

Hands-On Machine Learning
with C++

Build, train, and deploy end-to-end machine learning and
deep learning pipelines

Kirill Kolodiazhnyi

BIRMINGHAM - MUMBAI

Hands-On Machine Learning with C++
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Yogesh Deokar
Content Development Editor: Sean Lobo
Senior Editor: Roshan Kumar
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Language Support Editors: Jack Cummings and Martin Whittemore
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Aparna Bhagat

First published: May 2020

Production reference: 1140520

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-533-0

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Kirill Kolodiazhnyi is a seasoned software engineer with expertise in custom software
development. He has several years of experience in building machine learning models and
data products using C++. He holds a bachelor's degree in computer science from Kharkiv
National University of Radio Electronics. He currently works in Kharkiv, Ukraine, where
he lives with his wife and daughter.

About the reviewers
Davor Lozić is a university lecturer living in Croatia. He likes working on
algorithmic/mathematical problems, and reviewing books for Packt makes him read new IT
books. He has also worked on Data Analysis with R – Second Edition; Mastering Predictive
Analytics with R, Second Edition; R Data Analysis Cookbook, Second Edition; R Deep Learning
Projects; Mastering Linux Network Administration; R Machine Learning Projects; Learning Ext JS,
Fourth Edition; and R Statistics Cookbook. Davor is a meme master and an Uno master, and he
likes cats.

Dr. Ashwin Nanjappa works at NVIDIA on deep learning inference acceleration on GPUs.
He has a Ph.D. from the National University of Singapore, where he invented the fastest 3D
Delaunay computational geometry algorithms for GPUs. He was a postdoctoral research
fellow at the BioInformatics Institute (Singapore), inventing machine learning algorithms
for hand and rodent pose estimation using depth cameras. He also worked at Visenze
(Singapore) developing computer vision deep learning models for the largest e-commerce
portals in the world. He is a published author of two books: Caffe2 Quick Start Guide and
Instant GLEW.

Ryan Riley has been involved in the futures and derivatives industry for almost 20 years.
He received a bachelor's degree and a master's degree from DePaul University in applied
statistics. Doing his coursework in math meant that he had to teach himself how to
program, forcing him to read more technical books on programming than he would
otherwise have done. Ryan has worked with numerous AI libraries in various languages
and is currently using the Caffe2 C++ library to develop and implement futures and
derivatives trading strategies at PNT Financial.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Overview of Machine Learning
Chapter 1: Introduction to Machine Learning with C++ 12

Understanding the fundamentals of ML 13
Venturing into the techniques of ML 14

Supervised learning 14
Unsupervised learning 15

Dealing with ML models 15
Model parameter estimation 16

An overview of linear algebra 17
Learning the concepts of linear algebra 18
Basic linear algebra operations 19
Tensor representation in computing 21
Linear algebra API samples 22

Using Eigen 22
Using xtensor 25
Using Shark-ML 27
Using Dlib 30

An overview of linear regression 32
Solving linear regression tasks with different libraries 33

Solving linear regression tasks with Eigen 36
Solving linear regression tasks with Shogun 37
Solving linear regression tasks with Shark-ML 37
Linear regression with Dlib 38

Summary 39
Further reading 39

Chapter 2: Data Processing 40
Technical requirements 41
Parsing data formats to C++ data structures 41

Reading CSV files with the Fast-CPP-CSV-Parser library 43
Preprocessing CSV files 45
Reading CSV files with the Shark-ML library 46
Reading CSV files with the Shogun library 47
Reading CSV files with the Dlib library 49
Reading JSON files with the RapidJSON library 49
Writing and reading HDF5 files with the HighFive library 56

Initializing matrix and tensor objects from C++ data structures 60
Eigen 60

Table of Contents

[ii]

Shark-ML 60
Dlib 61
Shogun 61

Manipulating images with the OpenCV and Dlib libraries 61
Using OpenCV 62
Using Dlib 64

Transforming images into matrix or tensor objects of various
libraries 67

Deinterleaving in OpenCV 67
Deinterleaving in Dlib 68

Normalizing data 69
Normalizing with Eigen 70
Normalizing with Shogun 71
Normalizing with Dlib 72
Normalizing with Shark-ML 73

Summary 74
Further reading 74

Chapter 3: Measuring Performance and Selecting Models 75
Technical requirements 76
Performance metrics for ML models 76

Regression metrics 76
Mean squared error and root mean squared error 77
Mean absolute error 78
R squared 78
Adjusted R squared 79

Classification metrics 79
Accuracy 80
Precision and recall 80
F-score 82
AUC–ROC 82
Log-Loss 83

Understanding the bias and variance characteristics 84
Bias 85
Variance 87
Normal training 89
Regularization 90

L1 regularization – Lasso 91
L2 regularization – Ridge 91
Data augmentation 92
Early stopping 92
Regularization for neural networks 92

Model selection with the grid search technique 92
Cross-validation 93

K-fold cross-validation 93
Grid search 94
Shogun example 95

Table of Contents

[iii]

Shark-ML example 97
Dlib example 98

Summary 100
Further reading 100

Section 2: Machine Learning Algorithms
Chapter 4: Clustering 103

Technical requirements 104
Measuring distance in clustering 104

Euclidean distance 105
Squared Euclidean distance 105
Manhattan distance 105
Chebyshev distance 105

Types of clustering algorithms 106
Partition-based clustering algorithms 107

Distance-based clustering algorithms 107
Graph theory-based clustering algorithms 108

Spectral clustering algorithms 110
Hierarchical clustering algorithms 110
Density-based clustering algorithms 112
Model-based clustering algorithms 113

Examples of using the Shogun library for dealing with the
clustering task samples 114

GMM with Shogun 115
K-means clustering with Shogun 117
Hierarchical clustering with Shogun 119

Examples of using the Shark-ML library for dealing with the
clustering task samples 119

Hierarchical clustering with Shark-ML 119
K-means clustering with Shark-ML 122

Examples of using the Dlib library for dealing with the clustering
task samples 124

K-means clustering with Dlib 124
Spectral clustering with Dlib 127
Hierarchical clustering with Dlib 129
Newman modularity-based graph clustering algorithm with Dlib 131
Chinese Whispers – graph clustering algorithm with Dlib 133

Plotting data with C++ 135
Summary 137
Further reading 138

Chapter 5: Anomaly Detection 139
Technical requirements 140
Exploring the applications of anomaly detection 140

Table of Contents

[iv]

Learning approaches for anomaly detection 142
Detecting anomalies with statistical tests 142
Detecting anomalies with the Local Outlier Factor method 144
Detecting anomalies with isolation forest 145
Detecting anomalies with One-Class SVM (OCSVM) 146
Density estimation approach (multivariate Gaussian distribution) for
anomaly detection 147
C++ implementation of the isolation forest algorithm for anomaly detection 150
Using the Dlib library for anomaly detection 157

One-Cass SVM with Dlib 157
Multivariate Gaussian model with Dlib 159

OCSVM with Shogun 161
OCSVM with Shark-ML 163

Summary 164
Further reading 165

Chapter 6: Dimensionality Reduction 166
Technical requirements 166
An overview of dimension reduction methods 167

Feature selection methods 168
Dimensionality reduction methods 169

Exploring linear methods for dimension reduction 169
Principal component analysis 169
Singular value decomposition 171
Independent component analysis 173
Linear discriminant analysis 175
Factor analysis 177
Multidimensional scaling 178

Exploring non-linear methods for dimension reduction 179
Kernel PCA 180
IsoMap 181
Sammon mapping 182
Distributed stochastic neighbor embedding 183
Autoencoders 185

Understanding dimension reduction algorithms with various С++
libraries 186

Using the Dlib library 187
PCA 187

Data compression with PCA 188
LDA 192
Sammon mapping 193

Using the Shogun library 194
PCA 194
Kernel PCA 195
MDS 196
IsoMap 197

Table of Contents

[v]

ICA 198
Factor analysis 200
t-SNE 201

Using the Shark-ML library 202
PCA 202
LDA 203

Summary 205
Further reading 206

Chapter 7: Classification 207
Technical requirements 208
An overview of classification methods 208
Exploring various classification methods 209

Logistic regression 210
KRR 214
SVM 214
kNN method 221
Multi-class classification 223

Examples of using C++ libraries for dealing with the classification
task 224

Using the Shogun library 226
With logistic regression 226
With SVMs 230
With the kNN algorithm 233

Using the Dlib library 235
With KRR 235
With SVM 238

Using the Shark-ML library 240
With logistic regression 240
With SVM 244
With the kNN algorithm 247

Summary 249
Further reading 250

Chapter 8: Recommender Systems 251
Technical requirements 252
An overview of recommender system algorithms 252

Non-personalized recommendations 254
Content-based recommendations 254
User-based collaborative filtering 255
Item-based collaborative filtering 257
Factorization algorithms 258
Similarity or preferences correlation 259

Pearson's correlation coefficient 260
Spearman's correlation 260
Cosine distance 260

Data scaling and standardization 261

Table of Contents

[vi]

Cold start problem 261
Relevance of recommendations 262
Assessing system quality 263

Understanding collaborative filtering method details 264
Examples of item-based collaborative filtering with C++ 269

Using the Eigen library 269
Using the mlpack library 276

Summary 278
Further reading 279

Chapter 9: Ensemble Learning 280
Technical requirements 280
An overview of ensemble learning 281

Using a bagging approach for creating ensembles 283
Using a gradient boosting method for creating ensembles 286
Using a stacking approach for creating ensembles 291
Using the random forest method for creating ensembles 292

Decision tree algorithm overview 293
Random forest method overview 296

Examples of using C++ libraries for creating ensembles 298
Ensembles with Shogun 298

Using gradient boosting with Shogun 298
Using random forest with Shogun 301

Ensembles with Shark-ML 302
Using random forest with Shark-ML 303
Using a stacking ensemble with Shark-ML 304

Summary 310
Further reading 310

Section 3: Advanced Examples
Chapter 10: Neural Networks for Image Classification 313

Technical requirements 314
An overview of neural networks 314

Neurons 315
The perceptron and neural networks 316
Training with the backpropagation method 321

Backpropagation method modes 322
Stochastic mode 322
Batch mode 323
Mini-batch mode 323

Backpropagation method problems 323
The backpropagation method – an example 324

Loss functions 331
Activation functions 334

The stepwise activation function 334
The linear activation function 335

Table of Contents

[vii]

The sigmoid activation function 337
The hyperbolic tangent 338
Activation function properties 340

Regularization in neural networks 341
Different methods for regularization 341

Neural network initialization 344
Xavier initialization method 344
He initialization method 344

Delving into convolutional networks 345
Convolution operator 345
Pooling operation 348
Receptive field 349
Convolution network architecture 350

What is deep learning? 351
Examples of using C++ libraries to create neural networks 352

Simple network example for the regression task 352
Dlib 352
Shogun 355
Shark-ML 358

Architecture definition 358
Loss function definition 358
Network initialization 359
Optimizer configuration 359
Network training 359
The complete programming sample 359

Understanding image classification using the LeNet architecture 361
Reading the training dataset 363

Reading dataset files 365
Reading the image file 366

Neural network definition 367
Network training 372

Summary 376
Further reading 377

Chapter 11: Sentiment Analysis with Recurrent Neural Networks 378
Technical requirements 379
An overview of the RNN concept 379
Training RNNs using the concept of backpropagation through time 382
Exploring RNN architectures 385

LSTM 385
GRUs 387
Bidirectional RNN 389
Multilayer RNN 389

Understanding natural language processing with RNNs 390
Word2Vec 391
GloVe 392

Sentiment analysis example with an RNN 396

Table of Contents

[viii]

Summary 422
Further reading 424

Section 4: Production and Deployment Challenges
Chapter 12: Exporting and Importing Models 426

Technical requirements 426
ML model serialization APIs in C++ libraries 427

Model serialization with Dlib 427
Model serialization with Shogun 430
Model serialization with Shark-ML 435
Model serialization with PyTorch 437

Neural network initialization 437
Using the torch::save and torch::load functions 440
Using PyTorch archive objects 441

Delving into ONNX format 443
Loading images into Caffe2 tensors 448
Reading the class definition file 450

Summary 451
Further reading 452

Chapter 13: Deploying Models on Mobile and Cloud Platforms 453
Technical requirements 454
Image classification on Android mobile 454

The mobile version of the PyTorch framework 454
Using TorchScript for a model snapshot 455
The Android Studio project 457

The UI and Java part of the project 459
The C++ native part of the project 464

Machine learning in the cloud – using Google Compute Engine 473
The server 474
The client 478
Service deployment 480

Summary 486
Further reading 487

Other Books You May Enjoy 488

Index 491

Preface
Machine learning (ML) is a popular approach to solve different kinds of problems. ML
allows you to deal with various tasks without knowing a direct algorithm to solve them.
The key feature of ML algorithms is their ability to learn solutions by using a set of training
samples, or even without them. Nowadays, ML is a widespread approach used in various
areas of industry. Examples of areas where ML outperforms classical direct algorithms
include computer vision, natural language processing, and recommender systems.

This book is a handy guide to help you learn the fundamentals of ML, showing you how to
use C++ libraries to get the most out of data. C++ can make your ML models run faster and
more efficiently compared to other approaches that use interpreted languages, such as
Python. Also, C++ allows you to significantly reduce the negative performance impact of
data conversion between different languages used in the ML model because you have
direct access to core algorithms and raw data.

Who this book is for
You will find this book useful if you want to get started with ML algorithms and techniques
using the widespread C++ language. This book also appeals to data analysts, data scientists,
and ML developers who are looking to implement different ML models in production
using native development toolsets such as the GCC or Clang ecosystems. Working
knowledge of the C++ programming language is mandatory to get started with this book.

What this book covers
Hands-On Machine Learning with C++'s example-based approach will show you how to
implement supervised and unsupervised ML algorithms with the help of real-world
examples. The book also gives you hands-on experience of tuning and optimizing a model
for different use cases, helping you to measure performance and model selection. You'll
then cover techniques such as object classification and clusterization, product
recommendations, ensemble learning, and anomaly detection using modern C++ libraries
such as the PyTorch C++ API, Caffe2, Shogun, Shark-ML, mlpack, and dlib. Moving ahead,
the chapters will take you through neural networks and deep learning using examples such
as image classification and sentiment analysis, which will help you solve a wide range of
problems.

Preface

[2]

Later, you'll learn how to handle production and deployment challenges on mobile and
cloud platforms, before discovering how to export and import models using the ONNX
format. By the end of this book, you'll have learned how to leverage C++ to build
powerful ML systems.

Chapter 1, Introduction to Machine Learning with C++, will guide you through the necessary
fundamentals of ML, including linear algebra concepts, ML algorithm types, and their
building blocks.

Chapter 2, Data Processing, will show you how to load data from different file formats for
ML model training and how to initialize dataset objects in various C++ libraries.

Chapter 3, Measuring Performance and Selecting Models, will show you how to measure the
performance of various types of ML models, how to select the best set of hyperparameters
to achieve better model performance, and how to use the grid search method in various
C++ libraries for model selection.

Chapter 4, Clustering, will discuss algorithms for grouping objects by their essential
characteristics, show why we usually use unsupervised algorithms for solving such types
of tasks, and lastly, will outline the various types of clustering algorithms, along with their
implementations and usage in different C++ libraries.

Chapter 5, Anomaly Detection, will discuss the basics of anomaly and novelty detection
tasks and guide you through the different types of anomaly detection algorithms, their
implementation, and their usage in various C++ libraries.

Chapter 6, Dimensionality Reduction, will discuss various algorithms for dimensionality
reduction that preserve the essential characteristics of data, along with their
implementation and usage in various C++ libraries.

Chapter 7, Classification, will show you what a classification task is and how it differs from
a clustering task. You will be guided through various classification algorithms, their
implementation, and their usage in various C++ libraries.

Chapter 8, Recommender Systems, will give you familiarity with recommender system
concepts. You will be shown the different approaches to deal with recommendation tasks,
and you will see how to solve such types of tasks using the C++ language.

Chapter 9, Ensemble Learning, will discuss various methods of combining several ML
models to get better accuracy and to deal with learning problems. You will encounter
ensemble implementations with the usage of different C++ libraries.

Preface

[3]

Chapter 10, Neural Networks for Image Classification, will give you familiarity with the
fundamentals of artificial neural networks. You will encounter the essential building
blocks, the required math concepts, and learning algorithms. You will be guided through
different C++ libraries that provide functionality for neural network implementations. Also,
this chapter will show you the implementation of a deep convolutional network for image
classification with the PyTorch library.

Chapter 11, Sentiment Analysis with Recurrent Neural Networks, will guide you through the
fundamentals of recurrent neural networks. You will learn about the different types of
network cells, the required math concepts, and the differences of this learning algorithm
compared to feedforward networks. Also, in this chapter, we will develop a recurrent
neural network for sentiment analysis with the PyTorch library.

Chapter 12, Exporting and Importing Models, will show you how to save and load model
parameters and architectures using various C++ libraries. Also, you will see how to use the
ONNX format to load and use a pre-trained model with the C++ API of the Caffe2 library.

Chapter 13, Deploying Models on Mobile and Cloud Platforms, will guide you through the
development of applications for image classification using neural networks for the Android
and Google Compute Engine platforms.

To get the most out of this book
To be able to compile and run the examples included in this book, you will need to
configure a particular development environment. All code examples have been tested with
the Arch and Ubuntu 18.04 Linux distributions. The following list outlines the packages
you'll need to install on the Ubuntu platform:

build-essential

unzip

git

cmake

cmake-curses-gui

python

python-pip

libblas-dev

libopenblas-dev

libatlas-base-dev

liblapack-dev

Preface

[4]

libboost-all-dev

libopencv-core3.2

libopencv-imgproc3.2

libopencv-dev

libopencv-highgui3.2

libopencv-highgui-dev

protobuf-compiler

libprotobuf-dev

libhdf5-dev

libjson-c-dev

libx11-dev

openjdk-8-jdk

wget

ninja-build

Also, you need to install the following additional packages for Python:

pyyaml

typing

Besides the development environment, you'll have to check out requisite third-party
libraries' source code samples and build them. Most of these libraries are actively
developed and don't have strict releases, so it's easier to check out a particular commit from
the development tree and build it than downloading the latest official release. The
following table shows you the libraries you have to check out, their repository URLs, and
the hash number of the commit to check out:

Library repository Branch
name Commit

https://github.com/
shogun-toolbox/shogun master f7255cf2cc6b5116e50840816d70d21e7cc039bb

https://github.com/
Shark-ML/Shark master 221c1f2e8abfffadbf3c5ef7cf324bc6dc9b4315

https://gitlab.com/
conradsnicta/armadillo-
code

9.500.x 442d52ba052115b32035a6e7dc6587bb6a462dec

https://github.com/
davisking/dlib v19.15 929c630b381d444bbf5d7aa622e3decc7785ddb2

https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/shogun-toolbox/shogun
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://github.com/Shark-ML/Shark
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://gitlab.com/conradsnicta/armadillo-code
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib
https://github.com/davisking/dlib

Preface

[5]

https://github.com/
eigenteam/eigen-git-
mirror

3.3.7 cf794d3b741a6278df169e58461f8529f43bce5d

https://github.com/
mlpack/mlpack master e2f696cfd5b7ccda2d3af1c7c728483ea6591718

https://github.com/
Kolkir/plotcpp master c86bd4f5d9029986f0d5f368450d79f0dd32c7e4

https://github.com/
pytorch/pytorch v1.2.0 8554416a199c4cec01c60c7015d8301d2bb39b64

https://github.com/
xtensor-stack/xtensor master 02d8039a58828db1ffdd2c60fb9b378131c295a2

https://github.com/
xtensor-stack/xtensor-
blas

master 89d9df93ff7306c32997e8bb8b1ff02534d7df2e

https://github.com/
xtensor-stack/xtl master 03a6827c9e402736506f3ded754e890b3ea28a98

https://github.com/
opencv/opencv_contrib/
releases/tag/3.3.0

3.3.0

https://github.com/ben-
strasser/fast-cpp-csv-
parser

master 3b439a664090681931c6ace78dcedac6d3a3907e

https://github.com/
Tencent/rapidjson master 73063f5002612c6bf64fe24f851cd5cc0d83eef9

Also, for the last chapter, you'll have to install the Android Studio IDE. You can download
it from the official site at https://developer.android.com/studio. Besides the IDE, you'll
also need to install and configure the Android SDK. The respective example in
this book was developed and tested with this SDK, which can be downloaded from
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip. To
configure this SDK, you have to unzip it and install particular packages. The following
script shows how to do it:

mkdir /android
cd /android

wget https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
unzip sdk-tools-linux-4333796.zip

yes | ./tools/bin/sdkmanager --licenses
yes | ./tools/bin/sdkmanager "platform-tools"
yes | ./tools/bin/sdkmanager "platforms;android-25"
yes | ./tools/bin/sdkmanager "build-tools;25.0.2"
yes | ./tools/bin/sdkmanager "system-images;android-25;google_apis;armeabi-

https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/eigenteam/eigen-git-mirror
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/mlpack/mlpack
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/Kolkir/plotcpp
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/xtensor-stack/xtl
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/opencv/opencv_contrib/releases/tag/3.3.0
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip

Preface

[6]

v7a"
yes | ./tools/bin/sdkmanager --install "ndk;20.0.5594570"

export ANDROID_NDK=/android/ndk/20.0.5594570
export ANDROID_ABI='armeabi-v7a'

Another way to configure the development environment is through the use of Docker.
Docker allows you to configure a lightweight virtual machine with particular components.
You can install Docker from the official Ubuntu package repository. Then, use the scripts
provided with this book to automatically configure the environment. You will find the
docker folder in the examples package. The following steps show how to use Docker
configuration scripts:

Run the following commands to create the image, run it, and configure the1.
environment:

cd docker
docker build -t buildenv:1.0 .
docker run -it buildenv:1.0 bash
cd /development
./install_env.sh
./install_android.sh
exit

Use the following command to save our Docker container with the configured2.
libraries and packages into a new Docker image:

docker commit [container id]

Use the following command to rename the updated Docker image:3.

docker tag [image id] [new name]

Use the following command to start a new Docker container and share the book4.
examples sources to it:

docker run -it -v [host_examples_path]:[container_examples_path]
[tag name] bash

Preface

[7]

After running the preceding command, you will be in the command-line
environment with the necessary configured packages, compiled third-party
libraries, and with access to the programming examples package. You can use this
environment to compile and run the code examples in this book. Each
programming example is configured to use the CMake build system so you will
be able to build them all in the same way. The following script shows a possible
scenario of building a code example:

cd [example folder name]
mkdir build
cd build
cmake ..
cmake --build . --target all

Also, you can configure your local machine environment to share X Server with a Docker
container to be able to run graphical UI applications from this container. It will allow you to
use, for example, the Android Studio IDE or a C++ IDE (such as Qt Creator) from the
Docker container, without local installation. The following script shows how to do this:

xhost +local:root
docker run --net=host -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix
-it -v [host_examples_path]:[container_examples_path] [tag name] bash

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the following section).
Doing so will help you avoid any potential errors related to the copying and pasting of
code.

