
free command...5, 181

504

Index

Free Software Foundation............................xix, xxi
fsck command..189
ftp command..............................199, 207, 342, 370
FTP servers...200, 370
FUNCNAME variable.......................................441
function statement..374

G
gcc..342
gedit command...114, 131
genisoimage command.......................................191
Gentoo..166
getopts command...449
Ghostscript...329
gid..89
global variables..376
globbing...26
GNOME...............................2, 27, 40, 95, 131, 208
gnome-terminal..2
GNU binutils package..452
GNU C Compiler...342
GNU coreutils package...............45, 48p., 279, 303
GNU findutils package......................................225
GNU Project..........14, xix, xxi, 225, 303, 342, 344

info command...48
GNU/Linux..xix, xxi
graphical user interfaces....................................xvii
grep command......................................62, 243, 403
groff..318
group commands..487
groups...89

effective group ID..98
gid...89
primary group ID..89
setgid..98

GUI................................3, xvii, 27, 40, 79, 95, 127
gunzip command..227
gzip command..50, 227

H
hard disks...176
hard links..24, 33, 37

creating...37
listing..38

head command...63
header files...345
hello world program...355
help command..44
here documents..369

here strings...404
hexadecimal...93, 465
hidden files...11, 69
hierarchical directory structure..............................7
high-level programming languages....................341
history..

expansion..84, 86
searching...84

history command..84
home directories...21

root account..22
/etc/passwd...90

home directory...........................8, 11, 69, 100, 126
HOME variable..126
hostname..157
HTML........................265, 299, 319, 361, 371, 373
Hypertext Markup Language.............................265

I
I/O redirection (see redirection)...........................53
id command..89
IDE...183
if compound command......................129, 418, 429
IFS variable..402
IMCP ECHO_REQUEST..................................196
incremental backups...234
info files...49
init..108
init scripts...108
inodes...37
INSTALL...344
installation wizard..167
integers...

arithmetic..70, 473
division...71, 466
expressions...388

interactivity..397
Internal Field Separator......................................402
interpreted languages...341
interpreted programs..342
interpreter...341
iso images..191p.
iso9660...180, 192

J
job control..115
job numbers..115
jobspec..116
join command...281

505

Index

Joliet extensions...192
Joy, Bill..137

K
kate command..131
KDE.....................................2, 27, 40, 95, 131, 208
kedit command...131
kernel...xvi, xixp., 46, 108, 118, 174, 183, 287, 350
key fields..271
kill command..117
killall command...120
killing text..80
Knuth, Donald..318
Konqueror..27, 95, 208
konsole...2
kwrite command...114, 131

L
LANG variable...................................126, 251, 253
less command.................................17, 60, 238, 261
lftp command...202
libraries..341
LibreOffice Writer..xxi
line continuation character.................................359
line editors..137
line-continuation character.................................298
linker..341
linking..341
links..

broken...39
creating...33
hard...24, 33
symbolic...23, 34

Linux community...166
Linux distributions...166

CentOS...167, 336
Debian...166p., 340
Fedora......................................xix, 89, 167, 336
Foresight...166
Gentoo..166
Linspire...167
Mandriva..167
OpenSUSE..xix, 167
packaging systems..166
PCLinuxOS..167
Red Hat Enterprise Linux.............................167
Slackware...166
Ubuntu..xix, 166p., 336
Xandros..167

Linux Filesystem Hierarchy Standard. . .19, 24, 358
Linux kernel......xvi, xixp., 46, 108, 118, 174, 183,
287, 350

device drivers...174
literal characters...245
live CDs..xix
ln command..33, 37
local variables..376
locale..251, 253, 289, 387
locale command...253
localhost...203
locate command...209, 261
logical errors..420
logical operations...392
logical operators...214
logical relationships...................................214, 218
login prompt...5, 201
login shell...90, 99, 127
long options..14
loopback interface..199
looping...409
loops...................................420, 466, 469, 486, 492
lossless compression..227
lossy compression..227
lowercase to uppercase conversion....................463
lp command..332
lpq command..337
lpr command..331
lprm command...338
lpstat command..336
ls command..8, 13

long format...16
viewing file attributes.....................................90

Lukyanov, Alexander...202
LVM (Logical Volume Manager)...............176, 179

M
machine language...340
maintenance...............................358, 362, 364, 372
make command..347
Makefile...347
man command..45
man pages...45, 319
markup languages......................................265, 319
memory..