To be more comfortable with understanding and building the code examples, we
recommend you carefully read the documentation for each third-party library, and take
some time to learn the basics of the Docker system and of development for the Android
platform. Also, we assume that you have sufficient working knowledge of the C++
language and compilers, and that you are familiar with the CMake build system.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packt.com
https://www.packtpub.com/support

Preface

[8]

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it
here: http://www.packtpub.com/sites/default/files/downloads/9781789955330_ColorI
mages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We downloaded a pre-trained model with the torch.hub.load() function."

http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789955330_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789955330_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789955330_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789955330_ColorImages.pdf

Preface

[9]

A block of code is set as follows:

class Network {
 public:
 Network(const std::string& snapshot_path,
 const std::string& synset_path,
 torch::DeviceType device_type);
 std::string Classify(const at::Tensor& image);
 private:
 torch::DeviceType device_type_;
 Classes classes_;
 torch::jit::script::Module model_;
};

Any command-line input or output is written as follows:

cd ~/[DEST_PATH]/server
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=~/dev/server/third-party/libtorch
cmake --build . --target all

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example: "
Start it by clicking the Start button at the top of the page. "

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[10]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Overview of Machine

Learning
In this section, we will delve into the basics of machine learning with the help of examples
in C++ and various machine learning frameworks. We'll demonstrate how to load data from
various file formats and describe model performance measuring techniques and the best
model selection approaches.

This section comprises the following chapters:

Chapter 1, Introduction to Machine Learning with C++
Chapter 2, Data Processing
Chapter 3, Measuring Performance and Selecting Models

1
Introduction to Machine

Learning with C++
There are different approaches to make computers solve tasks. One of them is to define an
explicit algorithm, and another one is to use implicit strategies based on mathematical and
statistical methods. Machine Learning (ML) is one of the implicit methods that uses
mathematical and statistical approaches to solve tasks. It is an actively growing discipline,
and a lot of scientists and researchers find it to be one of the best ways to move forward
toward systems acting as human-level artificial intelligence (AI).

In general, ML approaches have the idea of searching patterns in a given dataset as their
basis. Consider a recommendation system for a news feed, which provides the user with a
personalized feed based on their previous activity or preferences. The software gathers
information about the type of news article the user reads and calculates some statistics. For
example, it could be the frequency of some topics appearing in a set of news articles. Then,
it performs some predictive analytics, identifies general patterns, and uses them to
populate the user's news feed. Such systems periodically track a user's activity, and update
the dataset and calculate new trends for recommendations.

There are many areas where ML has started to play an important role. It is used for solving
enterprise business tasks as well as for scientific researches. In customer relationship
management (CRM) systems, ML models are used to analyze sales team activity, to help
them to process the most important requests first. ML models are used in business
intelligence (BI) and analytics to find essential data points. Human resource (HR)
departments use ML models to analyze their employees' characteristics in order to identify
the most effective ones and use this information when searching applicants for open
positions.

Introduction to Machine Learning with C++ Chapter 1

[13]

A fast-growing direction of research is self-driving cars, and deep learning neural networks
are used extensively in this area. They are used in computer vision systems for object
identification as well as for navigation and steering systems, which are necessary for car
driving.

Another popular use of ML systems is electronic personal assistants, such as Siri from
Apple or Alexa from Amazon. Such products also use deep learning models to analyze
natural speech or written text to process users' requests and make a natural response in a
relevant context. Such requests can activate music players with preferred songs, as well as
update a user's personal schedule or book flight tickets.

This chapter describes what ML is and which tasks can be solved with ML, and discusses
different approaches used in ML. It aims to show the minimally required math to start
implementing ML algorithms. It also covers how to perform basic linear algebra operations
in libraries such as Eigen, xtensor, Shark-ML, Shogun, and Dlib, and also explains the
linear regression task as an example.

 The following topics will be covered in this chapter:

Understanding the fundamentals of ML
An overview of linear algebra
An overview of a linear regression example

Understanding the fundamentals of ML
There are different approaches to create and train ML models. In this section, we show
what these approaches are and how they differ. Apart from the approach we use to create a
ML model, there are also parameters that manage how this model behaves in the training
and evaluation processes. Model parameters can be divided into two distinct groups, which
should be configured in different ways. The last crucial part of the ML process is a
technique that we use to train a model. Usually, the training technique uses some numerical
optimization algorithm that finds the minimal value of a target function. In ML, the target
function is usually called a loss function and is used for penalizing the training algorithm
when it makes errors. We discuss these concepts more precisely in the following sections.

Introduction to Machine Learning with C++ Chapter 1

[14]

Venturing into the techniques of ML
We can divide ML approaches into two techniques, as follows:

Supervised learning is an approach based on the use of labeled data. Labeled
data is a set of known data samples with corresponding known target outputs.
Such a kind of data is used to build a model that can predict future outputs.
Unsupervised learning is an approach that does not require labeled data and can
search hidden patterns and structures in an arbitrary kind of data.

Let's have a look at each of the techniques in detail.

Supervised learning
Supervised ML algorithms usually take a limited set of labeled data and build models that
can make reasonable predictions for new data. We can split supervised learning algorithms
into two main parts, classification and regression techniques, described as follows:

Classification models predict some finite and distinct types of categories—this
could be a label that identifies if an email is spam or not, or whether an image
contains a human face or not. Classification models are applied in speech and
text recognition, object identification on images, credit scoring, and others.
Typical algorithms for creating classification models are Support Vector
Machine (SVM), decision tree approaches, k-nearest neighbors (KNN), logistic
regression, Naive Bayes, and neural networks. The following chapters describe
the details of some of these algorithms.
Regression models predict continuous responses such as changes in temperature
or values of currency exchange rates. Regression models are applied in
algorithmic trading, forecasting of electricity load, revenue prediction, and
others. Creating a regression model usually makes sense if the output of the
given labeled data is real numbers. Typical algorithms for creating regression
models are linear and multivariate regressions, polynomial regression models,
and stepwise regressions. We can use decision tree techniques and neural
networks to create regression models too. The following chapters describe the
details of some of these algorithms.

Introduction to Machine Learning with C++ Chapter 1

[15]

Unsupervised learning
Unsupervised learning algorithms do not use labeled datasets. They create models that use
intrinsic relations in data to find hidden patterns that they can use for making predictions.
The most well-known unsupervised learning technique is clustering. Clustering involves
dividing a given set of data in a limited number of groups according to some intrinsic
properties of data items. Clustering is applied in market researches, different types of
exploratory analysis, deoxyribonucleic acid (DNA) analysis, image segmentation, and
object detection. Typical algorithms for creating models for performing clustering are k-
means, k-medoids, Gaussian mixture models, hierarchical clustering, and hidden Markov
models. Some of these algorithms are explained in the following chapters of this book.

Dealing with ML models
We can interpret ML models as functions that take different types of parameters. Such
functions provide outputs for given inputs based on the values of these parameters.
Developers can configure the behavior of ML models for solving problems by adjusting
model parameters. Training a ML model can usually be treated as a process of searching
the best combination of its parameters. We can split the ML model's parameters into two
types. The first type consists of parameters internal to the model, and we can estimate their
values from the training (input) data. The second type consists of parameters external to the
model, and we cannot estimate their values from training data. Parameters that are external
to the model are usually called hyperparameters.

Internal parameters have the following characteristics:

They are necessary for making predictions.
They define the quality of the model on the given problem.
We can learn them from training data.
Usually, they are a part of the model.

If the model contains a fixed number of internal parameters, it is called parametric.
Otherwise, we can classify it as non-parametric.

Examples of internal parameters are as follows:

Weights of artificial neural networks (ANNs)
Support vector values for SVM models
Polynomial coefficients for linear regression or logistic regression

Introduction to Machine Learning with C++ Chapter 1

[16]

On the other hand, hyperparameters have the following characteristics:

They are used to configure algorithms that estimate model parameters.
The practitioner usually specifies them.
Their estimation is often based on using heuristics.
They are specific to a concrete modeling problem.

It is hard to know the best values for a model's hyperparameters for a specific problem.
Also, practitioners usually need to perform additional research on how to tune required
hyperparameters so that a model or a training algorithm behaves in the best way.
Practitioners use rules of thumb, copying values from similar projects, as well as special
techniques such as grid search for hyperparameter estimation.

Examples of hyperparameters are as follows:

C and sigma parameters used in the SVM algorithm for a classification quality
configuration
The learning rate parameter that is used in the neural network training process to
configure algorithm convergence
The k value that is used in the KNN algorithm to configure the number of
neighbors

Model parameter estimation
Model parameter estimation usually uses some optimization algorithm. The speed and
quality of the resulting model can significantly depend on the optimization algorithm
chosen. Research on optimization algorithms is a popular topic in industry, as well as in
academia. ML often uses optimization techniques and algorithms based on the
optimization of a loss function. A function that evaluates how well a model predicts on the
data is called a loss function. If predictions are very different from the target outputs, the
loss function will return a value that can be interpreted as a bad one, usually a large
number. In such a way, the loss function penalizes an optimization algorithm when it
moves in the wrong direction. So, the general idea is to minimize the value of the loss
function to reduce penalties. There is no one universal loss function for optimization
algorithms. Different factors determine how to choose a loss function. Examples of such
factors are as follows:

Specifics of the given problem—for example, if it is a regression or a classification
model

Introduction to Machine Learning with C++ Chapter 1

[17]

Ease of calculating derivatives
Percentage of outliers in the dataset

In ML, the term optimizer is used to define an algorithm that connects a loss function and a
technique for updating model parameters in response to the values of the loss function. So,
optimizers tune ML models to predict target values for new data in the most accurate way
by fitting model parameters. There are many optimizers: Gradient Descent, Adagrad,
RMSProp, Adam, and others. Moreover, developing new optimizers is an active area of
research. For example, there is the ML and Optimization research group at Microsoft (located
in Redmond) whose research areas include combinatorial optimization, convex and non-
convex optimization, and their application in ML and AI. Other companies in the industry
also have similar research groups; there are many publications from Facebook Research,
Amazon Research, and OpenAI groups.

An overview of linear algebra
The concepts of linear algebra are essential for understanding the theory behind ML
because they help us understand how ML algorithms work under the hood. Also, most ML
algorithm definitions use linear algebra terms.

Linear algebra is not only a handy mathematical instrument, but also the concepts of linear
algebra can be very efficiently implemented with modern computer architectures. The rise
of ML, and especially deep learning, began after significant performance improvement of
the modern Graphics Processing Unit (GPU). GPUs were initially designed to work with
linear algebra concepts and massive parallel computations used in computer games. After
that, special libraries were created to work with general linear algebra concepts. Examples
of libraries that implement basic linear algebra routines are Cuda and OpenCL, and one
example of a specialized linear algebra library is cuBLAS. Moreover, it became more
common to use general-purpose graphics processing units (GPGPUs) because these turn
the computational power of a modern GPU into a powerful general-purpose computing
resource.

Also, Central Processing Units (CPUs) have instruction sets specially designed for
simultaneous numerical computations. Such computations are called vectorized, and
common vectorized instruction sets are AVx, SSE, and MMx. There is also a term Single
Instruction Multiple Data (SIMD) for these instruction sets. Many numeric linear algebra
libraries, such as Eigen, xtensor, VienaCL, and others, use them to improve
computational performance.

Introduction to Machine Learning with C++ Chapter 1

[18]

Learning the concepts of linear algebra
Linear algebra is a big area. It is the section of algebra that studies objects of a linear nature:
vector (or linear) spaces, linear representations, and systems of linear equations. The main
tools used in linear algebra are determinants, matrices, conjugation, and tensor calculus.

To understand ML algorithms, we only need a small set of linear algebra concepts.
However, to do researches on new ML algorithms, a practitioner should have a deep
understanding of linear algebra and calculus.

The following list contains the most valuable linear algebra concepts for understanding ML
algorithms:

Scalar: This is a single number.
Vector: This is an array of ordered numbers. Each element has a distinct index.
Notation for vectors is a bold lowercase typeface for names and an italic typeface
with a subscript for elements, as shown in the following example:

Matrix: This is a two-dimensional array of numbers. Each element has a distinct
pair of indices. Notation for matrices is a bold uppercase typeface for names and
an italic but not bold typeface with a comma-separated list of indices in subscript
for elements, as shown in the following example:

Introduction to Machine Learning with C++ Chapter 1

[19]

Tensor: This is an array of numbers arranged in a multidimensional regular grid,
and represents generalizations of matrices. It is like a multidimensional matrix.
For example, tensor A with dimensions 2 x 2 x 2 can look like this:

Linear algebra libraries and ML frameworks usually use the concept of a tensor instead of a
matrix because they implement general algorithms, and a matrix is just a special case of a
tensor with two dimensions. Also, we can consider a vector as a matrix of size n x 1.

Basic linear algebra operations
The most common operations used for programming linear algebra algorithms are the
following ones:

Element-wise operations: These are performed in an element-wise manner on
vectors, matrices, or tensors of the same size. The resulting elements will be the
result of operations on corresponding input elements, as shown here:

The following example shows the element-wise summation:

Introduction to Machine Learning with C++ Chapter 1

[20]

Dot product: There are two types of multiplications for tensor and matrices in
linear algebra—one is just element-wise, and the second is the dot product. The
dot product deals with two equal-length series of numbers and returns a single
number. This operation applied on matrices or tensors requires that the matrix or
tensor A has the same number of columns as the number of rows in the matrix or
tensor B. The following example shows the dot-product operation in the case
when A is an n x m matrix and B is an m x p matrix:

Transposing: The transposing of a matrix is an operation that flips the matrix
over its diagonal, which leads to the flipping of the column and row indices of
the matrix, resulting in the creation of a new matrix. In general, it is swapping
matrix rows with columns. The following example shows how transposing
works:

Norm: This operation calculates the size of the vector; the result of this is a non-
negative real number. The norm formula is as follows:

The generic name of this type of norm is norm for . Usually, we use
more concrete norms such as an norm with p = 2, which is known as the
Euclidean norm, and we can interpret it as the Euclidean distance between points.
Another widely used norm is the squared norm, whose calculation formula is

. The squared norm is more suitable for mathematical and computational
operations than the norm. Each partial derivative of the squared norm
depends only on the corresponding element of x, in comparison to the partial
derivatives of the norm which depends on the entire vector; this property
plays a vital role in optimization algorithms. Another widely used norm operation
is the norm with p=1, which is commonly used in ML when we care about the
difference between zero and nonzero elements.

Introduction to Machine Learning with C++ Chapter 1

[21]

Inverting: The inverse matrix is such a matrix that , where I is an identity
matrix. The identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix.

We considered the main linear algebra concepts as well as operations on them. Using this
math apparatus, we can define and program many ML algorithms. For example, we can
use tensors and matrices to define training datasets for training, and scalars can be used as
different types of coefficients. We can use element-wise operations to perform arithmetic
operations with a whole dataset (a matrix or a tensor). For example, we can use element-
wise multiplication to scale a dataset. We usually use transposing to change a view of a
vector or matrix to make them suitable for the dot-product operation. The dot product is
usually used to apply a linear function with weights expressed as matrix coefficients to a
vector; for example, this vector can be a training sample. Also, dot-product operations are
used to update model parameters expressed as matrix or tensor coefficients according to an
algorithm.

The norm operation is often used in formulas for loss functions because it naturally
expresses the distance concept and can measure the difference between target and
predicted values. The inverse matrix is a crucial concept for the analytical solving of linear
equations systems. Such systems often appear in different optimization problems.
However, calculating the inverse matrix is very computationally expensive.

Tensor representation in computing
We can represent tensor objects in computer memory in different ways. The most obvious
method is a simple linear array in computer memory (random-access memory, or RAM).
However, the linear array is also the most computationally effective data structure for
modern CPUs. There are two standard practices to organize tensors with a linear array in
memory: row-major ordering and column-major ordering. In row-major ordering, we place
consecutive elements of a row in linear order one after the other, and each row is also
placed after the end of the previous one. In column-major ordering, we do the same but
with the column elements. Data layouts have a significant impact on computational
performance because the speed of traversing an array relies on modern CPU architectures
that work with sequential data more efficiently than with non-sequential data. CPU caching
effects are the reasons for such behavior. Also, a contiguous data layout makes it possible to
use SIMD vectorized instructions that work with sequential data more efficiently, and we
can use them as a type of parallel processing.

Introduction to Machine Learning with C++ Chapter 1

[22]

Different libraries, even in the same programming language, can use different ordering. For
example, Eigen uses column-major ordering, but PyTorch uses row-major ordering. So,
developers should be aware of internal tensor representation in libraries they use, and also
take care of this when performing data loading or implementing algorithms from scratch.

Consider the following matrix:

Then, in the row-major data layout, members of the matrix will have the following layout
in memory:

0 1 2 3 4 5
a11 a12 a13 a21 a22 a23

In the case of the column-major data layout, order layout will be the next, as shown here:

0 1 2 3 4 5
a11 a21 a12 a22 a13 a23

Linear algebra API samples
Consider some C++ linear algebra APIs (short for Application Program Interface), and look
at how we can use them for creating linear algebra primitives and perform algebra
operations with them.

Using Eigen
Eigen is a general-purpose linear algebra C++ library. In Eigen, all matrices and vectors
are objects of the Matrix template class, and the vector is a specialization of the matrix
type, with either one row or one column. Tensor objects are not presented in official APIs
but exist as submodules.

We can define the type for a matrix with known dimensions and floating-point data type
like this:

typedef Eigen::Matrix<float, 3, 3> MyMatrix33f;

Introduction to Machine Learning with C++ Chapter 1

[23]

We can define a vector in the following way:

typedef Eigen::Matrix<float, 3, 1> MyVector3f;

Eigen already has a lot of predefined types for vector and matrix objects—for
example, Eigen::Matrix3f (floating-point 3x3 matrix type) or Eigen::RowVector2f
(floating-point 1 x 2 vector type). Also, Eigen is not limited to matrices whose dimensions
we know at compile time. We can define matrix types that will take the number of rows or
columns at initialization during runtime. To define such types, we can use a special type
variable for the Matrix class template argument named Eigen::Dynamic. For example, to
define a matrix of doubles with dynamic dimensions, we can use the following definition:

typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MyMatrix;

Objects initialized from the types we defined will look like this:

MyMatrix33f a;
MyVector3f v;
MyMatrix m(10,15);

To put some values into these objects, we can use several approaches. We can use special
predefined initialization functions, as follows:

a = MyMatrix33f::Zero(); // fill matrix elements with zeros
a = MyMatrix33f::Identity(); // fill matrix as Identity matrix
v = MyVector3f::Random(); // fill matrix elements with random values

We can use the comma-initializer syntax, as follows:

a << 1,2,3,
 4,5,6,
 7,8,9;

This code construction initializes the matrix values in the following way:

We can use direct element access to set or change matrix coefficients. The following code
sample shows how to use the () operator for such an operation:

a(0,0) = 3;

Introduction to Machine Learning with C++ Chapter 1

[24]

We can use the object of the Map type to wrap an existent C++ array or vector in the Matrix
type object. This kind of mapping object will use memory and values from the underlying
object, and will not allocate the additional memory and copy the values. The following
snippet shows how to use the Map type:

int data[] = {1,2,3,4};
Eigen::Map<Eigen::RowVectorxi> v(data,4);
std::vector<float> data = {1,2,3,4,5,6,7,8,9};
Eigen::Map<MyMatrix33f> a(data.data());

We can use initialized matrix objects in mathematical operations. Matrix and vector
arithmetic operations in the Eigen library are offered either through overloads of standard
C++ arithmetic operators such as +, -, *, or through methods such as dot() and
cross(). The following code sample shows how to express general math operations in
Eigen:

using namespace Eigen;
auto a = Matrix2d::Random();
auto b = Matrix2d::Random();
auto result = a + b;
result = a.array() * b.array(); // element wise multiplication
result = a.array() / b.array();
a += b;
result = a * b; // matrix multiplication
//Also it’s possible to use scalars:
a = b.array() * 4;

Notice that in Eigen, arithmetic operators such as operator+ do not perform any
computation by themselves. These operators return an expression object, which describes
what computation to perform. The actual computation happens later when the whole
expression is evaluated, typically in the operator= arithmetic operator. It can lead to some
strange behaviors, primarily if a developer uses the auto keyword too frequently.