assigned to each process...............................109
displaying free..5
Resident Set Size..111
segmentation violation..................................119
usage...111

506

Index

viewing usage...121
virtual..111

menu-driven programs.......................................406
meta key...81
meta sequences...246
metacharacters..246
metadata...167, 169
mkdir command...28, 34
mkfifo command..498
mkfs command...188, 190
mkisofs command..192
mktemp command..496
mnemonics...341
modal editor...139
monospaced fonts...329
Moolenaar, Bram..137
more command...19
mount command...178, 192
mount points...21, 178, 180
mounting..177
MP3..104
multi-user systems...88
multiple-choice decisions...................................429
multitasking..88, 108, 496
mv command..30, 35

N
named pipes...498
nano command...136
Nautilus..27, 95, 208
netstat command..198
networking...195

anonymous FTP servers...............................200
default route..199
Dynamic Host Configuration Protocol (DHCP)
..199
encrypted tunnels..206
examine network settings and statistics.......198
File Transfer Protocol (FTP)........................199
firewalls..196
FTP servers...200
Local Area Network.....................................199
loopback interface..199
man in the middle attacks.............................203
routers...198
secure communication with remote hosts... .203
testing if a host is alive.................................196
tracing the route to a host.............................197
transferring files...238
transporting files...199

Virtual Private Network................................206
newline character...157
newlines...76
NEWS..344
nl command..305
nroff command...318
null character..221
number bases..465

O
octal..93, 465, 481
Ogg Vorbis...104
OLD_PWD variable...126
OpenOffice.org Writer................................18, xxp.
OpenSSH..203
operators...

arithmetic..70, 465
assignment..467
binary..419
comparison...470
ternary...471

owning files..89

P
package files...167
package maintainers...167
package management...166

deb..166
Debian Style (.deb).......................................167
finding packages...169
high-level tools...168
installing packages.......................................169
low-level tools..168
package repositories.....................................167
Red Hat Style (.rpm)....................................167
removing packages.......................................170
RPM...166
updating packages..171

packaging systems...166
page description language..................265, 320, 328
PAGER variable...126
pagers...19
parameter expansion..............................72, 75, 456
parent directory..8
parent process...108
passwd command...106
passwords...106
paste command...280
PATA..183

507

Index

patch command..287
patches..285
PATH variable............................126, 129, 356, 374
pathname expansion...............................68, 75, 451
pathnames..260

absolute...9
completion..81
relative..9

PDF..321, 331
Perl programming language.42, 243, 299, 341, 473
permissions..354
PHP programming language..............................341
ping command..196
pipelines...60, 404, 491

in command substitution................................73
portability...346, 380, 394
portable..380
Portable Document Format........................321, 331
Portable Operating System Interface.................255
positional parameters......................436, 457p., 460
POSIX.....................................192, 251, 254p., 394

character classes.....26p., 250p., 253, 257, 289,
299

PostScript...........................265, 320, 328, 333, 338
pr command...313, 329
primary group ID...89
printable characters..251
printenv command.......................................73, 124
printer buffers...181
printers...181, 183

buffering output..181
control codes..327
daisy-wheel...327
device names..183
drivers...329
graphical...328
impact...327
laser..328

printf command..314, 455
printing...

determining system status............................336
history of..326
Internet Printing Protocol.............................337
monospaced fonts...327
preparing text..329
pretty...333
print queues..336
proportional fonts...328
queue..337
spooling..336
terminate print jobs.......................................338

viewing jobs...337
process ID..109
process substitution..491
processes..108

background...115
child..108
controlling...113
foreground..115
interrupting...114
job control...115
killing..117
nice...110
parent..108
PID...109
process ID...109
SIGINT...494
signals...117
SIGTERM..494
sleeping...110
state...110
stopping..116
viewing...109, 111
zombie..110

production use..422
programmable completion...................................83
ps command...109
PS1 variable...126, 156
PS2 variable...363
ps2pdf command..321
PS4 variable...426
pseudocode...381, 409
pstree command...121
PuTTY..208
pwd command..8
PWD variable...127
Python programming language..........................341

Q
quoting...74

double quotes..75
escape character..77
missing quote..417
single quotes...76

R
RAID (Redundant Array of Independent Disks)
..176
raster image processor..329
read command....................398, 408, 414, 422, 491