Sometimes, we need to perform operations only on a part of the matrix. For this purpose,
Eigen provides the block method, which takes four parameters: i,j,p,q. These
parameters are the block size p,q and the starting point i,j. The following code shows
how to use this method:

Eigen::Matrixxf m(4,4);
Eigen::Matrix2f b = m.block(1,1,2,2); // copying the middle part of matrix
m.block(1,1,2,2) *= 4; // change values in original matrix

Introduction to Machine Learning with C++ Chapter 1

[25]

There are two more methods to access rows and columns by index, which are also a type of
block operation. The following snippet shows how to use the col and the row methods:

m.row(1).array() += 3;
m.col(2).array() /= 4;

Another important feature of linear algebra libraries is broadcasting, and Eigen supports
this with the colwise and rowwise methods. Broadcasting can be interpreted as a matrix
by replicating it in one direction. Take a look at the following example of how to add a
vector to each column of the matrix:

Eigen::Matrixxf mat(2,4);
Eigen::Vectorxf v(2); // column vector
mat.colwise() += v;

This operation has the following result: .

Using xtensor
The xtensor library is a C++ library for numerical analysis with multidimensional array
expressions. Containers of xtensor are inspired by NumPy, the Python array
programming library. ML algorithms are mainly described using Python and NumPy, so
this library can make it easier to move them to C++. The following container classes
implement multidimensional arrays in the xtensor library.

The xarray type is a dynamically sized multidimensional array, as shown in the following
code snippet:

std::vector<size_t> shape = { 3, 2, 4 };
xt::xarray<double, xt::layout_type::row_major> a(shape);

The xtensor type is a multidimensional array whose dimensions are fixed at compilation
time. Exact dimension values can be configured in the initialization step, as shown in the
following code snippet:

std::array<size_t, 3> shape = { 3, 2, 4 };
xt::xtensor<double, 3> a(shape);

The xtensor_fixed type is a multidimensional array with a dimension shape fixed at
compile time, as shown in the following code snippet:

xt::xtensor_fixed<double, xt::xshape<3, 2, 4>> a;

Introduction to Machine Learning with C++ Chapter 1

[26]

The xtensor library also implements arithmetic operators with expression template
techniques such as Eigen (this is a common approach for math libraries implemented in
C++). So, the computation happens lazily, and the actual result is calculated when the
whole expression is evaluated. The container definitions are also expressions. There is also
a function to force an expression evaluation named xt::eval in the xtensor library.

There are different kinds of container initialization in the xtensor library.
Initialization of xtensor arrays can be done with C++ initializer lists, as follows:

 xt::xarray<double> arr1{{1.0, 2.0, 3.0},
 {2.0, 5.0, 7.0},
 {2.0, 5.0, 7.0}}; // initialize a 3x3 array

The xtensor library also has builder functions for special tensor types. The following
snippet shows some of them:

std::vector<uint64_t> shape = {2, 2};
xt::ones(shape);
xt::zero(shape);
xt::eye(shape); //matrix with ones on the diagonal

Also, we can map existing C++ arrays into the xtensor container with the xt::adapt
function. This function returns the object that uses the memory and values from the
underlying object, as shown in the following code snippet:

std::vector<float> data{1,2,3,4};
std::vector<size_t> shape{2,2};
auto data_x = xt::adapt(data, shape);

We can use direct access to container elements, with the () operator, to set or change tensor
values, as shown in the following code snippet:

std::vector<size_t> shape = {3, 2, 4};
xt::xarray<float> a = xt::ones<float>(shape);
a(2,1,3) = 3.14f;

The xtensor library implements linear algebra arithmetic operations through overloads of
standard C++ arithmetic operators such as +, - and *. To use other operations such as dot-
product operations, we have to link an application with the library named xtensor-blas.
These operators are declared in the xt::linalg namespace.

The following code shows the use of arithmetic operations with the xtensor library:

auto a = xt::random::rand<double>({2,2});
auto b = xt::random::rand<double>({2,2});
auto c = a + b;

Introduction to Machine Learning with C++ Chapter 1

[27]

a -= b;
c = xt::linalg::dot(a,b);
c = a + 5;

To get partial access to the xtensor containers, we can use the xt::view function. The
following sample shows how this function works:

xt::xarray<int> a{{1, 2, 3, 4},
 {5, 6, 7, 8}
 {9, 10, 11, 12}
 {13, 14, 15, 16}};
auto b = xt::view(a, xt::range(1, 3), xt::range(1, 3));

This operation takes a rectangular block from the tensor, which looks like this:

The xtensor library implements automatic broadcasting in most cases. When the
operation involves two arrays of different dimensions, it transmits the array with the
smaller dimension across the leading dimension of the other array, so we can directly add a
vector to a matrix. The following code sample shows how easy it is:

auto m = xt::random::rand<double>({2,2});
auto v = xt::random::rand<double>({2,1});
auto c = m + v;

Using Shark-ML
Shark-ML is a C++ ML library with rich functionality. It also provides an API for linear
algebra routines.

There are four container classes for representing matrices and vectors in the Shark-ML
library. Notice that the linear algebra functionality is declared in the remora namespace
instead of the shark namespace, which is used for other routines.

Introduction to Machine Learning with C++ Chapter 1

[28]

The following code sample shows container classes that exist in the Shark-ML library,
wherein the vector type is a dynamically sized array:

remora::vector<double> b(100, 1.0); // vector of size 100 and filled
with 1.0

The compressed_vector type is a sparse array storing values in a compressed format.

The matrix type is a dynamically sized dense matrix, as shown in the following code
snippet:

remora::matrix<double> C(2, 2); // 2x2 matrix

The compressed_matrix type is a sparse matrix storing values in a compressed format.

There are two main types of container initialization in the Shark-ML library.

We can initialize a container object with the constructor that takes the initializer list. The
following code sample shows this:

remora::matrix<float> m_ones{{1, 1}, {1, 1}}; // 2x2 matrix

The second option is to wrap the existing C++ array into the container object and reuse its
memory and values. The following code sample shows how to use the same array for the
initialization of matrix and vector objects:

float data[]= {1,2,3,4};
remora::matrix<float> m(data, 2, 2);
remora::vector<float> v(data, 4);

Also, we can initialize values with direct access to the container elements, with the
() operator. The following code sample shows how to set a value for matrix and vector
objects:

remora::matrix<float> m(data, 2, 2);
m(0,0) = 3.14f;
remora::vector<float> v(data, 4);
v(0) = 3.14f;

The Shark-ML library implements linear algebra arithmetic operations through overloads
of standard C++ arithmetic operators such as +, - and *. Some other operations such as the
dot product are implemented as standalone functions.

Introduction to Machine Learning with C++ Chapter 1

[29]

The following code sample shows how to use arithmetic operations in the Shark-ML
library:

remora::matrix<float> a(data, 2, 2);
remora::matrix<float> b(data, 2, 2);
auto c = a + b;
a -= b;
c = remora::prod(a,b);
c = a%b; // also dot product operation
c = a + 5;

We can use the following functions for partial access to the Shark ML containers:

subrange (x,i,j): This function returns a sub-vector of x with the elements
xi,…, xj−1.
subrange (A,i,j,k,l): This function returns a sub-matrix of A with elements
indicated by i,…, j−1 and k, …, l−1.
row (A,k): This function returns the kth row of A as a vector proxy.
column (A,k): This function returns the kth column of A as a vector proxy.
rows (A,k,l): This function returns the rows k,…,l−1 of A as a matrix proxy.
columns (A,k,l): This function returns the columns k,…, l−1 of A as a matrix
proxy.

There is no broadcasting implementation in the Shark-ML library. Limited support of
broadcasting exists only in the form of reduction functions (the set of functions that
calculate one numeric value for a whole matrix or vector). There are two functions—the
as_rows() and as_columns() function—that allow reduction operations to be performed
independently on matrix rows or columns respectively. We can pass the result of these
functions to any of the reduction functions. The following code sample shows how to
perform summation reduction:

remora::matrix<float> m{{1, 2, 3, 4}, {5, 6, 7, 8}};
auto cols = remora::as_columns(m);
remora::sum(cols)

A different way to work with columns and rows independently is the use of partial access
functions. The following code sample shows how to add the same vector to each of the
matrix columns:

remora::vector<float> v{10, 10};
// Update matrix rows
for (size_t i = 0; i < m.size2(); ++i) {
 remora::column(m, i) += v;
}

Introduction to Machine Learning with C++ Chapter 1

[30]

Using Dlib
Dlib is a modern C++ toolkit containing ML algorithms and tools for creating computer
vision software in C++. Most of the linear algebra tools in Dlib deal with dense matrices.
However, there is also limited support for working with sparse matrices and vectors. In
particular, the Dlib tools represent sparse vectors using the containers from the C++
standard template library (STL).

There are two main container types in Dlib to work with linear algebra: the matrix and
the vector classes. Matrix operations in Dlib are implemented using the expression
templates technique, which allows them to eliminate the temporary matrix objects that
would usually be returned from expressions such as M = A+B+C+D.

We can create a matrix sized at compile time in the following way, by specifying
dimensions as template arguments:

Dlib::matrix<double,3,1> y;

Alternatively, we can create dynamically sized matrix objects. In such a case, we pass the
matrix dimensions to the constructor, as shown in the following code snippet:

Dlib::matrix<double> m(3,3);

Later, we can change the size of this matrix, with the following method:

m.set_size(6,6);

We can initialize matrix values with a comma operator, as shown in the following code
snippet:

m = 54.2, 7.4, 12.1,
 1, 2, 3,
 5.9, 0.05, 1;

As in the previous libraries, we can wrap an existing C++ array to the matrix object, as
shown in the following code snippet:

double data[] = {1,2,3,4,5,6};
auto a = Dlib::mat(data, 2,3); // create matrix with size 2x3

Also, we can access matrix elements with the () operator to modify or get a particular
value, as shown in the following code snippet:

m(1,2) = 3;

Introduction to Machine Learning with C++ Chapter 1

[31]

The Dlib library has a set of predefined functions to initialize a matrix with values such as
identity matrix, 1s, or random values, as illustrated in the following code snippet:

auto a = Dlib::identity_matrix<double>(3);
auto b = Dlib::ones_matrix<double>(3,4);
auto c = Dlib::randm(3,4); // matrix with random values with size 3x3

Most linear algebra arithmetic operations in the Dlib library are implemented through
overloads of standard C++ arithmetic operators such as +, -, *. Other complex operations
are provided by the library as standalone functions.

The following example shows the use of arithmetic operations in the Dlib library:

auto c = a + b;
auto e = a * b; // real matrix multiplication
auto d = Dlib::pointwise_multiply(a, b); // element wise multiplication
a += 5;
auto t = Dlib::trans(a); // transpose matrix

To work with partial access to matrices, Dlib provides a set of special functions. The
following code sample shows how to use some of them:

a = Dlib::rowm(b,0); // takes first row of matrix
a = Dlib::rowm(b,Dlib::range(0,1));//takes first two rows
a = Dlib::colm(b,0); // takes first column
a = Dlib::subm(b, range(1,2), range(1,2)); // takes a rectangular part from
center
Dlib::set_subm(b,range(0,1), range(0,1)) = 7; // initialize part of the
matrix
Dlib::set_subm(b,range(0,1), range(0,1)) += 7; // add a value to the part
of the matrix

Broadcasting in the Dlib library can be modeled with set_rowm(), set_colm(), and
set_subm() functions that give modifier objects for a particular matrix row, column, or a
rectangular part of the original matrix. Objects returned from these functions support all set
or arithmetic operations. The following code snippet shows how to add a vector to the
columns:

Dlib::matrix<float, 2,1> x;
Dlib::matrix<float, 2,3> m;
Dlib::set_colm(b,Dlib::range(0,1)) += x;

Introduction to Machine Learning with C++ Chapter 1

[32]

An overview of linear regression
Consider an example of the real-world supervised ML algorithm called linear regression. In
general, linear regression is an approach for modeling a target value (dependent value)
based on an explanatory value (independent value). This method is used for forecasting
and finding relationships between values. We can classify regression methods by the
number of inputs (independent variables) and the type of relationship between the inputs
and outputs (dependent variables).

Simple linear regression is the case where the number of independent variables is 1, and
there is a linear relationship between the independent (x) and dependent (y) variable.

Linear regression is widely used in different areas, such as scientific research, where it can
describe relationships between variables, as well as in applications within industry, such as
a revenue prediction. For example, it can estimate a trend line that represents the long-term
movement in the stock price time-series data. It tells whether the interest value of in a
specific dataset has increased or decreased over the given period, as illustrated in the
following screenshot:

Introduction to Machine Learning with C++ Chapter 1

[33]

If we have one input variable (independent variable) and one output variable (dependent
variable) the regression is called simple, and we use the term simple linear regression for
it. With multiple independent variables, we call this multiple linear regression or
multivariable linear regression. Usually, when we are dealing with real-world problems,
we have a lot of independent variables, so we model such problems with multiple
regression models. Multiple regression models have a universal definition that covers other
types, so even simple linear regression is often defined using the multiple regression
definition.

Solving linear regression tasks with different
libraries
Assume that we have a dataset, , so that we can express the linear
relation between y and x with mathematical formula in the following way:

Here, p is the dimension of the independent variable, and T denotes the transpose, so that
 is the inner product between vectors and β. Also, we can rewrite the previous

expression in matrix notation, as follows:

, , ,

The preceding matrix notation can be explained as follows:

y: This is a vector of observed target values.
x: This is a matrix of row-vectors, , which are known as explanatory or
independent values.
ß: This is a (p+1) dimensional parameters vector.
ε: This is called an error term or noise. This variable captures all other factors that
influence the y dependent variable other than the regressors.

Introduction to Machine Learning with C++ Chapter 1

[34]

When we are considering simple linear regression, p is equal to 1, and the equation will
look like this:

The goal of the linear regression task is to find parameter vectors that satisfy the previous
equation. Usually, there is no exact solution to such a system of linear equations, so the task
is to estimate parameters that satisfy these equations with some assumptions. One of the
most popular estimation approaches is one based on the principle of least squares:
minimizing the sum of the squares of the differences between the observed dependent
variable in the given dataset and those predicted by the linear function. This is called the
ordinary least squares (OLS) estimator. So, the task can be formulated with the following
formula:

In the preceding formula, the objective function S is given by the following matrix notation:

This minimization problem has a unique solution, in the case that the p columns of the
x matrix are linearly independent. We can get this solution by solving the normal equation,
as follows:

Linear algebra libraries can solve such equations directly with an analytical approach, but it
has one significant disadvantage—computational cost. In the case of large dimensions of
y and x, requirements for computer memory amount and computational time are too big to
solve real-world tasks.

So, usually, this minimization task is solved with iterative approaches. Gradient descent
(GD) is an example of such an algorithm. GD is a technique based on the observation that if
the function is defined and is differentiable in a neighborhood of a point , then
 decreases fastest when it goes in the direction of the negative gradient of S at the point .

Introduction to Machine Learning with C++ Chapter 1

[35]

We can change our objective function to a form more suitable for an iterative approach.
We can use the mean squared error (MSE) function, which measures the difference
between the estimator and the estimated value, as illustrated here:

In the case of the multiple regression, we take partial derivatives for this function for each
of x components, as follows:

So, in the case of the linear regression, we take the following derivatives:

The whole algorithm has the following description:

Initialize β with zeros.1.
Define a value for the learning rate parameter that controls how much we are2.
adjusting parameters during the learning procedure.
Calculate the following values of β:3.

Repeat steps 1-3 for a number of times or until the MSE value reaches a4.
reasonable amount.

Introduction to Machine Learning with C++ Chapter 1

[36]

The previously described algorithm is one of the simplest supervised ML algorithms. We
described it with the linear algebra concepts we introduced earlier in the chapter. Later, it
became more evident that almost all ML algorithms use linear algebra under the hood. The
following samples show the higher-level API in different linear algebra libraries for solving
the linear regression task, and we provide them to show how libraries can simplify the
complicated math used underneath. We will give the details of the APIs used in these
samples in the following chapters.

Solving linear regression tasks with Eigen
There are several iterative methods for solving problems of the form in the Eigen
library. The LeastSquaresConjugateGradient class is one of them, which allows us to
solve linear regression problems with the conjugate gradient algorithm. The
ConjugateGradient algorithm can converge more quickly to the function's minimum
than regular GD but requires that matrix A is positively defined to guarantee numerical
stability. The LeastSquaresConjugateGradient class has two main settings: the
maximum number of iterations and a tolerance threshold value that is used as a stopping
criteria as an upper bound to the relative residual error, as illustrated in the following code
block:

typedef float DType;
using Matrix = Eigen::Matrix<DType, Eigen::Dynamic, Eigen::Dynamic>;
int n = 10000;
Matrix x(n,1);
Matrix y(n,1);
Eigen::LeastSquaresConjugateGradient<Matrix> gd;
gd.setMaxIterations(1000);
gd.setTolerance(0.001) ;
gd.compute(x);
auto b = dg.solve(y);

For new x inputs, we can predict new y values with matrices operations, as follows:

Eigen::Matrixxf new_x(5, 2);
new_x << 1, 1, 1, 2, 1, 3, 1, 4, 1, 5;
auto new_y = new_x.array().rowwise() * b.transpose().array();

Also, we can calculate parameter's b vector (the linear regression task solution) by solving
the normal equation directly, as follows:

auto b = (x.transpose() * x).ldlt().solve(x.transpose() * y);

Introduction to Machine Learning with C++ Chapter 1

[37]

Solving linear regression tasks with Shogun
Shogun is an open source ML library that provides a wide range of unified ML algorithms.
The Shogun library has the CLinearRidgeRegression class for solving simple linear
regression problems. This class solves problems with standard Cholesky matrix
decomposition in a noniterative way, as illustrated in the following code block:

auto x = some<CDenseFeatures<float64_t>>(x_values);
auto y= some<CRegressionLabels>(y_values); // real-valued labels
float64_t tau_regularization = 0.0001;
auto lr = some<CLinearRidgeRegression>(tau_regularization, nullptr,
nullptr); // regression model with regularization
lr->set_labels(y);
r->train(x)

For new x inputs, we can predict new y values in the following way:

auto new_x = some<CDenseFeatures<float64_t>>(new_x_values);
auto y_predict = lr->apply_regression(new_x);

Also, we can get the calculated parameters (the linear regression task solution) vector, as
follows:

auto weights = lr->get_w();

Moreover, we can calculate the value of MSE, as follows:

auto y_predict = lr->apply_regression(x);
auto eval = some<CMeanSquaredError>();
auto mse = eval->evaluate(y_predict , y);

Solving linear regression tasks with Shark-ML
The Shark-ML library provides the LinearModel class for representing linear regression
problems. There are two trainer classes for this kind of model: the LinearRegression
class, which provides analytical solutions, and the LinearSAGTrainer class, which
provides a stochastic average gradient iterative method, as illustrated in the following code
block:

using namespace shark;
using namespace std;
Data<RealVector> x;
Data<RealVector> y;
RegressionDataset data(x, y);
LinearModel<> model;

Introduction to Machine Learning with C++ Chapter 1

[38]

LinearRegression trainer;
trainer.train(model, data);

We can get the calculated parameters (the linear regression task solution) vector by running
the following code:

auto b = model.parameterVector();

For new x inputs, we can predict new y values in the following way:

Data<RealVector> new_x;
Data<RealVector> prediction = model(new_x);

Also, we can calculate the value of squared error, as follows:

SquaredLoss<> loss;
auto se = loss(y, prediction)

Linear regression with Dlib
The Dlib library provides the krr_trainer class, which can get the template argument of
the linear_kernel type to solve linear regression tasks. This class implements direct
analytical solving for this type of problem with the kernel ridge regression algorithm, as
illustrated in the following code block:

std::vector<matrix<double>> x;
std::vector<float> y;
krr_trainer<KernelType> trainer;
trainer.set_kernel(KernelType());
decision_function<KernelType> df = trainer.train(x, y);

For new x inputs, we can predict new y values in the following way:

std::vector<matrix<double>> new_x;
for (auto& v : x) {
 auto prediction = df(v);
 std::cout << prediction << std::endl;
}

Introduction to Machine Learning with C++ Chapter 1

[39]

Summary
In this chapter, we learned what ML is, how it differs from other computer algorithms, and
how it became so popular. We also became familiar with the necessary mathematical
background required to begin to work with ML algorithms. We looked at software libraries
that provide APIs for linear algebra, and also implemented our first ML algorithm—linear
regression.