508

Index

Readline...79
README...49, 344
redirection..

blocked pipe...499
group commands and subshells....................487
here documents...369
here strings...404
standard error..55
standard input...57, 370
standard output...54

redirection operators..
&>...57
&>>..57
<..59
<(list)..491
<<..369p.
<<-..370
<<<...404
>..54
>(list)..491
>>...55
|...60

regular expressions...............62, 243, 295, 389, 403
anchors...247
back references..................................263, 294p.
basic...........................254, 262p., 292, 296, 306
extended...254

relational databases..281
relative pathnames...9
release early, release often.................................422
removing duplicate lines in a file.........................61
REPLY variable..398, 491
report generator..361
repositories...167
return command...375, 386
reusable..380
RIP...329
rlogin command...202
rm command..31
Rock Ridge extensions.......................................192
roff..318
ROT13 encoding..290
RPM...166
rpm command..169
rsync command..238
rsync remote-update protocol............................238
Ruby programming language.............................341

S
scalar variables...478

Schilling, Jorg...192
scp command...207
script command..86
scripting languages.......................................42, 341
sdiff command..304
searching a file for patterns..................................62
searching history..84
Secure Shell...203
sed command.....................................290, 322, 461
set command..124, 425
setgid..98
setuid..98, 385
Seward, Julian..229
sftp command...207
shared libraries...21, 168
shebang..355, 360
shell builtins...42
shell functions..............................42, 124, 374, 440
shell prompts 2, 9, 85, 100, 114, 126, 156, 204, 363
shell scripts...354
SHELL variable...126
shell variables...124
shift command..439, 444
SIGINT..494
signals..493
single quotes...76
Slackware...166
sleep command...411
soft link..23
sort command...61, 267
sort keys...271
source code..............................166p., 174, 265, 340
source command..135, 357
source tree..343
special parameters......................................441, 458
split command..304
SSH..203
ssh command..203, 235
ssh program..88
Stallman, Richard.........xvi, xix, xxi, 131, 255, 342
standard error..53p., 56

disposing of..57
redirecting to a file...55

standard input.......................................53, 370, 398
redirecting...57

standard output...53
appending to a file..55
disposing of..57
redirecting standard error to...........................56
redirecting to a file...54

startup files...127

509

Index

stat command...223
sticky bit...98
storage devices...176

audio CDs...180, 191
CD-ROMs...179p., 191
creating file systems.....................................185
device names..182
disk partitions...177
FAT32...185
floppy disks..183, 189
formatting...185
LVM (Logical Volume Manager).................179
mount points...178, 180
partitions...185
reading and writing directly.........................190
repairing file systems...................................189
unmounting...181
USB flash drives...190

stream editor...290
strings...

expressions...387
extract a portion of.......................................459
length of..459
perform search and replace upon.................461
remove leading portion of............................460
remove trailing portion of............................460
${parameter:offset:length}...........................459
${parameter:offset}......................................459

strings command..452
stubs...377, 422
style..345
su command...99
subshells...404, 487
sudo command...99, 101
Sun Microsystems..137
superuser..2, 90, 100, 120
symbolic links..23, 34, 38

creating...38, 40
listing..38

symlink...23
syntax errors...416
syntax highlighting.....................................354, 359

T
tables..281
tabular data...271, 317
tail command..63
tape archive..230
tar command...230
tarballs..343

targets...347
Task Manager...113
Tatham, Simon...208
tbl command...318, 322
,ma���.....������yp...............l�.

318, 322

Index

lowercase to uppercase conversion..............289
numbering lines....................................267, 305
paginating...313
pasting..280
preparing for printing...................................329
removing duplicate lines................................61
rendering in PostScript.................................320
ROT13 encoded..290
searching for patterns.....................................62
sorting...61, 267
spell checking...299
substituting...294
substituting tabs for spaces...........................279
tab-delimited...278
transliterating characters..............................288
Unix format..267
viewing with less......................................17, 60

text editors..130, 264, 288
emacs..131
for writing shell scripts.................................354
gedit..131, 354
interactive...288
kate...131, 354
kedit..131
kwrite..131
line..137
nano..131, 136
pico...131
stream...290
syntax highlighting...............................354, 359
vi...131
vim..131, 354, 359
visual..137

tilde expansion...69, 75
tload command...121
top command..111
top-down design...372
Torvalds, Linus..xvi, xxi
touch command.......................222p., 239, 349, 446
tr command..288
traceroute command...197
tracing..425
transliterating characters....................................288
traps..493
troff command..318
true command...383
TTY..109
type command..43
typesetters..318, 328
TZ variable...127