There are other linear algebra libraries for C++. Moreover, the popular deep learning
frameworks use their own implementations of linear algebra libraries. For example, the
MXNet framework is based on the mshadow library, and the PyTorch framework is based
on the ATen library. Some of these libraries can use GPU or special CPU instructions for
speeding up calculations. Such features do not usually change the API but require some
additional library initialization settings or explicit object conversion to different backends
such as CPUs or GPUs.

In the next two chapters, we will learn more about available software tools that are
necessary to implement more complicated algorithms, and we will also learn more
theoretical background on how to manage ML algorithms.

Further reading
Basic Linear Algebra for Deep Learning: https://towardsdatascience.com/
linear-algebra-for-deep-learning-f21d7e7d7f23

Deep Learning - An MIT Press book: https://www.deeplearningbook.org/
contents/linear_algebra.html

What is Machine Learning?: https://www.mathworks.com/discovery/machine-
learning.html

The Eigen library documentation: http://eigen.tuxfamily.org

The xtensor library documentation: https://xtensor.readthedocs.io/en/
latest/

The Dlib library documentation: http://dlib.net/

The Shark-ML library documentation: http://image.diku.dk/shark/

The Shogun library documentation: http://www.shogun-toolbox.org/

https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://towardsdatascience.com/linear-algebra-for-deep-learning-f21d7e7d7f23
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.deeplearningbook.org/contents/linear_algebra.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
https://www.mathworks.com/discovery/machine-learning.html
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
https://xtensor.readthedocs.io/en/latest/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://image.diku.dk/shark/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/
http://www.shogun-toolbox.org/

2
Data Processing

One of the essential things in machine learning is the data that we use for training. We can
gather training data from the processes we work with, or we can take already prepared
training data from third-party sources. In any case, we have to store training data in a file
format that should satisfy our development requirements. These requirements depend on
the task we solve, as well as the data-gathering process. Sometimes, we need to transform
data stored in one format to another to satisfy our needs. Examples of such needs are as
follows:

Increasing human readability to ease communication with engineers
The existence of compression possibility to allow data to occupy less space on
secondary storage
The use of data in the binary form to speed up the parsing process
Supporting the complex relations between different parts of data to make precise
mirroring of a specific domain
Platform independence to be able to use the dataset in different development and
production environments

Today, there exists a variety of file formats that is used for storing different kinds of
information. Some of these are very specific, and some of them are general-purpose. There
are software libraries that allow us to manipulate these file formats. There is rarely a need
to develop a new format and parser from scratch. Using existing software for reading a
format can significantly reduce development and testing time, which allows us to focus on
particular tasks.

This chapter discusses how to process popular file formats that we use for storing data. It
shows what libraries exist for working with JavaScript Object Notation (JSON), Comma-
Separated Values (CSV), and Hierarchical Data Format v5 (HDF5) formats. This chapter
also introduces the basic operations required to load and process image data with
the OpenCV and Dlib libraries, and how to convert the data format used in these libraries to
data types used in linear algebra libraries. It also describes data normalization techniques
such as feature scaling and standardization procedures to deal with heterogeneous data.

Data Processing Chapter 2

[41]

This chapter will cover the following topics:

Parsing data formats to C++data structures
Initializing matrix and tensor objects from C++ data structures
Manipulating images with the OpenCV and Dlib libraries
Transforming images into matrix and tensor objects of various libraries
Normalizing data

Technical requirements
The required technologies and installations for this chapter are as follows:

Modern C++ compiler with C++17 support
CMake build system version >= 3.8
Dlib library installation
Shogun toolbox library installation
Shark-ML library installation
Eigen library installation
hdf5lib library installation
HighFive library installation
RapidJSON library installation
Fast-CPP-CSV-Parser library installation

The code for this chapter can be found at the following GitHub
repo: https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/mas
ter/Chapter02

Parsing data formats to C++ data structures
The most popular format for representing structured data is called CSV. This format is just
a text file with a two-dimensional table in it whereby values in a row are separated with
commas, and rows are placed on every new line. It looks like this:

1, 2, 3, 4
5, 6, 7, 8
9, 10, 11, 12

Data Processing Chapter 2

[42]

The advantages of this file format are that it has a straightforward structure, there are many
software tools that can process it, it is human-readable, and it is supported on a variety of
computer platforms. Disadvantages are a lack of support of multidimensional data and
data with complex structuring, as well as slow parsing speed in comparison with binary
formats.

Another widely used format is JSON. Although the format contains JavaScript in its
abbreviation, we can use it with almost all programming languages. This is a file format
with name-value pairs and arrays of such pairs. It has rules on how to group such pairs to
distinct objects and array declarations, and there are rules on how to define values of
different types. The following code sample shows a file in JSON format:

{
 name:"Bill",
 age: 25,
 phones:[
 {
 type:"home"
 number:43534590
 },
 {
 type:"work"
 number:56985468
 }
]
}

The advantages of this format are human readability, software support on many computer
platforms, and the possibility to store hierarchical and nested data structures.
Disadvantages are its slow parsing speed in comparison with binary formats, and the fact it
is not very useful for representing numerical matrices.

Often, we use a combination of file formats to represent a complex dataset. For example, we
can describe object relations with JSON, and data/numerical data in the binary form can be
stored in a folder structure on the filesystem with references to them in JSON files.

Data Processing Chapter 2

[43]

HDF5 is a specialized file format for storing scientific data. This file format was developed
to store heterogeneous multidimensional data with a complex structure. It provides fast
access to single elements because it has optimized data structures for using secondary
storage. Furthermore, HDF5 supports data compression. In general, this file format consists
of named groups that contain multidimensional arrays of multitype data. Each element of
this file format can contain metadata, as illustrated in the following diagram:

HDF5 format structure

The advantages of this format are its high read-and-write speed, fast access to distinct
elements, and its ability to support data with a complex structure and various types of data.
Disadvantages are the requirement of specialized tools for editing and viewing by users,
the limited support of type conversions among different platforms, and using a single file
for the whole dataset. The last issue makes data restoration almost impossible in the event
of file corruption.

There are a lot of other formats for representing datasets for machine learning, but we
found the ones mentioned to be the most useful.

Reading CSV files with the Fast-CPP-CSV-Parser
library
Consider how to deal with CSV format in C++. There are many different libraries for
parsing CSV format with C++. They have different sets of functions and different ways to
integrate into applications. The easiest way to use C++ libraries is to use headers-only
libraries because this eliminates the need to build and link them. We propose to use the
Fast-CPP-CSV-Parser library because it is a small single-file header-only library with the
minimal required functionality, which can be easily integrated into a development code
base.

Data Processing Chapter 2

[44]

As an example of a CSV file format, we use the Iris dataset, which describes three different
types of iris plants and was conceived by R.A. Fisher. Each row in the file contains the
following fields: sepal length, sepal width, petal length, petal width, and a string with a
class name.

The reference to the Iris dataset is the following: Dua, D. and Graff, C.
(2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/
ml]. Irvine, CA: University of California, School of Information and
Computer Science.

To read this dataset with the Fast-CPP-CSV-Parser library, we need to include a single
header file, as follows:

#include <csv.h>

Then, we define an object of the type io::CSVReader. We must define the number of
columns as a template parameter. This parameter is one of the library limitations because
we need to be aware of the CSV file structure. The code for this is illustrated in the
following snippet:

const uint32_t columns_num = 5;
io::CSVReader<columns_num> csv_reader(file_path);

Next, we define containers for storing the values we read, as follows:

std::vector<std::string> categorical_column;
std::vector<double> values;

Then, to make our code more generic and gather all information about column types in one
place, we introduce the following helper types and functions. We define a tuple object that
describes values for a row, like this:

using RowType = std::tuple<double, double, double, double, std::string>;
RowType row;

The reason for using a tuple is that we can easily iterate it with metaprogramming
techniques. Then, we define two helper functions. One is for reading a row from a file, and
it uses the read_row() method of the io::CSVReader class. The read_row() method
takes a variable number of parameters of different types. Our RowType type describes these
values. We do automatic parameter filling by using the std::index_sequence type with
the std::get function, as illustrated in the following code snippet:

template <std::size_t... Idx, typename T, typename R>
bool read_row_help(std::index_sequence<Idx...>, T& row, R& r) {
 return r.read_row(std::get<Idx>(row)...);

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Data Processing Chapter 2

[45]

}

The second helper function uses a similar technique for transforming a row tuple object to
our value vectors, as follows:

template <std::size_t... Idx, typename T>
void fill_values(std::index_sequence<Idx...>,
 T& row,
 std::vector<double>& data) {
 data.insert(data.end(), {std::get<Idx>(row)...});
}

Now, we can put all the parts together. We define a loop where we continuously read row
values and move them to our containers. After we read a row, we check the return value of
the read_row() method, which tells us if the read was successful or not. A false return
value means that we have reached the end of the file. In the case of a parsing error, we
catch an exception from the io::error namespace. There are exception types for different
parsing fails. In the following example, we handle number parsing errors:

 try {
 bool done = false;
 while (!done) {
 done = !read_row_help(
 std::make_index_sequence<std::tuple_size<RowType>::value>{}, row,
 csv_reader);
 if (!done) {
 categorical_column.push_back(std::get<4>(row));
 fill_values(std::make_index_sequence<columns_num - 1>{}, row,
 values);
 }
 }
 } catch (const io::error::no_digit& err) {
 // ignore badly formatted samples
 std::cerr << err.what() << std::endl;
 }

Also, notice that we moved only four values to our vector of doubles because the last
column contains string objects that we put to another vector of categorical values.

Preprocessing CSV files
Sometimes, the data we have comes in a format that's incompatible with libraries we want
to use. For example, the Iris dataset file contains a column that contains strings. Many
machine learning libraries cannot read such values, because they assume that CSV files
contain only numerical values that can be directly loaded to internal matrix representation.

Data Processing Chapter 2

[46]

So, before using such datasets, we need to preprocess them. In the case of the Iris dataset,
we need to replace the categorical column containing string labels with numeric encoding.
In the following code sample, we replace strings with distinct numbers, but in general, such
an approach is a bad idea, especially for classification tasks. Machine learning algorithms
usually learn only numerical relations, so a more suitable approach would be to use
specialized encoding—for example, one-hot encoding. The code can be seen in the
following block:

#include <fstream>
#include <regex>
...
std::ifstream data_stream("iris.data");
std::string data_string((std::istreambuf_iterator<char>(data_stream)),
 std::istreambuf_iterator<char>());
data_string =
 std::regex_replace(data_string, std::regex("Iris-setosa"), "1");
data_string =
 std::regex_replace(data_string, std::regex("Iris-versicolor"), "2");
data_string =
 std::regex_replace(data_string, std::regex("Iris-virginica"), "3");
std::ofstream out_stream("iris_fix.csv");
out_stream << data_string;

We read the CSV file content to the std::string object with the std::ifstream object.
Also, we use std::regex routines to replace string class names with numbers. Using the
regex functions allows us to reduce code size and make it more expressive in comparison
with the loop approach, which typically uses the std::string::find() and
std::string::replace() methods. After replacing all categorical class names in the file,
we create a new file with the std::ofstream object.

Reading CSV files with the Shark-ML library
Many machine learning frameworks already have routines for reading the CSV file format
to their internal representations. In the following code sample, we show how to load a CSV
file with the Shark-ML library to the ClassificationDataset object. The CSV parser in
this library assumes that all values in a file have a numerical type only, so it is unable to
read the original file with the Iris dataset we used in the previous example. However, in the
previous section, we already fixed this problem by replacing string values with numeric
ones, and we can use our new file named iris_fix.csv.

Data Processing Chapter 2

[47]

To read a CSV file with the Shark-ML library, we have to include corresponding headers,
as follows:

#include <shark/Data/Csv.h>
#include <shark/Data/Dataset.h>
using namespace shark;

We can use the importCSV() method of the ClassificationDataset object to load the
CSV data from a file. Notice that the last function's argument specifies which column in the
dataset contains labels, as illustrated in the following code snippet:

ClassificationDataset dataset;
importCSV(dataset, "iris_fix.csv", LAST_COLUMN);

Then, we can use this object in machine learning algorithms provided by the Shark-ML
library. Also, we can also print some statistics about the imported dataset, as follows:

std::size_t classes = numberOfClasses(dataset);
std::cout << "Number of classes " << classes << std::endl;
std::vector<std::size_t> sizes = classSizes(dataset);
std::cout << "Class size: " << std::endl;
for (auto cs : sizes) {
 std::cout << cs << std::endl;
}
std::size_t dim = inputDimension(dataset);
std::cout << "Input dimension " << dim << std::endl;

Reading CSV files with the Shogun library
The Shogun library also has functionality for reading CSV files, and it also interprets them
as numerical matrices only. So, to load a CSV file as a dataset with the Shogun library, we
need to preprocess it and replace string values with numeric ones, as we did in an earlier
section. We can load the CSV file with the Iris dataset to the matrix object, and then use this
matrix to initialize the Shogun library dataset objects for use in machine learning
algorithms. First of all, we need to include the required headers and make definitions for
the helper types, as follows:

#include <shogun/base/init.h>
#include <shogun/base/some.h>
#include <shogun/io/File.h>

using namespace shogun;
using DataType = float64_t;
using Matrix = shogun::SGMatrix<DataType>

Data Processing Chapter 2

[48]

Then, we define the shogun::CCSVFile object to parse the dataset file. The initialized
shogun::CCSVFile object is used for loading values into a matrix object, as illustrated in
the following code snippet:

auto csv_file = shogun::some<shogun::CCSVFile>("iris_fix.csv");
Matrix data;
data.load(csv_file);

To be able to use this data for machine learning algorithms, we need to split this matrix
object into two parts: one will contain training samples, and the second one will contain
labels. The Shogun CSV parser loads matrices in the column-major order. So, to make the
matrix look like the original file, we need to transpose, as illustrated in the following code
snippet:

 Matrix::transpose_matrix(data.matrix, data.num_rows, data.num_cols);
 Matrix inputs = data.submatrix(0, data.num_cols - 1); // make a view
 inputs = inputs.clone(); // copy exact data
 Matrix outputs = data.submatrix(data.num_cols - 1, data.num_cols);
 // make a view
 outputs = outputs.clone(); // copy exact data

Now, we have our training data in the inputs matrix object and labels in the
outputs matrix object. To be able to use the inputs object in the Shogun algorithms, we
need to transpose it back, because Shogun algorithms expect that training samples are
placed in matrix columns. To do this, we run the following code:

Matrix::transpose_matrix(inputs.matrix, inputs.num_rows, inputs.num_cols);

We can use these matrices for initializing the shogun::CDenseFeatures and the
shogun::CMulticlassLabels objects, which we can eventually use for the training of
machine learning algorithms. To do this, we run the following code:

 auto features = shogun::some<shogun::CDenseFeatures<DataType>>(inputs);
 auto labels =
 shogun::wrap(new shogun::CMulticlassLabels(outputs.get_column(0)));

After initialization of these objects, we can print some statistics about training data, as
follows:

std::cout << "samples num = " << features->get_num_vectors() << "\n"
 << "features num = " << features->get_num_features() << std::endl;
 auto features_matrix = features->get_feature_matrix();
 // Show first 5 samples
 for (int i = 0; i < 5; ++i) {
 std::cout << "Sample idx " << i << " ";
 features_matrix.get_column(i).display_vector();

Data Processing Chapter 2

[49]

 }
 std::cout << "labels num = " << labels->get_num_labels() << std::endl;

Reading CSV files with the Dlib library
The Dlib library can load CSV files directly to its matrix type as the Shogun library does,
but it does not require them to create a parser object. For this operation, we can use a
simple C++ streaming operator and a standard std::ifstream object.

As a first step, we make the necessary includes, as follows:

include <Dlib/matrix.h>
using namespace Dlib;

Then, we define the matrix object and load data from the file, like this:

matrix<double> data;
std::ifstream file("iris_fix.csv");
file >> data;
std::cout << data << std::endl;

In the Dlib library, matrix objects are used for training machine learning algorithms
directly, without the need to transform them into intermediate dataset types.

Reading JSON files with the RapidJSON library
Some datasets come with structured annotations and can contain multiple files and folders.
An example of such a complex dataset is the Common Objects in Context (COCO) dataset.
This dataset contains a text file with annotations for describing relations between objects
and their structural parts. This widely-known dataset is used to train models for
segmentation, object detection, and classification tasks. Annotations in this dataset are
defined in the JSON file format. JSON is a widely used file format for objects' (entities')
representations. It is just a text file with special notations for describing relations between
objects and their parts. In the following code samples, we show how to work with this file
format using the RapidJSON C++ library. However, we are going to use a more
straightforward dataset that defines paper reviews. The authors of this dataset are Keith, B.,
Fuentes, E., & Meneses, C. (2017), and they made this dataset for their work titled A Hybrid
Approach for Sentiment Analysis Applied to Paper Reviews. The following code sample shows a
reduced part of this dataset:

{
 "paper": [

Data Processing Chapter 2

[50]

 {
 "id": 1,
 "preliminary_decision": "accept",
 "review": [
 {
 "confidence": "4",
 "evaluation": "1",
 "id": 1,
 "lan": "es",
 "orientation": "0",
 "remarks": "",
 "text": "- El artículo aborda un problema contingente
 y muy relevante, e incluye tanto un diagnóstico
 nacional de uso de buenas prácticas como una solución
 (buenas prácticas concretas)...",
 "timespan": "2010-07-05"
 },
 {
 "confidence": "4",
 "evaluation": "1",
 "id": 2,
 "lan": "es",
 "orientation": "1",
 "remarks": "",
 "text": "El artículo presenta recomendaciones
 prácticas para el desarrollo de software seguro...",
 "timespan": "2010-07-05"
 },
 {
 "confidence": "5",
 "evaluation": "1",
 "id": 3,
 "lan": "es",
 "orientation": "1",
 "remarks": "",
 "text": "- El tema es muy interesante y puede ser de
 mucha ayuda una guía para incorporar prácticas de
 seguridad...",
 "timespan": "2010-07-05"
 }
]
 },
 ...
]
}

Data Processing Chapter 2

[51]

There are two main approaches to parse and process JSON files, which is listed as follows:

The first approach assumes the parsing of whole files at once and creating a
Document Object Model (DOM). The DOM is a hierarchical structure of objects
that represents entities stored in files. It is usually stored in computer memory,
and, in the case of large files, it can occupy a significant amount of memory.
Another approach is to parse the file continuously and provide an application
program interface (API) for a user to handle and process each event related to
the file-parsing process. This second approach is usually called Simple API for
XML (SAX). Despite its name, it's a general approach that is used with non-XML
data too.

Using a DOM for working with training datasets usually requires a lot of memory for
structures that are useless for machine learning algorithms. So, in many cases, it is
preferable to use the SAX interface. It allows us to filter irrelevant data and initialize
structures that we can use directly in our algorithms. In the following code sample, we use
this approach.

As a preliminary step, we define types for paper/review entities, as follows:

...
struct Paper {
 uint32_t id{0};
 std::string preliminary_decision;
 std::vector<Review> reviews;
};

using Papers = std::vector<Paper>;
...
struct Review {
 std::string confidence;
 std::string evaluation;
 uint32_t id{0};
 std::string language;
 std::string orientation;
 std::string remarks;
 std::string text;
 std::string timespan;
};
...