U
Ubuntu..................................89, 102, 166, 250, 357
umask command..96, 105
umount command...181
unalias command...51
unary operator expected.....................................419
unary operators...465
unexpand command...279
unexpected token...418
uniq command..61, 275
Unix...xvii
Unix System V...331
unix2dos command..267
unset command..484
until compound command..................................413
until loop..413
unzip command..236
updatedb command..211
upstream providers...167
uptime..373
uptime command..379
USB flash drives..176, 190
Usenet..290
USER variable...125, 127
users...

accounts..89
changing identity..99
changing passwords......................................106
effective user ID.....................................98, 109
home directory..90
identity..89
password...90
setting default permissions.............................96
setuid..98
superuser..................................90, 92, 98p., 107
/etc/passwd...90
/etc/shadow...90

V
validating input..404
variables...72, 364, 456

assigning values....................................367, 467
constants...366
declaring...364, 367
environment..124
global..376
local..376
names..366, 459
scalar...478
shell..124

511

Index

vfat...188
vi command..136
vim command...263, 359
virtual consoles..5
Virtual Private Network.....................................206
virtual terminals...5
visual editors..137
vmstat command..121

W
wait command..496
wc command..62
web pages...265
wget command...202
What You See Is What You Get.........................327
whatis command..47
which command...43, 73
while compound command................................410
wildcards..................................26, 58, 67, 243, 250
wodim command..193
word-splitting..74pp.
world..89
WYSIWYG..327

X
X Window System...................................3, 88, 206
xargs command..220
xload command..121
xlogo command..114
XML...265

Y
yanking text..80
yum command..169

Z
zgrep command..263
zip command..236
zless command...50

-
--help option...45

.

./configure..346

.bash_history..83

.bash_login...127

.bash_profile...127

.bashrc................................128, 130, 357, 380, 441

.profile..127

.ssh/known_hosts...205

(
(()) compound command...........................464, 470

[
[command...418

/
/..20
/bin...20
/boot...20
/boot/grub/grub.conf..20
/boot/vmlinuz...20
/dev...20
/dev/cdrom...183
/dev/dvd..183
/dev/floppy...183
/dev/null...57
/etc..21
/etc/bash.bashrc..128
/etc/crontab...21
/etc/fstab...21, 177, 189
/etc/group...90
/etc/passwd.............................21, 90, 274, 279, 403
/etc/profile..127, 129
/etc/shadow..90
/etc/sudoers..99
/lib..21
/lost+found...21
/media...21
/mnt..21
/opt...21
/proc...22
/root..22, 100
/sbin..22
/tmp..22, 496
/usr..22
/usr/bin...22
/usr/lib..22
/usr/local...22
/usr/local/bin..22, 350, 358
/usr/local/sbin...358
/usr/sbin..22

512

Index

/usr/share..22
/usr/share/dict...247
/usr/share/doc...22, 49
/var...23
/var/log...23
/var/log/messages...................................23, 64, 183
/var/log/syslog..64, 183

$
$!..442, 497
$((expression))...464
${!array[@]}..483
${!array[*]}..483
${!prefix@}...459
${!prefix*}...459
${#parameter}..459
${parameter,,}..463
${parameter,}...463

${parameter:-word}...457
${parameter:?word}...458
${parameter:+word}..458
${parameter:=word}..457
${parameter//pattern/string}..............................461
${parameter/#pattern/string}.............................461
${parameter/%pattern/string}............................461
${parameter/pattern/string}...............................461
${parameter##pattern}.......................................460
${parameter#pattern}...460
${parameter%%pattern}....................................460
${parameter%pattern}.......................................460
${parameter^}..463
${parameter^^}..463
$@..441, 449
$*..441, 449
$#..437
$0..441

513

	Introduction
	Why Use The Command Line?
	What This Book Is About
	Who Should Read This Book
	What's In This Book
	How To Read This Book
	Prerequisites

	Acknowledgments
	Your Feedback Is Needed!
	What's New In The Second Internet Edition
	Further Reading
	Colophon

	Part 1 – Learning The Shell
	1 – What Is The Shell?
	Terminal Emulators
	Your First Keystrokes
	Command History
	Cursor Movement

	Try Some Simple Commands
	Ending A Terminal Session
	Summing Up
	Further Reading

	2 – Navigation
	Understanding The File System Tree
	The Current Working Directory
	Listing The Contents Of A Directory
	Changing The Current Working Directory
	Absolute Pathnames
	Relative Pathnames
	Some Helpful Shortcuts

	Summing Up

	3 – Exploring The System
	More Fun With ls
	Options And Arguments
	A Longer Look At Long Format

	Determining A File's Type With file
	Viewing File Contents With less
	A Guided Tour
	Symbolic Links
	Hard Links
	Summing Up
	Further Reading

	4 – Manipulating Files And Directories
	Wildcards
	mkdir – Create Directories
	cp – Copy Files And Directories
	Useful Options And Examples

	mv – Move And Rename Files
	Useful Options And Examples

	rm – Remove Files And Directories
	Useful Options And Examples

	ln – Create Links
	Hard Links
	Symbolic Links

	Let's Build A Playground
	Creating Directories
	Copying Files
	Moving And Renaming Files
	Creating Hard Links
	Creating Symbolic Links
	Removing Files And Directories

	Summing Up
	Further Reading

	5 – Working With Commands
	What Exactly Are Commands?
	Identifying Commands
	type – Display A Command's Type
	which – Display An Executable's Location

	Getting A Command's Documentation
	help – Get Help For Shell Builtins
	--help – Display Usage Information
	man – Display A Program's Manual Page
	apropos – Display Appropriate Commands
	whatis – Display A Very Brief Description Of A Command
	info – Display A Program's Info Entry
	README And Other Program Documentation Files

	Creating Your Own Commands With alias
	Summing Up
	Further Reading

	6 – Redirection
	Standard Input, Output, And Error
	Redirecting Standard Output
	Redirecting Standard Error
	Redirecting Standard Output And Standard Error To One File
	Disposing Of Unwanted Output

	Redirecting Standard Input
	cat – Concatenate Files

	Pipelines
	Filters
	uniq - Report Or Omit Repeated Lines
	wc – Print Line, Word, And Byte Counts
	grep – Print Lines Matching A Pattern
	head / tail – Print First / Last Part Of Files
	tee – Read From Stdin And Output To Stdout And Files

	Summing Up

	7 – Seeing The World As The Shell Sees It
	Expansion
	Pathname Expansion
	Tilde Expansion
	Arithmetic Expansion
	Brace Expansion
	Parameter Expansion
	Command Substitution

	Quoting
	Double Quotes
	Single Quotes
	Escaping Characters

	Summing Up
	Further Reading

	8 – Advanced Keyboard Tricks
	Command Line Editing
	Cursor Movement
	Modifying Text
	Cutting And Pasting (Killing And Yanking) Text

	Completion
	Using History
	Searching History
	History Expansion

	Summing Up
	Further Reading

	9 – Permissions
	Owners, Group Members, And Everybody Else
	Reading, Writing, And Executing
	chmod – Change File Mode
	Setting File Mode With The GUI
	umask – Set Default Permissions

	Changing Identities
	su – Run A Shell With Substitute User And Group IDs
	sudo – Execute A Command As Another User
	chown – Change File Owner And Group
	chgrp – Change Group Ownership

	Exercising Our Privileges
	Changing Your Password
	Summing Up
	Further Reading

	10 – Processes
	How A Process Works
	Viewing Processes
	Viewing Processes Dynamically With top

	Controlling Processes
	Interrupting A Process
	Putting A Process In The Background
	Returning A Process To The Foreground
	Stopping (Pausing) A Process

	Signals
	Sending Signals To Processes With kill
	Sending Signals To Multiple Processes With killall

	More Process Related Commands
	Summing Up

	Part 2 – Configuration And The Environment
	11 – The Environment
	What Is Stored In The Environment?
	Examining The Environment
	Some Interesting Variables

	How Is The Environment Established?
	What's In A Startup File?