Data Processing Chapter 2

[52]

Then, we declare a type for the object, which will be used by the parser to handle parsing
events. This type should be inherited from the rapidjson::BaseReaderHandler base
class, and we need to override virtual handler functions that the parser will call when a
particular parsing event occurs, as illustrated in the following code block:

#include <rapidjson/error/en.h>
#include <rapidjson/filereadstream.h>
#include <rapidjson/reader.h>
...
struct ReviewsHandler
 : public rapidjson::BaseReaderHandler<rapidjson::UTF8<>, ReviewsHandler> {
 ReviewsHandler(Papers* papers) : papers_(papers) {}
 bool Uint(unsigned u) ;
 bool String(const char* str, rapidjson::SizeType length, bool /*copy*/);
 bool Key(const char* str, rapidjson::SizeType length, bool /*copy*/);
 bool StartObject();
 bool EndObject(rapidjson::SizeType /*memberCount*/);
 bool StartArray();
 bool EndArray(rapidjson::SizeType /*elementCount*/);

 Paper paper_;
 Review review_;
 std::string key_;
 Papers* papers_{nullptr};
 HandlerState state_{HandlerState::None};
};

Notice that we made handlers only for objects and arrays parsing events, and events for
parsing unsigned int/string values. Now, we can create the
rapidjson::FileReadStream object and initialize it with a handler to the opened file
and with a buffer object that the parser will use for intermediate storage. We use
the rapidjson::FileReadStream object as the argument to the Parse() method of the
rapidjson::Reader type object. The second argument is the object of the type we derived
from rapidjson::BaseReaderHandler, as illustrated in the following code block:

auto file = std::unique_ptr<FILE, void (*)(FILE*)>(
 fopen(filename.c_str(), "r"), [](FILE* f) {
 if (f)
 ::fclose(f);
 });
 if (file) {
 char readBuffer[65536];
 rapidjson::FileReadStream is(file.get(), readBuffer,
 sizeof(readBuffer));
 rapidjson::Reader reader;
 Papers papers;

Data Processing Chapter 2

[53]

 ReviewsHandler handler(&papers);
 auto res = reader.Parse(is, handler);
 if (!res) {
 throw std::runtime_error(rapidjson::GetParseError_En(res.Code()));
 }
 return papers;
 } else {
 throw std::invalid_argument("File can't be opened " + filename);
 }

When there are no parsing errors, we will have an initialized array of Paper type objects.
Consider, more precisely, the event handler's implementation details. Our event handler
works as a state machine. In one state, we populate it with the Review objects, and in
another one, with the Papers objects, and there are states for other events, as shown in the
following code snippet:

enum class HandlerState {
 None,
 Global,
 PapersArray,
 Paper,
 ReviewArray,
 Review
};

We parse the unsigned unit values only for the Id attributes of the Paper and the Review
objects, and we update these values according to the current state and the previously
parsed key, as follows:

bool Uint(unsigned u) {
 bool res{true};
 try {
 if (state_ == HandlerState::Paper && key_ == "id") {
 paper_.id = u;
 } else if (state_ == HandlerState::Review && key_ == "id") {
 review_.id = u;
 } else {
 res = false;
 }
 } catch (...) {
 res = false;
 }
 key_.clear();
 return res;
}

Data Processing Chapter 2

[54]

String values also exist in both types of objects, so we do the same checks to update
corresponding values, as follows:

bool String(const char* str, rapidjson::SizeType length, bool /*copy*/) {
 bool res{true};
 try {
 if (state_ == HandlerState::Paper && key_ == "preliminary_decision")
{
 paper_.preliminary_decision = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "confidence") {
 review_.confidence = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "evaluation") {
 review_.evaluation = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "lan") {
 review_.language = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "orientation") {
 review_.orientation = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "remarks") {
 review_.remarks = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "text") {
 review_.text = std::string(str, length);
 } else if (state_ == HandlerState::Review && key_ == "timespan") {
 review_.timespan = std::string(str, length);
 } else {
 res = false;
 }
 } catch (...) {
 res = false;
 }
 key_.clear();
 return res;
}

The event handler for the JSON key attribute stores the key value to the appropriate
variable, which we use to identify a current object in the parsing process, as follows:

bool Key(const char* str, rapidjson::SizeType length, bool /*copy*/) {
 key_ = std::string(str, length);
 return true;
}

Data Processing Chapter 2

[55]

The StartObject event handler switches states according to the current key values and
the previous state value. We base the current implementation on the knowledge of the
structure of the current JSON file: there is no array of Paper objects, and each Paper object
includes an array of reviews. It is one of the limitations of the SAX interface—we need to
know the structure of the document to implement all event handlers correctly. The code can
be seen in the following block:

bool StartObject() {
 if (state_ == HandlerState::None && key_.empty()) {
 state_ = HandlerState::Global;
 } else if (state_ == HandlerState::PapersArray && key_.empty()) {
 state_ = HandlerState::Paper;
 } else if (state_ == HandlerState::ReviewArray && key_.empty()) {
 state_ = HandlerState::Review;
 } else {
 return false;
 }
 return true;
}

In the EndObject event handler, we populate arrays of Paper and Review objects
according to the current state. Also, we switch the current state back to the previous one by
running the following code:

bool EndObject(rapidjson::SizeType /*memberCount*/) {
 if (state_ == HandlerState::Global) {
 state_ = HandlerState::None;
 } else if (state_ == HandlerState::Paper) {
 state_ = HandlerState::PapersArray;
 papers_->push_back(paper_);
 paper_ = Paper();
 } else if (state_ == HandlerState::Review) {
 state_ = HandlerState::ReviewArray;
 paper_.reviews.push_back(review_);
 } else {
 return false;
 }
 return true;
}

In the StartArray event handler, we switch the current state to a new one according to the
current state value by running the following code:

bool StartArray() {
 if (state_ == HandlerState::Global && key_ == "paper") {
 state_ = HandlerState::PapersArray;
 key_.clear();

Data Processing Chapter 2

[56]

 } else if (state_ == HandlerState::Paper && key_ == "review") {
 state_ = HandlerState::ReviewArray;
 key_.clear();
 } else {
 return false;
 }
 return true;
}

In the EndArray event handler, we switch the current state to the previous one based on
our knowledge of the document structure by running the following code:

bool EndArray(rapidjson::SizeType /*elementCount*/) {
 if (state_ == HandlerState::ReviewArray) {
 state_ = HandlerState::Paper;
 } else if (state_ == HandlerState::PapersArray) {
 state_ = HandlerState::Global;
 } else {
 return false;
 }
 return true;
}

The vital thing in this approach is to clear the current key value after object processing.
This helps us to debug parsing errors, and we always have actual information about the
currently processed entity.

For small files, using the DOM approach can be preferable because it leads to less code and
cleaner algorithms.

Writing and reading HDF5 files with the HighFive
library
HDF5 is a highly efficient file format for storing datasets and scientific values. The
HighFive library provides a higher-level C++ interface for the C library provided by the
HDF Group. In this example, we propose to look at its interface by transforming the dataset
used in the previous section to HDF5 format.

The main concepts of HDF5 format are groups and datasets. Each group can contain other
groups and have attributes of different types. Also, each group can contain a set of dataset
entries. Each dataset is a multidimensional array of values of the same type, which also can
have attributes of different types.

Data Processing Chapter 2

[57]

Let's start with including required headers, as follows:

#include <highfive/H5DataSet.hpp>
#include <highfive/H5DataSpace.hpp>
#include <highfive/H5File.hpp>

Then, we have to create a file object where we will write our dataset, as follows:

HighFive::File file(file_name, HighFive::File::ReadWrite |
 HighFive::File::Create |
 HighFive::File::Truncate);

After we have a file object, we can start creating groups. We define a group of papers that
should hold all paper objects, as follows:

auto papers_group = file.createGroup("papers");

Then, we iterate through an array of papers (as shown in the previous section) and create a
group for each paper object with two attributes: the numerical id attribute and the
preliminary_decision attribute of the string type, as illustrated in the following code
block:

for (const auto& paper : papers) {
 auto paper_group =
 papers_group.createGroup("paper_" + std::to_string(paper.id));
 std::vector<uint32_t> id = {paper.id};
 auto id_attr = paper_group.createAttribute<uint32_t>(
 "id", HighFive::DataSpace::From(id));

 id_attr.write(id);
 auto dec_attr = paper_group.createAttribute<std::string>(
 "preliminary_decision",
 HighFive::DataSpace::From(paper.preliminary_decision));
 dec_attr.write(paper.preliminary_decision);

After we have created an attribute, we have to put in its value with the write() method.
Notice that the HighFive::DataSpace::From function automatically detects the size of
the attribute value. The size is the amount of memory required to hold the attribute's value.
Then, for each paper_group, we create a corresponding group of reviews, as follows:

 auto reviews_group = paper_group.createGroup("reviews");

Data Processing Chapter 2

[58]

We insert into each reviews_group a dataset of numerical values of confidence,
evaluation, and orientation fields. For the dataset, we define the DataSpace (the
number of elements in the dataset) of size 3 and define a storage type as a 32-bit integer, as
follows:

std::vector<size_t> dims = {3};
 std::vector<int32_t> values(3);
 for (const auto& r : paper.reviews) {
 auto dataset = reviews_group.createDataSet<int32_t>(
 std::to_string(r.id), HighFive::DataSpace(dims));
 values[0] = std::stoi(r.confidence);
 values[1] = std::stoi(r.evaluation);
 values[2] = std::stoi(r.orientation);
 dataset.write(values);
 }
}

After we have created and initialized all objects, the Papers/Reviews dataset in HDF5
format is ready. When the file object leaves the scope, its destructor saves everything to
the secondary storage.

Having the file in the HDF5 format, we can consider the HighFive library interface for file
reading. As the first step, we again create the HighFive::File object, but with attributes
for reading, as follows:

HighFive::File file(file_name, HighFive::File::ReadOnly);

Then, we use the getGroup() method to get the top-level papers_group object, as
follows:

auto papers_group = file.getGroup("papers");

We need to get a list of all nested objects in this group because we can access objects only
by their names. We can do this by running the following code:

auto papers_names = papers_group.listObjectNames();

Using a loop, we iterate over all papers_group objects in the papers_group container,
like this:

for (const auto& pname : papers_names) {
 auto paper_group = papers_group.getGroup(pname);
 ...
}

Data Processing Chapter 2

[59]

For each paper object, we read its attributes, and the memory space required for the
attribute value. Also, because each attribute can be multidimensional, we should take care
of it and allocate an appropriate container, as follows:

 std::vector<uint32_t> id;
 paper_group.getAttribute("id").read(id);
 std::cout << id[0];

 std::string decision;
 paper_group.getAttribute("preliminary_decision").read(decision);
 std::cout << " " << decision << std::endl;

For reading datasets, we can use the same approach: get the reviews group, then get a list
of dataset names, and, finally, read each dataset in a loop, as follows:

 auto reviews_group = paper_group.getGroup("reviews");
 auto reviews_names = reviews_group.listObjectNames();
 std::vector<int32_t> values(2);
 for (const auto& rname : reviews_names) {
 std::cout << "\t review: " << rname << std::endl;
 auto dataset = reviews_group.getDataSet(rname);
 auto selection = dataset.select(
 {1}, {2}); // or use just dataset.read method to get whole data
 selection.read(values);
 std::cout << "\t\t evaluation: " << values[0] << std::endl;
 std::cout << "\t\t orientation: " << values[1] << std::endl;
 }

Notice that we use the select() method for the dataset, which allows us to read only a
part of the dataset. We define this part with ranges given as arguments. There is the
read() method in the dataset type to read a whole dataset at once.

Using these techniques, we can read and transform any HDF5 datasets. This file format
allows us to work only with part of the required data and not to load the whole file to the
memory. Also, because this is a binary format, its reading is more efficient than reading
large text files.

Data Processing Chapter 2

[60]

Initializing matrix and tensor objects from
C++ data structures
There are a variety of file formats used for datasets, and not all of them might be supported
by libraries. For using data from unsupported formats, we might need to write custom
parsers. After we read values to regular C++ containers, we usually need to convert them
into object types used in the machine learning framework we use. As an example, let's
consider the case of reading matrix data from files into C++ objects.

Eigen
Using the Eigen library, we can wrap a C++ array into the Eigen::Matrix object with the
Eigen::Map type. The wrapped object will behave as a standard Eigen matrix. We have to
parametrize the Eigen::Map type with the type of matrix that has the required behavior.
Also, when we create the Eigen::Map object, it takes as arguments a pointer to the C++
array and matrix dimensions, as illustrated in the following code snippet:

std::vector<double> values;
...
auto x_data = Eigen::Map<Eigen::Matrix<double, Eigen::Dynamic,
 Eigen::Dynamic, Eigen::RowMajor>>(values.data(),
 rows_num,
 columns_num);

Shark-ML
The Shark-ML framework has special adaptor functions that create wrappers for C++
arrays. These functions create objects that behave as regular Shark-ML matrices. To wrap a
C++ container with adaptor functions, we have to pass a pointer to the data and
corresponding dimensions as arguments, as illustrated in the following code snippet:

std::vector<float> data{1, 2, 3, 4};
auto m = remora::dense_matrix_adaptor<float>(data.data(), 2, 2);
auto v = remora::dense_vector_adaptor<float>(data.data(), 4);

Data Processing Chapter 2

[61]

Dlib
The Dlib library has the Dlib::mat() function for wrapping C++ containers into the Dlib
matrix object. It also takes a pointer to the data and matrix dimensions as arguments, as
illustrated in the following code snippet:

double data[] = {1, 2, 3, 4, 5, 6};
auto m2 = Dlib::mat(data, 2, 3); // create matrix with size 2x3

Shogun
Using the Shogun library, we can use a particular constructor of the SGMatrix type to
initialize it with the C++ array. It takes a pointer to the data and matrix dimensions, as
illustrated in the following code snippet:

std::vector<double> values;
...
SGMatrix<float64_t> matrix(values.data(), num_rows, numcols);

Notice that all of these functions only make a wrapper for the original C++ array where the
data is stored, and don't copy the values into a new location. If we want to copy values
from a C++ array to a matrix object, we usually need to call a clone() method or an
analog of it for the wrapper object.

After we have a matrix object for a machine learning framework we use, we can initialize
other specialized objects for training machine learning algorithms. Examples of such objects
are the CDenseFeatures noun for the Shogun library or the
CClassificationDataset noun for the Shark-ML library.

Manipulating images with the OpenCV and
Dlib libraries
Many machine learning algorithms are related to computer vision problems. Such tasks are
object detection in images, segmentation, image classification, and others. To be able to deal
with such tasks, we need instruments for working with images. We usually need routines
to load images to computer memory, as well as routines for image processing. For example,
the standard operation is image scaling, because many machine learning algorithms are
trained only on images of a specific size. This limitation follows from the algorithm
structure or is a hardware requirement. For example, we cannot load large images to the
graphics processing unit (GPU) memory because of its limited size.

Data Processing Chapter 2

[62]

Also, hardware requirements can lead to a limited range of numeric types our hardware
supports, so we will need to change initial image representation to one that our hardware
can efficiently process. Also, machine learning algorithms usually assume a predefined
layout of image channels, which can be different from the layout in the original image file.

Another type of image processing task is the creation of training datasets. In many cases,
we have a limited number of available images for a specific task. However, to make a
machine algorithm train well, we usually need more training images. So, the typical
approach is to augment existing images. Augmentation can be done with operations such
as random scaling, cropping parts of images, rotations, and other operations that can be
used to make different images from the existing set.

In this section, we show how to use two of the most popular libraries for image processing
for C++. OpenCV is a framework for solving computer vision problem that includes many
ready-to-use implementations of computer vision algorithms. Also, it has many functions
for image processing. Dlib is a computer vision and machine learning framework with a
large number of implemented algorithms, as well as a rich set of image processing routines.

Using OpenCV
In the OpenCV library, an image is treated as a multidimensional matrix of values. There is a
special cv::Mat type for this purpose. There are two base functions: the cv::imread()
function loads the image, and the cv::imwrite() function writes the image to a file, as
illustrated in the following code snippet:

#include <opencv2/opencv.hpp>
..
cv::Mat img = cv::imread(file_name);
cv::imwrite(new_file_name, img);

Also, there are functions to manage images located in a memory buffer. The
cv::imdecode() function loads an image from the memory buffer, and
the cv::imencode() function writes an image to the memory buffer.

Scaling operations in the OpenCV library can be done with the cv::resize() function.
This function takes an input image, an output image, the output image size or scale factors,
and an interpolation type as arguments. The interpolation type governs how the output
image will look after the scaling. General recommendations are as follows:

Use cv::INTER_AREA for shrinking.
Use cv::INTER_CUBIC (slow) or cv::INTER_LINEAR for zooming.

Data Processing Chapter 2

[63]

Use cv::INTER_LINEAR for all resizing purposes because it is fast.

The following code sample shows how to scale an image:

 cv::resize(img, img, {img.cols / 2, img.rows / 2}, 0, 0, cv::INTER_AREA);
 cv::resize(img, img, {}, 1.5, 1.5, cv::INTER_CUBIC);

There is no special function for image cropping in the OpenCV library, but the cv::Mat type
overrides the operator() method, which takes a cropping rectangle as an argument and
returns a new cv::Mat object with part of the image surrounded by the specified rectangle.
Also, note that this object will share the same memory with the original image, so its
modification will change the original image too. To make a deep copy of the cv::Mat
object, we need to use the clone() method, as follows:

 img = img(cv::Rect(0, 0, img.cols / 2, img.rows / 2));

Sometimes, we need to move or rotate an image. The OpenCV library supports translation
and rotation operations for images through affine transformations. We have to
manually—or with helper functions—create a matrix of 2D affine transformations and then
apply it to our image. For the move (the translation), we can create such a matrix manually,
and then apply it to an image with the cv::wrapAffine() function, as follows:

 cv::Mat trm = (cv::Mat_<double>(2, 3) << 1, 0, -50, 0, 1, -50);
 cv::wrapAffine(img, img, trm, {img.cols, img.rows});

We can create a rotation matrix with the cv::getRotationMatrix2D() function. This
takes a point of origin and the rotation angle in degrees, as illustrated in the following code
snippet:

 auto rotm = cv::getRotationMatrix2D({img.cols / 2, img.rows / 2}, 45, 1);
 cv::wrapAffine(img, img, rotm, {img.cols, img.rows});

Another useful operation is extending an image size without scaling but with added
borders. There is the cv::copyMakeBorder() function in the OpenCV library for this
purpose. This function has different options on how to create borders. It takes an input
image, an output image, border sizes for the top, the bottom, the left and the right sides,
type of the border, and border color. Border types can be one of the following:

BORDER_CONSTANT—Make function fill borders with a single color.
BORDER_REPLICATE—Make function fill borders with copies of last pixel values
on each side (for example, aaaaaa|abcdefgh|hhhhhhh).

Data Processing Chapter 2

[64]

 BORDER_REFLECT—Make function fill borders with copies of opposite pixel
values on each side (for example, fedcba|abcdefgh|hgfedcb).
 BORDER_WRAP—Make function fill borders by simulating the image duplication
(for example, cdefgh|abcdefgh|abcdefg).

The following example shows how to use this function:

 int top = 50; // px
 int bottom = 20; // px
 int left = 150; // px
 int right = 5; // px
 cv::copyMakeBorder(img, img, top, bottom, left, right,
 cv::BORDER_CONSTANT | cv::BORDER_ISOLATED,
 cv::Scalar(255, 0, 0));

When we are using this function, we should take care of the origin of the source image. The
OpenCV documentation says: If the source image is a part of a bigger image, the function will try
to use the pixels outside of the ROI (short for region of interest) to form a border. To disable this
feature and always do extrapolation, as if the source image was not a part of another image, use
border type BORDER_ISOLATED.

The function described previously is very helpful when we need to adapt training images
of different sizes to the one standard image size used in some machine learning algorithms
because, with this function, we do not distort target image content.

There is the cv::cvtColor() function to convert different color spaces in the OpenCV
library. The function takes an input image, an output image, and a conversion scheme type.
For example, in the following code sample, we convert the red, green, and blue (RGB)
color space to a grayscaled one:

 cv::cvtColor(img, img,
 cv::COLOR_RGB2GRAY); // now pixels values are in range 0-1

Using Dlib
Dlib is another popular library for image processing. This library has different types used
for math routines and image processing. The library documentation recommends using the
Dlib::array2d type for images. The Dlib::array2d type is a template type that has to
be parametrized with a pixel type. Pixel types in the Dlib library are defined with pixel-
type traits. There are the following predefined pixel types: rgb_pixel, bgr_pixel,
rgb_alpha_pixel, hsi_pixel, lab_pixel, and any scalar type can be used for the
grayscaled pixels' representation.

Data Processing Chapter 2

[65]

We can use the load_image() function to load an image from disk, as follows:

#include <Dlib/image_io.h>
#include <Dlib/image_transforms.h>
using namespace Dlib;
...
array2d<rgb_pixel> img;
load_image(img, file_path);

For a scaling operation, there is the Dlib::resize_image() function. This function has
two different overloads. One takes a single scale factor and a reference to an image object.
The second one takes an input image, an output image, the desired size, and an
interpolation type. To specify the interpolation type in the Dlib library, we should call
special functions: the interpolate_nearest_neighbor(), the
interpolate_quadratic(), and the interpolate_bilinear() functions. The criteria
for choosing one of them is the same as ones that we discussed in the Using OpenCV section.
Notice that the output image for the resize_image() function should be already
preallocated, as illustrated in the following code snippet:

array2d<rgb_pixel> img2(img.nr() / 2, img.nc() / 2);
resize_image(img, img2, interpolate_nearest_neighbor());
resize_image(1.5, img); // default interpolate_bilinear

To crop an image with Dlib, we can use the Dlib::extract_image_chips() function.
This function takes an original image, rectangle-defined bounds, and an output image.
Also, there are overloads of this function that take an array of rectangle bounds and an
array of output images, as follows:

extract_image_chip(img, rectangle(0, 0, img.nc() / 2, img.nr() / 2), img2);

The Dlib library supports image transformation operations through affine transformations.
There is the Dlib::transform_image() function, which takes an input image, an output
image, and an affine transformation object. An example of the transformation object could
be an instance of the Dlib::point_transform_affine class, which defines the affine
transformation with a rotation matrix and a translation vector. Also, the
Dlib::transform_image() function can take an interpolation type as the last parameter,
as illustrated in the following code snippet:

transform_image(img, img2, interpolate_bilinear(),
 point_transform_affine(identity_matrix<double>(2),
 Dlib::vector<double, 2>(-50, -50)));

Data Processing Chapter 2

[66]

In case we only need to do a rotation, Dlib has the Dlib::rotate_image() function. The
Dlib::rotate_image() function takes an input image, an output image, a rotation angle
in degrees, and an interpolation type, as follows:

rotate_image(img, img2, -45, interpolate_bilinear());

There is no complete analog of a function for adding borders to images in the Dlib library.
There are two functions: the Dlib::assign_border_pixels() and the
Dlib::zero_border_pixels() for filling image borders with specified values. Before
using these routines, we should resize the image and place the content in the right position.
The new image size should include borders' widths. We can use the
Dlib::transform_image() function to move the image content into the right place. The
following code sample shows how to add borders to an image:

int top = 50; // px
int bottom = 20; // px
int left = 150; // px
int right = 5; // px
img2.set_size(img.nr() + top + bottom, img.nc() + left + right);
 transform_image(
 img, img2, interpolate_bilinear(),
 point_transform_affine(identity_matrix<double>(2),
 Dlib::vector<double, 2>(-left/2, -top/2)));

For color space conversions, there exists the Dlib::assign_image() function in the Dlib
library. This function uses color-type information from pixel-type traits we used for the
image definition. So, to convert an image to another color space, we should define a new
image with the desired type of pixels and pass it to this function. The following example
shows how to convert the RGB image to a blue, green, red (BGR) one:

array2d<bgr_pixel> img_bgr;
assign_image(img_bgr, img);

To make a grayscale image, we can define an image with the unsigned char pixel type, as
follows:

array2d<unsigned char> img_gray;
assign_image(img_gray, img);

Data Processing Chapter 2

[67]

Transforming images into matrix or tensor
objects of various libraries
In most cases, images are represented in computer memory in an interleaved format, which
means that pixel values are placed one by one in linear order. Each pixel value consists of
several numbers representing a color. For example, for the RGB format, it will be three
values placed together. So, in the memory, we will see the following layout for a 4 x 4
image:

rgb rgb rgb rgb
rgb rgb rgb rgb
rgb rgb rgb rgb
rgb rgb rgb rgb

For image processing libraries, such a value layout is not a problem, but many machine
learning algorithms require different ordering. For example, it's a common approach for
neural networks to take image channels separately ordered, one by one. The following
example shows how such a layout is usually placed in memory:

r r r r g g g g b b b b
r r r r g g g g b b b b
r r r r g g g g b b b b
r r r r , g g g g , b b b b

So, often, we need to deinterleave image representation before passing it to some machine
learning algorithm.

Moreover, we usually need to convert a color's value data type too. For example, OpenCV
library users often use floating-point formats, which allows them to preserve more color
information in image transformations and processing routines. The opposite case is when
we use a 256-bit type for color channel information, but then we need to convert it to a
floating-point type. So, in many cases, we need to convert the underlying data type to
another one more suitable for our needs.

Deinterleaving in OpenCV
By default, when we load an image with the OpenCV library, it loads the image in the BGR
format and with char as the underlying data type. So, we need to convert it to the RGB
format, like this:

cv::cvtColor(img, img, cv::COLOR_BGR2RGB);

Data Processing Chapter 2

[68]

Then, we can convert the underlying data type to the float type, like this:

img.convertTo(img, CV_32FC3, 1/255.0);

Next, to deinterleave channels, we need to split them with the cv::split() function, like
this:

cv::Mat bgr[3];
cv::split(img, bgr);

Then, we can place channels back to the cv::Mat object in the order we need with the
cv::vconcat() function, which concatenates matrices vertically, as follows:

cv::Mat ordered_channels;
cv::vconcat(bgr[2], bgr[1], ordered_channels);
cv::vconcat(ordered_channels, bgr[0], ordered_channels);

There is a useful method in the cv::Mat type named isContinuous that allows us to
check if the matrix's data is placed in memory with a single contiguous block. If that is true,
we can copy this block of memory or pass it to the routines that work with plain C arrays.

Deinterleaving in Dlib
The Dlib library uses the unsigned char type for pixel color representation, and we can
use floating-point types only for grayscaled images. The Dlib library stores pixels in the
row-major order with interleaved channels and data is placed in memory continuously
with a single block. There are no special functions in the Dlib library to manage image
channels, so we cannot deinterleave them or mix them. However, we can use raw pixel data
to manage color values manually. There are two functions in the Dlib library that can help
us: the image_data() function to access raw pixel data, and the width_step() function
to get the padding value.

The most straightforward approach to deinterleave the Dlib image object is using a loop
over all pixels. In such a loop, we can split each pixel value into separate colors.

As a first step, we define containers for each of the channels, as follows:

auto channel_size = static_cast<size_t>(img.nc() * img.nr());
std::vector<unsigned char> ch1(channel_size);
std::vector<unsigned char> ch2(channel_size);
std::vector<unsigned char> ch3(channel_size);

Data Processing Chapter 2

[69]

Then, we read color values for each pixel with two nested loops over image rows and
columns, like this:

size_t i{0};
for (long r = 0; r < img.nr(); ++r) {
 for (long c = 0; c < img.nc(); ++c) {
 ch1[i] = img[r][c].red;
 ch2[i] = img[r][c].green;
 ch3[i] = img[r][c].blue;
 ++i;
 }
}

The result is three containers with color channel values, which we can use separately. They
are suitable to initialize grayscaled images for use in the image processing routines.
Alternatively, we can use them to initialize a matrix-type object that we can process with
linear algebra routines.

Normalizing data
Data normalization is a crucial preprocessing step in machine learning. In general, data
normalization is a process that transforms multiscaled data to the same scale. Feature
values in a dataset can have very different scales—for example, the height can be given in
centimeters with small values, but the income can have large-value amounts. This fact has a
significant impact on many machine learning algorithms. For example, if some feature
values differ from values of other features several times, then this feature will dominate
over others in classification algorithms based on the Euclidean distance. Some algorithms
have a strong requirement for normalization of input data; an example of such an algorithm
is the Support Vector Machine (SVM) algorithm. Neural networks also usually require
normalized input data. Also, data normalization has an impact on optimization algorithms.
For example, optimizers based on the gradient descent (GD) approach can converge much
quicker if data has the same scale.

There are several methods of normalization, but from our point of view, the most popular
are the standardization, the min-max, and the mean normalization methods.

Data Processing Chapter 2

[70]

Standardization is a process of making data to have a zero mean and a standard deviation

equal to 1. The formula for standardized vector is , where is an original vector,

 is an average value of calculated with the formula , and isthe standard

deviation of calculated with the formula .

Min-max normalization or rescaling is a process of making data fit the range of [0, 1].
We can do rescaling with the following formula:

Mean normalization is used to fit data into the range [-1, 1], so its mean becomes zero.
We can use the following formula to do mean normalization:

Consider how we can implement these normalization techniques and which machine
learning framework functions can be used to calculate them.

We assume that each row of this matrix is one training sample, and the
value in each column is the value of one feature of the current sample.

Normalizing with Eigen
There are no functions for data normalization in the Eigen library. However, we can
implement them according to the provided formulas.

For the standardization, we first have to calculate the standard deviation, as follows:

Eigen::Array<double, 1, Eigen::Dynamic> std_dev =
 ((x.rowwise() - x.colwise().mean())
 .array()
 .square()
 .colwise()
 .sum() /

Data Processing Chapter 2

[71]

 (x_data.rows() - 1))
 .sqrt();

Notice that some reduction functions in the Eigen library work only with array
representation; examples are the sum() and the sqrt() functions. We have also calculated
the mean for each feature—we used the x.colwise().mean() function combination that
returns a vector of mean. We can use the same approach for other feature statistics'
calculations.

Having the standard deviation value, the rest of the formula for standardization will look
like this:

Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> x_std =
 (x.rowwise() - x.colwise().mean()).array().rowwise() /
 std_dev;

Implementation of min_max normalization is very straightforward and does not require
intermediate values, as illustrated in the following code snippet:

Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> x_min_max =
 (x.rowwise() - x.colwise().minCoeff()).array().rowwise() /
 (x.colwise().maxCoeff() - x.colwise().minCoeff()).array();

We implement the mean normalization in the same way, like this:

Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> x_avg =
 (x.rowwise() - x.colwise().mean()).array().rowwise() /
 (x.colwise().maxCoeff() - x.colwise().minCoeff()).array();

Notice that we implement formulas in a vectorized way without loops; this approach is
more computationally efficient because it can be compiled for execution on a GPU or the
central processing unit's (CPU's) Single Instruction Multiple Data (SIMD) instructions.

Normalizing with Shogun
The shogun::CRescaleFeatures class in the Shogun library implements min-max
normalization (or rescaling). We can reuse objects of this class for scaling different data
with the same learned statistics. It can be useful in cases when we train a machine learning
algorithm on one data format with applied rescaling, and then we use the algorithm for
predictions on new data. To make this algorithm work as we want, we have to rescale new
data in the same way as we did in the training process, as follows:

include <shogun/preprocessor/RescaleFeatures.h>
...

Data Processing Chapter 2

[72]

auto features = shogun::some<shogun::CDenseFeatures<DataType>>(inputs);
...
auto scaler = shogun::wrap(new shogun::CRescaleFeatures());
scaler->fit(features); // learn statistics - min and max values
scaler->transform(features); // apply scaling

To learn statistics values, we use the fit() method, and for features modification, we use
the transform() method of the CRescaleFeatures class.

We can print updated features with the display_vector() method of the SGVector
class, as follows:

auto features_matrix = features->get_feature_matrix();
for (int i = 0; i < n; ++i) {
 std::cout << "Sample idx " << i << " ";
 features_matrix.get_column(i).display_vector();
}

Some algorithms in the Shogun library can perform normalization of input data as an
internal step of their implementation, so we should read the documentation to determine if
manual normalization is required.

Normalizing with Dlib
The Dlib library provides functionality for feature standardization with the
Dlib::vector_normalizer class. There is one limitation for using this class—we cannot
use it with one big matrix containing all training samples. Alternatively, we should
represent each sample with a separate vector object and put them into the C++
std::vector container, as follows:

std::vector<matrix<double>> samples;
...
vector_normalizer<matrix<double>> normalizer;
samples normalizer.train(samples);
samples = normalizer(samples);

We see that the object of this class can be reused, but it should be trained at first. The train
method implementation can look like this:

matrix<double> m(mean(mat(samples)));
matrix<double> sd(reciprocal(stddev(mat(samples))));
for (size_t i = 0; i < samples.size(); ++i)
 samples[i] = pointwise_multiply(samples[i] - m, sd);

Data Processing Chapter 2

[73]

Notice that the Dlib::mat() function has different overloads for matrix creation from

different sources. Also, we use the reciprocal() function that makes the
matrix if the m is the input matrix.

Printing matrices for debugging purpose in the Dlib library can be done with the simple
streaming operator, as illustrated in the following code snippet:

std::cout << mat(samples) << std::endl;

Normalizing with Shark-ML
The Shark-ML library implements several normalization approaches. They are
implemented as trainer classes for the Normalizer model type. We can reuse the
Normalizer type after training on different data. There are the following normalization
trainer classes:

NormalizeComponentsUnitInterval—This class trains a normalization model
that transforms data to fit a unit interval.
NormalizeComponentsUnitVariance—This class trains a normalization model
that transforms data to have unit variance and, optionally, a zero mean.
NormalizeComponentsWhitening—This class trains a normalization model
that transforms data to have zero mean and unit variance by default, but we can
specify the target variance value.

The following code sample shows how to use a normalization model with a trainer:

#include <shark/Algorithms/Trainers/NormalizeComponentsUnitVariance.h>
#include <shark/Models/Normalizer.h>
...
Normalizer<RealVector> normalizer;
NormalizeComponentsUnitVariance<RealVector> normalizingTrainer(
 /*removeMean*/ true);
normalizingTrainer.train(normalizer, dataset.inputs());
dataset = transformInputs(dataset, normalizer);

After defining the model and the trainer objects, we have to call the train() method to
learn statistics from the input dataset, and then we use the transformInputs() function
to update the target dataset. We can print a Shark-ML dataset with the standard C++
streaming operator, as follows:

std::cout << dataset << std::endl;

Data Processing Chapter 2

[74]

Summary
In this chapter, we considered how to load data from CSV, JSON, and HDF5 formats. We
saw how to convert the loaded data in the objects suitable to use in different machine
learning frameworks. We used the libraries' APIs to convert raw C++ arrays into matrices
and higher-level datasets' objects for machine learning algorithms. We looked at how to
load and process images with the OpenCV and Dlib libraries. We became familiar with the
data normalization process, which is very important for many machine learning
algorithms. Also, we saw which normalization techniques are available in machine learning
libraries, and we implemented some normalization approaches with linear algebra
functions from the Eigen library.

In the following chapter, we will see how to measure a model's performance on different
types of data. We will look at special techniques that help us to understand how the model
describes the training dataset well and how it performs on new data. Also, we will learn
different types of parameters machine learning models depend on, and see how to select
the best combination of them to improve the model's performance.

Further reading
THE HDF5® LIBRARY & FILE FORMAT: https://www.hdfgroup.org/
solutions/hdf5/

GitHub link for Fast C++ CSV Parser: https://github.com/ben-strasser/Fast-
CPP-CSV-Parser

OpenCV: https://opencv.org/

Dlib C++ Library: http://Dlib.net/

RapidJSON Documentation: http://rapidjson.org/

The official page of the Iris dataset: https://archive.ics.uci.edu/ml/
datasets/iris

https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://github.com/ben-strasser/fast-cpp-csv-parser
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://rapidjson.org/
http://rapidjson.org/
http://rapidjson.org/
http://rapidjson.org/
http://rapidjson.org/
http://rapidjson.org/
http://rapidjson.org/
http://rapidjson.org/
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris

3
Measuring Performance and

Selecting Models
This chapter describes the bias and variance effects and their pathological cases, which
usually appear when training machine learning (ML) models. For example, the high
variance effect, also known as overfitting, is a phenomenon in ML where the constructed
model explains the examples from the training set but works relatively poorly on the
examples that did not participate in the training process. This occurs because while training
a model, random patterns will start appearing that are normally absent from the general
population. The opposite of overfitting is known as underfitting. This happens when the
trained model becomes unable to predict patterns in new data or even in the training data.
Such an effect can be the result of a limited training dataset or weak model design.

In this chapter, we will learn how to deal with overfitting by using regularization and
discuss the different techniques we can use. We shall also consider the different model
performance estimation metrics and how they can be used to detect training problems.
Toward the end of this chapter, we shall look at how to find the best hyperparameters for a
model by introducing the grid search technique and its implementation in C++.

The following topics will be covered in this chapter:

Performance metrics for ML models
Understanding the bias and variance characteristics
Model selection with the grid search technique

Measuring Performance and Selecting Models Chapter 3

[76]

Technical requirements
For this chapter, you will need the following:

A modern C++ compiler with C++17 support
CMake build system version >= 3.8
Dlib library
Shogun-toolbox library
Shark-ML library
Plotcpp library

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03

Performance metrics for ML models
When we develop or implement a particular ML algorithm, we need to estimate how well it
works. In other words, we need to estimate how well it solves our task. Usually, we use
some numeric metrics for algorithm performance estimation. An example of such a metric
could be a value of mean squared error that's been calculated for target and predicted
values. We can use this value to estimate how distant our predictions are from the target
values we used for training. Another use case for performance metrics is their use as
objective functions in optimization processes. Some performance metrics are used for
manual observations, though others can be used for optimization purposes too.

Performance metrics are different for each of the ML algorithms types. In Chapter 1,
Introduction to Machine Learning with C++, we discussed that two main categories of ML
algorithms exist: regression algorithms and classification algorithms. There are other types
of algorithms in the ML discipline, but these two are the most common ones. This section
will go over the most popular performance metrics for regression and classification
algorithms.

Regression metrics
Regression task metrics are used to measure how close the predicted values are to the
ground truth ones. Such measurements can help us estimate the prediction quality of the
algorithm. Under regression metrics, there are four main metrics.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter03

Measuring Performance and Selecting Models Chapter 3

[77]

Mean squared error and root mean squared error
Mean squared error (MSE) is a widely used metric for regression algorithms to estimate
their quality. It is an average squared difference between the predictions and ground truth
values. This is given by the following equation:

Here, is the number of predictions and ground truth items, is the ground truth value
for the ith item, and is the prediction value for the ith item.

MSE is often used as a target loss function for optimization algorithms because it is
smoothly differentiable and is a convex function.

The root mean squared error (RMSE) metric is usually used to estimate performance, such
as when we need to give bigger weights to higher errors (to penalize them). We can
interpret this as the standard deviation of the differences between predictions and ground
truth values. This is given by the following equation:

The following sample shows an MSE calculation being performed with the Shark-ML
library:

SquaredLoss<> mse_loss;
auto mse = mse_loss(train_data.labels(), predictions);
auto rmse = std::sqrt(mse);

In this example, we calculated the MSE value by using the SquaredLoss type object.
Objects of the SquaredLoss type can be used functional objects, and they take the training
labels (ground truth values) values and prediction values as arguments. The calculation
result is a floating-point value. Notice that to get the RMSE value, we just take the square
root of the result value.

The following example shows an MSE calculation being performed with the Shogun
library:

auto mse_error = some<CMeanSquaredError>();
auto mse = mse_error->evaluate(predictions, train_labels);

Measuring Performance and Selecting Models Chapter 3

[78]

In this example, we calculated the MSE value using the CMeanSquareError type object.
The evaluate method takes the prediction values and training labels (ground truth values)
as arguments and returns the floating-point value as the result.

Mean absolute error
Mean absolute error (MAE) is another popular metric that's used for quality estimation for
regression algorithms. The MAE metric is a linear function with equally weighted
prediction errors. This metric is more robust for outliers than RMSE. It is given by the
following equation:

The following example shows how to calculate MSE with the Shark-ML library:

AbsoluteLoss<> abs_loss;
auto mae = abs_loss(train_data.labels(), prediction);

The following example shows how to calculate MSE with the Shogun library:

auto mae_error = some<CMeanAbsoluteError>();
auto mae = mae_error->evaluate(predictions, train_labels);

R squared
The R squared metric is also known as a coefficient of determination. It is used to measure
how good our independent variables (features from the training set) describe the problem
and explain the variability of dependent variables (prediction values). The higher values
tell us that the model explains our data well enough, while lower values tell us that the
model makes many errors. This is given by the following equations:

Measuring Performance and Selecting Models Chapter 3

[79]

Here, is the number of predictions and ground truth items, is the ground truth value
for the ith item, and is the prediction value for the ith item.

The only problem with this metric is that the value will always increase as we add new
independent variables to the model. It may seem that the model begins to explain data
better, but this isn't true – this value only increases if there are more training items.
There are no out of the box functions for calculating this metric in the libraries we use.
However, it is simple to implement it with linear algebra functions.

The following example shows how to calculate MSE with the Shark-ML library:

auto var = shark::variance(train_data.labels());
auto r_squared = 1 - mse / var(0);

Adjusted R squared
The adjusted R squared metric was designed to solve the previously described problem of
the R squared metric. It is the same as the R squared metric but with a penalty for a large
number of independent variables. The main idea is that if new independent variables
improve the model's quality, the values of this metric increase; otherwise, they decrease.
This can be given by the following equation:

Here, k is the number of parameters and n is the number of samples.

Classification metrics
Before we start discussing classification metrics, we have to introduce an important concept
called the confusion matrix. Let's assume that we have two classes and an algorithm that
assigns them to an object. Here, the confusion matrix will look like this:

True positive (TP) False positive (FP)

False negative (FN) True negative (TN)

Measuring Performance and Selecting Models Chapter 3

[80]

Here, is the predicted class of the object and is the ground truth label. The confusion
matrix is an abstraction that we use to calculate different classification metrics. It gives us
the number of items that were classified correctly and misclassified. It also provides us with
information about the misclassification type. The false negatives are items that our
algorithm incorrectly classified as negative ones, while the false positives are items that our
algorithm incorrectly classified as positive ones. In this section, we'll learn how to use this
matrix and calculate different classification performance metrics.

Accuracy
One of the most obvious classification metrics is accuracy:

This provides us with a ratio of all positives predictions to all others. In general, this metric
is not very useful because it doesn't show us the real picture in terms of cases with an odd
number of classes. Let's consider a spam classification task and assume we have 10 spam
letters and 100 non-spam letters. Our algorithm predicted 90 of them correctly as non-spam
and classified only 5 spam letters correctly. In this case, accuracy will have the following
value:

However, if the algorithm predicts all letters as non-spam, then its accuracy should be as
follows:

This example shows that our model still doesn't work because it is unable to predict all the
spam letters, but the accuracy value is good enough.

There is a class called ZeroOneLoss in the Shark-ML library that can be used to calculate
the accuracy value for classification tasks. We can also use the objects of this class as a
target loss function for learning purposes.

In the Shogun library, there's a class called CAccuracyMeasure that can be used to
calculate the value of the accuracy.

Measuring Performance and Selecting Models Chapter 3

[81]

Precision and recall
To estimate algorithm quality for each classification class, we shall introduce two
metrics: precision and recall. The following diagram shows all the objects that are used in
classification and how they have been marked according to the algorithm's results:

The circle in the center contains selected elements – the elements our algorithm predicted as
positive ones.