	Modifying The Environment
	Which Files Should We Modify?
	Text Editors
	Using A Text Editor
	Activating Our Changes

	Summing Up
	Further Reading

	12 – A Gentle Introduction To vi
	Why We Should Learn vi
	A Little Background
	Starting And Stopping vi
	Editing Modes
	Entering Insert Mode
	Saving Our Work

	Moving The Cursor Around
	Basic Editing
	Appending Text
	Opening A Line
	Deleting Text
	Cutting, Copying, And Pasting Text
	Joining Lines

	Search-And-Replace
	Searching Within A Line
	Searching The Entire File
	Global Search-And-Replace

	Editing Multiple Files
	Switching Between Files
	Opening Additional Files For Editing
	Copying Content From One File Into Another
	Inserting An Entire File Into Another

	Saving Our Work
	Summing Up
	Further Reading

	13 – Customizing The Prompt
	Anatomy Of A Prompt
	Trying Some Alternative Prompt Designs
	Adding Color
	Moving The Cursor
	Saving The Prompt
	Summing Up
	Further Reading

	Part 3 – Common Tasks And Essential Tools
	14 – Package Management
	Packaging Systems
	How A Package System Works
	Package Files
	Repositories
	Dependencies
	High And Low-level Package Tools

	Common Package Management Tasks
	Finding A Package In A Repository
	Installing A Package From A Repository
	Installing A Package From A Package File
	Removing A Package
	Updating Packages From A Repository
	Upgrading A Package From A Package File
	Listing Installed Packages
	Determining If A Package Is Installed
	Displaying Info About An Installed Package
	Finding Which Package Installed A File

	Summing Up
	Further Reading

	15 – Storage Media
	Mounting And Unmounting Storage Devices
	Viewing A List Of Mounted File Systems
	Determining Device Names

	Creating New File Systems
	Manipulating Partitions With fdisk
	Creating A New File System With mkfs

	Testing And Repairing File Systems
	Formatting Floppy Disks
	Moving Data Directly To/From Devices
	Creating CD-ROM Images
	Creating An Image Copy Of A CD-ROM
	Creating An Image From A Collection Of Files

	Writing CD-ROM Images
	Mounting An ISO Image Directly
	Blanking A Re-Writable CD-ROM
	Writing An Image

	Summing Up
	Further Reading
	Extra Credit

	16 – Networking
	Examining And Monitoring A Network
	ping
	traceroute
	netstat

	Transporting Files Over A Network
	ftp
	lftp – A Better ftp
	wget

	Secure Communication With Remote Hosts
	ssh
	scp And sftp

	Summing Up
	Further Reading

	17 – Searching For Files
	locate – Find Files The Easy Way
	find – Find Files The Hard Way
	Tests
	Operators
	Predefined Actions
	User-Defined Actions
	Improving Efficiency
	xargs
	A Return To The Playground
	Options

	Summing Up
	Further Reading

	18 – Archiving And Backup
	Compressing Files
	gzip
	bzip2

	Archiving Files
	tar
	zip

	Synchronizing Files And Directories
	Using rsync Over A Network

	Summing Up
	Further Reading

	19 – Regular Expressions
	What Are Regular Expressions?
	grep
	Metacharacters And Literals
	The Any Character
	Anchors
	Bracket Expressions And Character Classes
	Negation
	Traditional Character Ranges
	POSIX Character Classes

	POSIX Basic Vs. Extended Regular Expressions
	Alternation
	Quantifiers
	? - Match An Element Zero Or One Time
	* - Match An Element Zero Or More Times
	+ - Match An Element One Or More Times
	{ } - Match An Element A Specific Number Of Times

	Putting Regular Expressions To Work
	Validating A Phone List With grep
	Finding Ugly Filenames With find
	Searching For Files With locate
	Searching For Text With less And vim

	Summing Up
	Further Reading

	20 – Text Processing
	Applications Of Text
	Documents
	Web Pages
	Email
	Printer Output
	Program Source Code

	Revisiting Some Old Friends
	cat
	sort
	uniq

	Slicing And Dicing
	cut
	paste
	join

	Comparing Text
	comm
	diff
	patch

	Editing On The Fly
	tr
	sed
	aspell

	Summing Up
	Further Reading
	Extra Credit

	21 – Formatting Output
	Simple Formatting Tools
	nl – Number Lines
	fold – Wrap Each Line To A Specified Length
	fmt – A Simple Text Formatter
	pr – Format Text For Printing
	printf – Format And Print Data

	Document Formatting Systems
	groff

	Summing Up
	Further Reading

	22 – Printing
	A Brief History Of Printing
	Printing In The Dim Times
	Character-based Printers
	Graphical Printers

	Printing With Linux
	Preparing Files For Printing
	pr – Convert Text Files For Printing

	Sending A Print Job To A Printer
	lpr – Print Files (Berkeley Style)
	lp – Print Files (System V Style)
	Another Option: a2ps

	Monitoring And Controlling Print Jobs
	lpstat – Display Print System Status
	lpq – Display Printer Queue Status
	lprm / cancel – Cancel Print Jobs

	Summing Up
	Further Reading

	23 – Compiling Programs
	What Is Compiling?
	Are All Programs Compiled?

	Compiling A C Program
	Obtaining The Source Code
	Examining The Source Tree
	Building The Program
	Installing The Program

	Summing Up
	Further Reading

	Part 4 – Writing Shell Scripts
	24 – Writing Your First Script
	What Are Shell Scripts?
	How To Write A Shell Script
	Script File Format
	Executable Permissions
	Script File Location
	Good Locations For Scripts

	More Formatting Tricks
	Long Option Names
	Indentation And line-continuation

	Summing Up
	Further Reading

	25 – Starting A Project
	First Stage: Minimal Document
	Second Stage: Adding A Little Data
	Variables And Constants
	Assigning Values To Variables And Constants

	Here Documents
	Summing Up
	Further Reading

	26 – Top-Down Design
	Shell Functions
	Local Variables
	Keep Scripts Running
	Summing Up
	Further Reading

	27 – Flow Control: Branching With if
	if
	Exit Status
	test
	File Expressions
	String Expressions
	Integer Expressions

	A More Modern Version Of test
	(()) - Designed For Integers
	Combining Expressions
	Control Operators: Another Way To Branch
	Summing Up
	Further Reading

	28 – Reading Keyboard Input
	read – Read Values From Standard Input
	Options
	IFS

	Validating Input
	Menus
	Summing Up
	Extra Credit

	Further Reading

	29 – Flow Control: Looping With while / until
	Looping
	while

	Breaking Out Of A Loop
	until

	Reading Files With Loops
	Summing Up
	Further Reading

	30 – Troubleshooting
	Syntactic Errors
	Missing Quotes
	Missing Or Unexpected Tokens
	Unanticipated Expansions

	Logical Errors
	Defensive Programming
	Verifying Input

	Testing
	Test Cases

	Debugging
	Finding The Problem Area
	Tracing
	Examining Values During Execution

	Summing Up
	Further Reading

	31 – Flow Control: Branching With case
	case
	Patterns
	Performing Multiple Actions

	Summing Up
	Further Reading

	32 – Positional Parameters
	Accessing The Command Line
	Determining The Number of Arguments
	shift – Getting Access To Many Arguments
	Simple Applications
	Using Positional Parameters With Shell Functions

	Handling Positional Parameters En Masse
	A More Complete Application
	Summing Up
	Further Reading

	33 – Flow Control: Looping With for
	for: Traditional Shell Form
	for: C Language Form
	Summing Up
	Further Reading

	34 – Strings And Numbers
	Parameter Expansion
	Basic Parameters
	Expansions To Manage Empty Variables
	Expansions That Return Variable Names
	String Operations
	Case Conversion

	Arithmetic Evaluation And Expansion
	Number Bases
	Unary Operators
	Simple Arithmetic
	Assignment
	Bit Operations
	Logic

	bc – An Arbitrary Precision Calculator Language
	Using bc
	An Example Script

	Summing Up
	Extra Credit
	Further Reading

	35 – Arrays
	What Are Arrays?
	Creating An Array
	Assigning Values To An Array
	Accessing Array Elements
	Array Operations
	Outputting The Entire Contents Of An Array
	Determining The Number Of Array Elements
	Finding The Subscripts Used By An Array
	Adding Elements To The End Of An Array
	Sorting An Array
	Deleting An Array

	Associative Arrays
	Summing Up
	Further Reading

	36 – Exotica
	Group Commands And Subshells
	Process Substitution

	Traps
	Asynchronous Execution
	wait

	Named Pipes
	Setting Up A Named Pipe
	Using Named Pipes

	Summing Up
	Further Reading

	Index