Precision is proportional to the number of correctly classified items within selected ones.
Another name for precision is specificity:

Recall is proportional to the number of correctly classified items within all ground truth
positive items. Another name for the recall is sensitivity:

Let's assume that we are interested in the detection of positive items – let's call them
relevant ones. So, we use the recall value as a measure of an algorithm's ability to detect
relevant items and the precision value as a measure of an algorithm's ability to see the
differences between classes. These measures do not depend on the number of objects in
each of the classes, and we can use them for imbalanced dataset classification.

There are two classes in the Shogun library called CRecallMeasure and
CPrecisionMeasure that we can use to calculate these measures. The Shark-ML and Dlib
libraries do not contain functions to calculate these measures.

Measuring Performance and Selecting Models Chapter 3

[82]

F-score
In many cases, it is useful to have only one metric that shows the classification's quality. For
example, it makes sense to use some algorithms to search for the best hyperparameters,
such as the GridSearch algorithm, which will be discussed later in this chapter. Such
algorithms usually use one metric to compare different classification results after applying
various parameter values during the search process. One of the most popular metrics for
this case is the F-measure (or the F-score), which can be given as follows:

Here, is the precision metric weight. Usually, the value is equal to one. In such a case,
we have the multiplier value equal to 2, which gives us if the precision = 1 and the
recall = 1. In other cases, when the precision value or the recall value tends to be zero, the F-
measure value will also decrease.

There's a class called CF1Measure in the Shogun library that we can use to calculate this
metric. The Shark-ML and Dlib libraries do not have classes or functions to calculate the F-
measure.

AUC–ROC
Usually, a classification algorithm will not return a concrete class identifier but a
probability of an object belonging to some class. So, we usually use a threshold to decide
whether an object belongs to a class or not. The most apparent threshold is 0.5, but it can
work incorrectly in the case of imbalanced data (when we have a lot of values for one class
and significantly fewer for other class).

One of the methods we can use to estimate a model without the actual threshold is the
value of the Area Under Receiver Operating Characteristic curve (AUC-ROC). This curve
is a line from (0,0) to (1,1) in coordinates of the True Positive Rate (TPR) and the False
Positive Rate (FPR):

Measuring Performance and Selecting Models Chapter 3

[83]

The TPR is equal to the recall, while the FPR value is proportional to the number of objects
of negative class that were classified incorrectly (they should be positive). In an ideal case,
when there are no classification errors, we have FPR = 0, TPR =1, and the area under the
ROC curve will be equal to 1. In the case of random predictions, the area under the ROC
curve will be equal to 0.5 because we will have an equal number of TP and FP
classifications:

Each point on the curve corresponds to some threshold value. Notice that the curve's
steepness is an essential characteristic because we want to minimize FPR, so we usually
want this curve to tend to point (0,1). We can also successfully use the AUC-ROC metric
with imbalanced datasets. There is a class called NegativeAUC in the Shark-ML library that
can be used to calculate AUC-ROC. The Shogun library has a class
called CROCEvaluation for the same purpose.

Log-Loss
The logistic loss function value (the Log-Loss) is used as a target loss function for
optimization purposes. It is given by the following equation:

Measuring Performance and Selecting Models Chapter 3

[84]

We can understand the Log-Loss value as the accuracy being corrected, but with penalties
for incorrect predictions. This function gives significant penalties, even for single miss-
classified objects, so all outlier objects in the data should be processed separately or
removed from the dataset.

There is a class called CrossEntropy in the Shark-ML library that can be used to calculate
this metric and use it as the loss function. The Shogun library has a class
called CLogLoss for the same purpose.

Understanding the bias and variance
characteristics
The bias and variance characteristics are used to predict model behavior. They are universal
keywords. Before we go any further and describe what they mean, we should consider
validation. Validation is a technique that's used to test model performance. It estimates how
well the model makes predictions on new data. New data is data that we did not use for the
training process. To perform validation, we usually divide our initial dataset in two or three
parts. One part should contain most of the data and will be used for training, while other
ones will be used to validate and test the model. Usually, validation is performed for
iterative algorithms after one training cycle (often called an epoch). Alternatively, we
perform testing after the overall training process.

The validation and testing operations evaluate the model on the data we have excluded
from the training process, which results in the values of the performance metrics that we
chose for this particular model. The values of these validation metrics can be used to
estimate models, prediction error trends. The most crucial issue for validation and testing is
that the data for them should always be from the same distribution as the training data.

Throughout the rest of this chapter, we will use the polynomial regression model to show
different prediction behaviors. The polynomial degree will be used as a hyperparameter.

Measuring Performance and Selecting Models Chapter 3

[85]

Bias
The bias is a prediction characteristic that tells us about the distance between model
predictions and ground truth values. Usually, we use the term high bias or underfitting to
say that model prediction is too far from the ground truth values, which means that the
model generalization ability is weak. Consider the following graph:

This graph shows the original values with black dots, the values used for validation with
green dots, and a line that represents the polynomial regression model output. In this case,
the polynomial degree is equal to one. We can see that the predicted values do not describe
the original data at all, so we can say that this model has a high bias. Also, we can plot
validation metrics for each training cycle to get more information about the training process
and the model's behavior.

Measuring Performance and Selecting Models Chapter 3

[86]

The following graph shows the MAE metric values for the training process of the
polynomial regression model, where the polynomial degree is equal to one:

We can see that the lines for the metric values for the train and validation data are parallel
and distant enough. Moreover, these lines do not change their direction after numerous
training iterations. These facts also tell us that the model has a high bias because, for a
regular training process, validation metric values should be close to the training values.

To deal with high bias, we can add more features to the training samples. For example,
increasing the polynomial degree for the polynomial regression model adds more features;
these all-new features describe the original training sample because each additional
polynomial term is based on the original sample value.

Measuring Performance and Selecting Models Chapter 3

[87]

Variance
Variance is a prediction characteristic that tells us about the variability of model
predictions; in other words, how big the range of output values can be. Usually, we use the
term high variance or overfitting in the case when a model tries to incorporate many
training samples very precisely. In such a case, the model cannot provide a good
approximation for new data but has excellent performance on the training data.

The following graph shows the behavior of the polynomial regression model, with the
polynomial degree equal to 15:

Measuring Performance and Selecting Models Chapter 3

[88]

We can see that the model incorporates almost all the training data. Notice that the training
data is indicated with black dots, while the data used for validation is indicated with green
dots. We can see that these two sets of data are somehow distant from each other and that
our model misses the validation data because of a lack of approximation. The following
graph shows the MAE values for the learning process:

We can see that after approximately 75 learning iterations, the model began to predict
training data much better, and the error value became lower. However, for the validation
data, the MAE values began to increase. To deal with high variance, we can use special
regularization techniques, which we will discuss in the following sections. We can also
increase the number of training samples and decrease the number of features in one sample
to reduce high variance.

Measuring Performance and Selecting Models Chapter 3

[89]

The performance metrics plots we discussed in the preceding paragraphs can be drawn at
the runtime of the training process. We can use them to monitor the training process to see
high bias or high variance problems. Notice that for the polynomial regression model, MAE
is a better performance characteristic than MSE or RMSE because squared functions
average errors too much. Moreover, even a straight-line model can have low MSE values
for such data because errors from both sides of the line compensate for each other.

Normal training
Consider the case of a training process where the model has balanced bias and variance:

Measuring Performance and Selecting Models Chapter 3

[90]

In this graph, we can see that the polynomial regression model's output for the polynomial
degree is equal to eight. The output values are close to both the training data and validation
data. The following graph shows the MAE values during the training process:

We can see that the MAE value decreases consistently and that the predicted values for the
training and validation data become close to the ground truth values. This means that the
model's hyperparameters were good enough to balance bias and variance.

Regularization
Regularization is a technique that's used to reduce model overfitting. There are two main
approaches to regularization. The first one is known as training data preprocessing. The
second one is loss function modification. The main idea of the loss function modification
techniques is to add terms to the loss function that penalize algorithm results, thereby
leading to significant variance. The idea of training data preprocessing techniques is to add
more distinct training samples. Usually, in such an approach, new training samples are
generated by augmenting existing ones. In general, both approaches add some prior
knowledge about the task domain to the model. This additional information helps us with
variance regularization. Therefore, we can conclude that regularization is any technique
that leads to minimizing the generalization error.

Measuring Performance and Selecting Models Chapter 3

[91]

L1 regularization – Lasso
L1 regularization is an additional term to the loss function:

This additional term adds the absolute value of the magnitude of parameters as a penalty.
Here, λ is a regularization coefficient. Higher values of this coefficient lead to stronger
regularization and can lead to underfitting. Sometimes, this type of regularization is called
the Least Absolute Shrinkage and Selection Operator (Lasso) regularization. The general
idea behind L1 regularization is to penalize less important features. We can think about it
as a feature selection process.

There is a class called shark::OneNormRegularizer in the Shark-ML library whose
instances can be added to trainers to perform L1 regularization. In the Shogun library,
regularization is usually incorporated into the model (algorithm) classes and cannot be
changed.

L2 regularization – Ridge
L2 regularization is also an additional term to the loss function:

This additional term adds a squared value of magnitude of parameters as a penalty. λ is
also a coefficient of regularization. Its higher values lead to stronger regularization and can
lead to underfitting. Another name for this regularization type is Ridge regularization.
Unlike L1 regularization, this type does not have a feature selection characteristic. Instead,
we can interpret it as a model smoothness configurator. In addition, L2 regularization is
computationally more efficient for gradient descent-based optimizers because its
differentiation has an analytical solution.

There is a class called shark::TwoNormRegularizer in the Shark-ML library whose
instances can be added to trainers to perform L2 regularization. In the Shogun library,
regularization is usually incorporated into the model (algorithm) classes and cannot be
changed. An example of such an algorithm is the CKernelRidgeRegression class, which
implements a linear regression model with L2 regularization.

Measuring Performance and Selecting Models Chapter 3

[92]

Data augmentation
The data augmentation process can be treated as regularization because it adds some prior
knowledge about the problem to the model. This approach is common in computer vision
tasks such as image classification or object detection. In such cases, when we can see that
the model begins to overfit and does not have enough training data, we can augment the
images we already have to increase the size of our dataset and provide more distinct
training samples. Image augmentations are random image rotations, cropping and
translations, mirroring flips, scaling, and proportion changes.

Early stopping
Stopping the training process early can also be interpreted as a form of regularization. This
means that if we detected that the model started to overfit, we can stop the training process.
In this case, the model will have parameters once the training has stopped.

Regularization for neural networks
L1 and L2 regularizations are widely used to train neural networks and are usually called
weight decay. Data augmentation also plays an essential role in the training processes for
neural networks. There are other regularization methods that can be used neural networks.
For example, Dropout is a particular type of regularization that was developed especially
for neural networks. This algorithm randomly drops some neural network nodes; it makes
other nodes more insensitive to the weights of other nodes, which means the model
becomes more robust and stops overfitting.

Model selection with the grid search
technique
It is necessary to have a set of proper hyperparameter values to create a good ML model.
The reason for this is that having random values leads to controversial results and
behaviors that are not expected by the practitioner. There are several approaches we can
follow to choose the best set of hyperparameter values. We can try to use hyperparameters
from the algorithms we have already trained that are similar to our task. We can also try to
find some heuristics and tune them manually. However, this task can be automated. The
grid search technique is the automated approach for searching for the best hyperparameter
values. It uses the cross-validation technique for model performance estimation.

Measuring Performance and Selecting Models Chapter 3

[93]

Cross-validation
We have already discussed what the validation process is. It is used to estimate the
model's performance data that we haven't used for training. If we have a limited or small
training dataset, randomly sampling the validation data from the original dataset leads to
the following problems:

The size of the original dataset is reduced.
There is the probability of leaving data that's important for validation in the
training part.

To solve these problems, we can use the cross-validation approach. The main idea behind it
is to split the original dataset in such a way that all the data will be used for training and
validation. Then, the training and validation processes are performed for all partitions, and
the resulting values are averaged.

K-fold cross-validation
The most well-known method of cross-validation is K-fold cross-validation. The idea is to
divide the dataset into K blocks of the same size. Then, we use one of the blocks for
validation and the others for training. We repeat this process K times, each time choosing a
different block for validation, and in the end, we average all the results. The data splitting
scheme during the whole cross-validation cycle looks like this:

Divide the dataset into K blocks of the same size.1.
Select one of the blocks for validation and the remaining ones for training.2.
Repeat this process, making sure that each block is used for validation and the3.
rest are used for training.
Average the results of the performance metrics that were calculated for the4.
validation sets on each iteration.

Measuring Performance and Selecting Models Chapter 3

[94]

The following diagram shows the cross-validation cycle:

Grid search
The main idea behind the grid search approach is to create a grid of the most reasonable
hyperparameter values. The grid is used to generate a reasonable number of distinct
parameter sets quickly. We should have some prior knowledge about the task domain to
initialize the minimum and maximum values for grid generation, or we can initialize the
grid with some reasonable broad ranges. However, if the chosen ranges are too broad, the
process of searching for parameters can take a long time and will require a significant
amount of computational resources.

At each step, the grid search algorithm chooses a set of hyperparameter values and trains a
model. After that, the training step algorithm uses the K-fold cross-validation technique to
estimate model performance. We should also define a single model performance estimation
metric for model comparison that the algorithm will calculate at each training step for every
model. After completing the model training process with each set of parameters from every
grid cell, the algorithm chooses the best set of hyperparameter values by comparing the
metric's values and selecting the best one. Usually, the set with the smallest value is the best
one.

Consider an implementation of this algorithm in different libraries. Our task is to select the
best set of hyperparameters for the polynomial regression model, which gives us the best
curve that fits the given data. The data in this example is some cosine function values with
some random noise.

Measuring Performance and Selecting Models Chapter 3

[95]

Shogun example
The Shogun library contains all the necessary classes for the grid search approach. We start
by defining the base model. In the Shogun library, we can use the
CKernelRidgeRegression class for this purpose. This class implements the polynomial
regression model based on the SVM algorithm, and it uses kernels for precise model
specialization. Therefore, we can use the polynomial kernel to simulate the polynomial
regression model. Also, this kernel type has a configurable hyperparameter called the
polynomial degree. The following code sample shows how to create the kernel object:

auto kernel = some<CPolyKernel>(/*cache size*/ 256, /*degree*/ 15);
kernel->init(x, x);

Notice that the kernel object requires our training data for initialization. Despite the fact
that data normalization routines are usually incorporated into the algorithm pipelines in
the Shogun library, the kernel object requires additional configuration, so we add the
normalization object to the kernel object:

auto kernel_normaiizer = some<CSqrtDiagKernelNormalizer>();
kernel->set_normalizer(kernel_normaiizer);

The CKernelRidgeRegression class already has an implementation of L2 (Ridge)
regularization. The following code sample shows us how to configure the initial values for
the regularization coefficient:

float64_t tau_regularization = 0.00000001;
float64_t tau_regularization_max = 0.000001;
auto model = some<CKernelRidgeRegression>(tau_regularization, kernel, y);

Next, we define the cross-validation object for the grid search. There are several data
splitting strategies in the Shogun library that we can use. We have selected the
CStratifiedCrossValidationSplitting class here, which implements the same size
folds (the data blocks) for splitting. In the following code snippet, we're dividing our
dataset into five folds:

auto splitting_strategy = some<CStratifiedCrossValidationSplitting>(y, 5);

We chose MSE as a performance metric. The CMeanSquaredError class implements it:

auto evaluation_criterium = some<CMeanSquaredError>();

Measuring Performance and Selecting Models Chapter 3

[96]

Then, we create the CCrossValidation object and initialize it with the instances of the
splitting strategy object and the performance metric object:

auto cross_validation = some<CCrossValidation>(
 model, x, y, splitting_strategy, evaluation_criterium);
cross_validation->set_autolock(false);
cross_validation->set_num_runs(1);

We disabled autolock for the CCrossValidation object because this class does not
support this option. This option can speed up the training process in cases where the model
supports it. We also only configured one number of runs for the cross-validation process.
We did this for demonstration purposes, but for real-life projects, it makes sense to run
cross-validation several times.

To define a parameter grid, we use the CModelSelectionParameters class. An object of
this class implements a node of a tree that contains a predefined range of values for one
hyperparameter. The following code shows how to make a tree of such nodes, which will
be an analog for the parameter grid:

auto params_root = some<CModelSelectionParameters>();
auto param_tau = some<CModelSelectionParameters>("tau");
params_root->append_child(param_tau);
param_tau->build_values(tau_regularization, tau_regularization_max,
 ERangeType::R_LINEAR, tau_regularization_max);
auto param_kernel = some<CModelSelectionParameters>("kernel", kernel);
auto param_kernel_degree = some<CModelSelectionParameters>("degree");
param_kernel_degree->build_values(5, 15, ERangeType::R_LINEAR, 1);
param_kernel->append_child(param_kernel_degree);
params_root->append_child(param_kernel);

Notice that we used the build_values() method to generate a range of values. This
method takes the minimum and the maximum values as arguments. After we've
configured the cross-validation and the parameter grid (the tree, in our case) objects, we can
initialize and run the grid search algorithm. The CGridSearchModelSelection class
implements the grid search algorithm:

auto model_selection =
 some<CGridSearchModelSelection>(cross_validation, params_root);
auto best_parameters = model_selection->select_model(/*print_state*/
 true);
best_parameters->apply_to_machine(model);

Measuring Performance and Selecting Models Chapter 3

[97]

After instantiating the CGridSearchModelSelection object, we used the
select_model() method to search for the best parameter values. Then, we applied them
to the model with the apply_to_machine() method. The Shogun library does not
guarantee that the model will be in a trained state with the best parameters after model
selection. It will in a trained state with the last ones. Therefore, we need to retrain the
model with the whole dataset to get better performance:

if (!model->train(x)) {
 std::cerr << "training failed\n";
}

After the final training process, the model is ready to be evaluated.

Shark-ML example
The Shark-ML library also contains classes for the grid search algorithm. However, it does
not have an implementation of the polynomial regression model, so we implemented this
model and the code in this example. First, we define the partitions of our dataset, which are
five chunks of the same size. The following example shows how to use the
createCVSameSize function for this purpose:

const unsigned int num_folds = 5;
CVFolds<RegressionDataset> folds =
 createCVSameSize<RealVector, RealVector>(train_data, num_folds);

As a result, we have the CVFolds<RegressionDataset> object, which contains our
partition. Then, we initialize and configure our model. In the Shark-ML library, the model
parameters are usually configured with trainer objects, which pass them to the model
objects:

double regularization_factor = 0.0;
double polynomial_degree = 8;
int num_epochs = 300;
PolynomialModel<> model;
PolynomialRegression trainer(regularization_factor, polynomial_degree,
 num_epochs);

Now that we have the trainer, model, and folds objects, we initialize the
CrossValidationError object. As a performance metric, we used the AbsoluteLoss
object, which implements the MAE metric:

AbsoluteLoss<> loss;
CrossValidationError<PolynomialModel<>, RealVector> cv_error(
 folds, &trainer, &model, &trainer, &loss);

Measuring Performance and Selecting Models Chapter 3

[98]

There is a class called GridSearch in the Shark-ML library that we can use to perform the
grid search algorithm. We should configure the object of this class with the parameter
ranges. There is the configure() method, which takes three containers as arguments. The
first one specifies the minimum values for each parameter range, the second specifies the
maximum values for each parameter range, and the third specifies the number of values in
each parameter range. Notice that the order of the parameters in the range containers
should be the same as how they were defined in the trainer class. Information about
parameter order can be found in the appropriate documentation or source code:

GridSearch grid;
std::vector<double> min(2);
std::vector<double> max(2);
std::vector<size_t> sections(2);
// regularization factor
min[0] = 0.0;
max[0] = 0.00001;
sections[0] = 6;
// polynomial degree
min[1] = 4;
max[1] = 10.0;
sections[1] = 6;
grid.configure(min, max, sections);

After initializing the grid, we can use the step() method to perform the grid search for the
best hyperparameter values; this method should be called only once. As in the previous
example for the Shogun library, we have to retrain our model with the parameters we
found:

grid.step(cv_error);

trainer.setParameterVector(grid.solution().point);
trainer.train(model, train_data)

Dlib example
The Dlib library also contains all the necessary functionality for the grid search algorithm.
However, we should use functions instead of classes. The following code snippet shows the
CrossValidationScore function's definition. This function performs cross-validation and
returns the value of the performance metric:

auto CrossValidationScore = [&](const double gamma, const double c,
 const double degree_in) {
 auto degree = std::floor(degree_in);
 using KernelType = Dlib::polynomial_kernel<SampleType>;

Measuring Performance and Selecting Models Chapter 3

[99]

 Dlib::svr_trainer<KernelType> trainer;
 trainer.set_kernel(KernelType(gamma, c, degree));
 Dlib::matrix<double> result = Dlib::cross_validate_regression_trainer(
 trainer, samples, raw_labels, 10);
 return result(0, 0);
};

The CrossValidationScore function takes the hyperparameters that were set as
arguments. Inside this function, we defined a trainer for a model with the svr_trainer
class, which implements kernel ridge regression based on the SVM algorithm. We used the
polynomial kernel, just like we did for the Shogun library example. After we defined the
model, we used the cross_validate_regression_trainer() function to train the
model with the cross-validation approach. This function splits our data into folds
automatically, with its last argument being the number of folds. The
cross_validate_regression_trainer() function returns the matrix, along with the
values of different performance metrics. Notice that we do not need to define them because
they are predefined in the library's implementation.

The first value in this matrix is the average MSE value. We used this value as a function
result. However, there is no strong requirement for what value this function should return;
the requirement is that the return value should be numeric and comparable. Also, notice
that we defined the CrossValidationScore function as a lambda to simplify access to the
training data container defined in the outer scope.

Next, we can search for the best parameters that were set with the find_min_global
function:

 auto result = find_min_global(
 CrossValidationScore,
 {0.01, 1e-8, 5}, // minimum values for gamma, c, and degree
 {0.1, 1, 15}, // maximum values for gamma, c, and degree
 max_function_calls(50));

This function takes the cross-validation function, the container with minimum values for
parameter ranges, the container with maximum values for parameter ranges, and the
number of cross-validation repeats. Notice that the initialization values for parameter
ranges should go in the same order as the arguments that were defined in the
CrossValidationScore function. Then, we can extract the best hyperparameters and
train our model with them:

double gamma = result.x(0);
double c = result.x(1);
double degree = result.x(2);
using KernelType = Dlib::polynomial_kernel<SampleType>;
Dlib::svr_trainer<KernelType> trainer;

Measuring Performance and Selecting Models Chapter 3

[100]

trainer.set_kernel(KernelType(gamma, c, degree));
auto descision_func = trainer.train(samples, raw_labels)

We used the same model definition as in the CrossValidationScore function. For the
training process, we used all of our training data. The train method of the trainer object
was used to complete the training process. The training result is a function that takes a
single sample as an argument and returns a prediction value.

Summary
In this chapter, we discussed how to estimate the ML model's performance and what
metrics can be used for such estimation. We considered different metrics for regression and
classification tasks and what characteristics they have. We have also seen how performance
metrics can be used to determine the model's behavior, and also looked at the bias and
variance characteristics. We looked at some high bias (underfitting) and high variance
(overfitting) problems and considered how to solve them. We also learned about the
regularization approaches, which are often used to deal with overfitting. We then studied
what validation is and how it is used in the cross-validation technique. We saw that the
cross-validation technique allows us to estimate model performance while training limited
data. In the last section, we combined an evaluation metric and cross-validation in the grid
search algorithm, which we can use to select the best set of hyperparameters for our model.

In the next chapter, we'll learn about the ML algorithms we can use to solve concrete
problems. The next topic we will discuss in depth is clustering – the procedure of splitting
the original set of objects into groups classified by properties. We will look at different
clustering approaches and their characteristics.

Further reading
Choosing the Right Metric for Evaluating Machine Learning Models—Part 1:
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-
learning-models-part-1-a99d7d7414e4

Understand Regression Performance Metrics: https://becominghuman.ai/
understand-regression-performance-metrics-bdb0e7fcc1b3

Classification Performance Metrics: https://nlpforhackers.io/
classification-performance-metrics/

https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://becominghuman.ai/understand-regression-performance-metrics-bdb0e7fcc1b3
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/
https://nlpforhackers.io/classification-performance-metrics/

Measuring Performance and Selecting Models Chapter 3

[101]

REGULARIZATION: An important concept in Machine Learning: https://
towardsdatascience.com/regularization-an-important-concept-in-machine-
learning-5891628907ea

An Overview of Regularization Techniques in Deep Learning (with Python
code): https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-
learning-regularization-techniques

Understanding the Bias-Variance Tradeoff: https://towardsdatascience.com/
understanding-the-bias-variance-tradeoff-165e6942b229

Deep Learning: Overfitting: https://towardsdatascience.com/deep-learning-
overfitting-846bf5b35e24

A Gentle Introduction to k-fold Cross-Validation: https://
machinelearningmastery.com/k-fold-cross-validation/

https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/

2
Section 2: Machine Learning

Algorithms
In this section, we'll show you how to implement different well-known machine learning
models (algorithms) using a variety of C++ frameworks.

This section comprises the following chapters:

Chapter 4, Clustering
Chapter 5, Anomaly Detection
Chapter 6, Dimensionality Reduction
Chapter 7, Classification
Chapter 8, Recommender Systems
Chapter 9, Ensemble Learning

4
Clustering

Clustering is an unsupervised machine learning method that is used for splitting the
original dataset of objects into groups classified by properties. An object in machine
learning is usually treated as a point in the multidimensional metric space. Every space
dimension corresponds to an object property (feature), and the metric is a function of the
values of these properties. Depending on the types of dimensions in this space, which can
be both numerical and categorical, we choose the type of clustering algorithm and specific
metric function. This choice depends on the nature of different object properties' types.

The main difference between clustering and classification is an undefined set of target
groups, which is determined by the clustering algorithm. The set of target groups (clusters)
is the algorithm's result.

We can split cluster analysis into the following phases:

Selecting objects for clustering
Determining the set of object properties that we will use for the metric
Normalizing property values
Calculating the metric
Identifying distinct groups of objects based on metric values

After the analysis of clustering results, some correction may be required for the selected
metric of the chosen algorithm.

We can use clustering for various real-world tasks, including the following:

Splitting news into several categories for advertisers
Identifying customer groups by their preferences for market analysis
Identifying plant and animal groups for biological studies
Identifying and categorizing properties for city planning and management
Detecting earthquake epicenter clusters to identify danger zones
Categorizing groups of insurance policyholders for risk management

Clustering Chapter 4

[104]

Categorizing books in libraries
Searching for hidden structural similarities in the data

The following topics will be covered in this chapter:

Measuring distance in clustering
Types of clustering algorithms
Examples of using the Shogun library for dealing with the clustering task
samples
Examples of using the Shark-ML library for dealing with the clustering task
samples
Examples of using the Dlib library for dealing with the clustering task samples
Plotting data with C++

Technical requirements
The required technologies and installations for this chapter include the following:

Modern C++ compiler with C++17 support
CMake build system version >= 3.8
Dlib library installation
Shogun-toolbox library installation
Shark-ML library installation
plotcpp library installation

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04

Measuring distance in clustering
A metric or a distance measure is an essential concept in clustering because it is used to
determine the similarity between objects. However, before applying a distance measure to
objects, we have to make a vector of object characteristics; usually, this is a set of numerical
values such as human height or weight. Also, some algorithms can work with categorical
object features (or characteristics). The standard practice is to normalize feature values.
Normalization ensures that each feature gives the same impact in a distance measure
calculation. There are many distance measure functions that can be used in the scope of the
clustering task. The most popular ones used for numerical properties are Euclidean

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter04

Clustering Chapter 4

[105]

distance, Squared Euclidean distance, Manhattan distance, and Chebyshev distance. The
following subsections describe them in detail.

Euclidean distance
Euclidean distance is the most widely used distance measure. In general, this is a geometric
distance in the multidimensional space. Here is the formula for Euclidean distance:

Squared Euclidean distance
Squared Euclidean distance has the same properties as Euclidean distance, but it also adds
more significance (weight) to the distant values than to closer ones. Here is the formula for
Squared Euclidean distance:

Manhattan distance
Manhattan distance is an average difference by coordinates. In most cases, its value gives
the same clustering results as Euclidean distance. However, it reduces the significance
(weight) of the distant values (outliers). Here is the formula for Manhattan distance:

Chebyshev distance
Chebyshev distance can be useful when we need to classify two objects as different when
they differ only by one of the coordinates. Here is the formula for Chebyshev distance:

Clustering Chapter 4

[106]

The following diagram displays the differences between the various distances:

We can see that Manhattan distance is the sum of the distances in both dimensions,
like walking along city blocks. Euclidean distance is just the length of a straight line.
Chebyshev distance is a more flexible alternative to Manhattan distance because diagonal
moves are also taken into account.

In the current section, we became familiar with the main clustering concept, which is a
distance measure. In the following section, we will discuss various types of clustering
algorithms.

Types of clustering algorithms
There are different types of clustering, which we can classify into the following groups:
partition-based, spectral, hierarchical, density-based, and model-based. The partition-based
group of clustering algorithms can be logically divided into distance-based methods and
ones based on graph theory.

Clustering Chapter 4

[107]

Partition-based clustering algorithms
The partition-based methods use a similarity measure to combine objects into groups. A
practitioner usually selects the similarity measure for such kinds of algorithms by themself,
using prior knowledge about a problem or heuristics to select the measure properly.
Sometimes, several measures need to be tried with the same algorithm to choose the best
one. Also, partition-based methods usually require either the number of desired clusters or
a threshold that regulates the number of output clusters to be explicitly specified.

Distance-based clustering algorithms
The most known representatives of this family of methods are the k-means and k-medoids
algorithms. They take the k input parameter and divide the data space into k clusters, such
that the similarity between objects in one cluster is maximal. Also, they minimize the
similarity between objects of different clusters. The similarity value is calculated as the
distance from the object to the cluster center. The main difference between these methods
lies in the way the cluster center is defined.

With the k-means algorithm, the similarity is proportional to the distance to the cluster
center of mass. The cluster center of mass is the average value of cluster objects' coordinates
in the data space. The k-means algorithm can be briefly described with the following steps.
At first, we select k random objects and define each of them as a cluster prototype that
represents the cluster's center of mass. Then, remaining objects are attached to the cluster
with greater similarity. After that, the center of mass of each cluster is recalculated. For each
obtained partition, a particular evaluation function is calculated, the values of which at each
step form a converging series. The process continues until the specified series converges to
its limit value.

In other words, moving objects from one cluster to another cluster ends when the clusters
remain unchanged. Minimizing the evaluation function allows the resulting clusters to be
as compact and separate as possible. The k-means method works well when clusters are
compact clouds that are significantly separated from each other. It is useful for processing
large amounts of data but is not applicable for detecting clusters of non-convex shapes or
clusters with very different sizes. Moreover, the method is susceptible to noise and isolated
points, since even a small number of such points can significantly affect the calculation of
the center mass of the cluster.

Clustering Chapter 4

[108]

To reduce the influence of noise and isolated points on the clustering result, the k-medoids
algorithm, in contrast to the k-means algorithm, uses one of the cluster objects (named
representative object) as the center of the cluster. As in the k-means method, k
representative objects are selected at random. Each of the remaining objects is combined
into a cluster with the nearest representative object. Then, each representative object is
iteratively replaced with an arbitrary unrepresentative object from the data space. The
replacement process continues until the quality of the resulting clusters improves. The
clustering quality is determined by the sum of deviations between objects and the
representative object of the corresponding cluster, which the method tries to minimize.
Thus, the iterations continue until the representative object in each of clusters becomes the
medoid. A medoid is the object closest to the center of the cluster. The algorithm is poorly
scalable for processing large amounts of data, but this problem is solved by the
CLARANS (Clustering Large Applications based on RANdomized Search) algorithm,
which complements the k-medoids method. For multidimensional clustering, the
PROCLUS (Projected Clustering) algorithm is constructed.

Graph theory-based clustering algorithms
The essence of algorithms based on the graph theory is to represent target objects in graph
form. Graph vertices correspond to objects, and the edge weights are equal to the distance
between vertices. The advantages of graph clustering algorithms are their excellent
visibility, relative ease of implementation, and their ability to make various improvements
based on geometrical considerations. The main algorithms based on graph theory are the
algorithm for selecting connected components, the algorithm for constructing the minimum
spanning tree, and the multilayer clustering algorithm.

The algorithm for selecting connected components is based on the R input parameter, and
the algorithm removes all edges in the graph with distances greater than R. Only the closest
pairs of objects remain connected. The algorithm's goal is to find the R value at which the
graph collapses into several connected components. The resulting components are clusters.
For the selection of the R parameter, a histogram of the distribution of pairwise distances is
usually constructed. For problems with a well-defined cluster data structure, there will be
two peaks in the histogram—one corresponds to in-cluster distances and the second to
inter-cluster distances. The R parameter is selected from the minimum zone between these
peaks. Managing the number of clusters using the distance threshold can be difficult.

The minimum spanning tree algorithm first builds a minimal spanning tree on the graph,
and then successively removes the edges with the highest weight. The following diagram
shows the minimum spanning tree obtained for nine objects:

Clustering Chapter 4

[109]

By removing the link between C and D, with a length of 6 units (the edge with the
maximum distance), we obtain two clusters: {A, B, C} and {D, E, F, G, H, I}. We can divide
the second cluster into two more clusters by removing the edge EF, which has a length of 4
units.

The multilayer clustering algorithm is based on identifying connected components of a
graph at some level of distance between objects (vertices). The threshold C defines the
distance level—for example, if the distance between objects is , then .

The layer clustering algorithm generates a sequence of sub-graphs of the graph G that
reflect the hierarchical relationships between clusters , where the
following applies:

: A sub-graph on the level

: The tth threshold of distance
: The number of hierarchy levels

, o: An empty set of graph edges, when
: A graph of objects without thresholds on distance, when

By changing the distance thresholds, where , it is possible to
control the hierarchy depth of the resulting clusters. Thus, a multilayer clustering algorithm
can create both flat and hierarchical data partitioning.

Clustering Chapter 4

[110]

Spectral clustering algorithms
Spectral clustering refers to all methods that divide a set of data into clusters using the
eigenvectors of the adjacency matrix of a graph or other matrices derived from it. An
adjacency matrix describes a complete graph with vertices in objects and edges between
each pair of objects with a weight corresponding to the degree of similarity between these
vertices. Spectral clustering is a transformation of the initial set of objects into a set of points
in space whose coordinates are elements of eigenvectors. The formal name of such a task is
the normalized cuts problem. The resulting set of points is then clustered using standard
methods—for example, with the k-means algorithm. Changing the representation created
by eigenvectors allows us to set the properties of the original set of clusters more clearly.
Thus, spectral clustering can separate points that cannot be separated by applying k-
means—for example, when the k-means method gets a convex set of points. The main
disadvantage of spectral clustering is its cubic computational complexity and quadratic
memory requirements.

Hierarchical clustering algorithms
Among the algorithms of hierarchical clustering, there are two main types: bottom-up- and
top-down-based algorithms. Top-down algorithms work on the next principle: at the
beginning, all objects are placed in one cluster, which is then divided into smaller and
smaller clusters. Bottom-up algorithms are more common than top-down ones. They place
each object in a separate cluster at the beginning of the work, and then merge clusters into
larger ones until all the objects in the dataset are contained in the one cluster, building a
system of nested partitions. The results of such algorithms are usually presented in tree
form, called a dendrogram. A classic example of such a tree is the tree of life, which
describes the classification of animals and plants.

The main problem of hierarchical methods is the difficulty of determining the stop
condition in such a way as to isolate natural clusters and, at the same time, prevent their
excessive splitting. Another problem with hierarchical clustering methods is choosing the
point of separation or merging of clusters. This choice is critical because after splitting or
merging clusters at each subsequent step, the method will operate only on newly formed
clusters. Therefore, the wrong choice of a merge or split point at any step can lead to poor-
quality clustering. Also, hierarchical methods cannot be applied to large datasets, because
deciding whether to divide or merge clusters requires a large number of objects and
clusters to be analyzed, which leads to a significant computational complexity of the
method.

Clustering Chapter 4

[111]

There are several metrics or linkage criteria for cluster union used in hierarchical clustering
methods, listed as follows:

Single linkage (nearest neighbor distance): In this method, the distance between
the two clusters is determined by the distance between the two closest objects
(nearest neighbors) in different clusters. The resulting clusters tend to chain
together.
Complete linkage (distance between the most distant neighbors): In this method,
the distances between clusters are determined by the largest distance between
any two objects in different clusters (that is, the most distant neighbors). This
method usually works very well when objects come from separate groups. If the
clusters are elongated or their natural type is chained, then this method is
unsuitable.
Unweighted pairwise mean linkage: In this method, the distance between two
different clusters is calculated as an average distance between all pairs of objects
in them. This method is useful when objects form different groups, but it works
equally well in the case of elongated (chained-type) clusters.
Weighted pairwise mean linkage: This method is identical to the unweighted
pairwise mean method, except that the size of the corresponding clusters (the
number of objects contained in them) is used as a weighting factor in the
calculations. Therefore, this method should be used when we assume unequal
cluster sizes.
Weighted centroid linkage: In this method, the distance between two clusters is
defined as the distance between their centers of mass.
Weighted centroid linkage (median): This method is identical to the previous
one, except that the calculations use weights for the distance measured between
cluster sizes. Therefore, if there are significant differences in cluster sizes, this
method is preferable to the previous one.

Clustering Chapter 4

[112]

The following diagram displays a hierarchical clustering dendrogram:

The preceding diagram shows an example of a dendrogram for hierarchical clustering, and
you can see how the number of clusters depends on the distance between objects. Larger
distances lead to a smaller number of clusters.

Density-based clustering algorithms
In density-based methods, clusters are considered as regions where the multiple objects'
density is high, which are separated by regions with a low density of objects.

Clustering Chapter 4

[113]

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm
is one of the first density clustering algorithms. The basis of this algorithm is several
statements, detailed as follows:

The of an object is a neighborhood of the radius of an object.
The root object is an object whose contains a minimum non-zero
number of objects. Assume that this minimum number equals to a predefined
value named MinPts.
The p object is directly densely accessible from the q object if p is in the

 of q and q is the root object.
The p object is densely accessible from the q object for the given and MinPts if
there is a sequence of objects, where and , such that

 is directly densely accessible from , .
The p object is densely connected to the q object for the given and MinPts if
there is an o object such that p and q are densely accessible from o.

The DBSCAN algorithm checks the neighborhood of each object to search for clusters. If
the of the p object contains more points than MinPts, then a new cluster is
created with the p object as a root object. DBSCAN then iteratively collects objects directly
densely accessible from root objects, which can lead to the union of several densely
accessible clusters. The process ends when no new objects can be added to any cluster.

Unlike the partition-based methods, DBSCAN does not require the number of clusters to be
specified in advance; it only requires the values of the and MinPts parameters, which
directly affect the result of clustering. The optimal values of these parameters are difficult to
determine, especially for multidimensional data spaces. Also, the distribution of data in
such spaces is often asymmetrical, which makes it impossible to use global density
parameters for their clustering. For clustering multidimensional data spaces, there is the
SUBCLU (Subspace Clustering) algorithm, which is based on the DBSCAN algorithm.

Model-based clustering algorithms
Model-based algorithms assume that there is a particular mathematical model of the cluster
in the data space and try to maximize the likelihood of this model and the available data.
Often, this uses the apparatus of mathematical statistics.

Clustering Chapter 4

[114]

The EM (Expectation–Maximization) algorithm assumes that the dataset can be modeled
using a linear combination of multidimensional normal distributions. Its purpose is to
estimate distribution parameters that maximize the likelihood function used as a measure
of model quality. In other words, it assumes that the data in each cluster obeys a particular
distribution law—namely, the normal distribution. With this assumption, it is possible to
determine the optimal parameters of the distribution law—the mean and variance at which
the likelihood function is maximal. Thus, we assume that any object belongs to all clusters,
but with a different probability. Then, the task will be to fit the set of distributions to the
data and then to determine the probabilities of the object belonging to each cluster. The
object should be assigned to the cluster for which this probability is higher than the others.

The EM algorithm is simple and easy to implement. It is not sensitive to isolated objects and
quickly converges in the case of successful initialization. However, it requires us to specify
the k number of clusters, which implies a priori knowledge about the data. Also, if the
initialization failed, the convergence of the algorithm may be slow, or we might obtain a
poor-quality result. Such algorithms do not apply to high dimensionality spaces since, in
this case, it is complicated to assume a mathematical model for the distribution of data in
this space.

In this section, we discussed various clustering algorithms, and in the following sections,
we will see how to use them in real examples with various C++ libraries.

Examples of using the Shogun library for
dealing with the clustering task samples
The Shogun library contains implementations of the model-based, hierarchical, and
partition-based clustering approaches. The model-based algorithm is called GMM
(Gaussian Mixture Models), the partition one is the k-means algorithm, and hierarchical
clustering is based on the bottom-up method.

Clustering Chapter 4

[115]

GMM with Shogun
The GMM algorithm assumes that clusters can be fit to some Gaussian (normal)
distributions; it uses the EM approach for training. There is a CGMM class in the Shogun
library that implements this algorithm, as illustrated in the following code snippet:

 Some<CDenseFeatures<DataType>> features;
 int num_clusters = 2;
 ...
 auto gmm = some<CGMM>(num_clusters);
 gmm->set_features(features);
 gmm->train_em();

Notice that the constructor of the CGMM class takes the desired number of clusters as an
argument. After CGMM object initialization, we pass training features and use the EM
method for training. The following piece of code shows these steps and also plots the
results of clustering:

 Clusters clusters;
 auto feature_matrix = features->get_feature_matrix();
 for (index_t i = 0; i < features->get_num_vectors(); ++i) {
 auto vector = feature_matrix.get_column(i);
 auto log_likelihoods = gmm->cluster(vector);
 auto max_el = std::max_element(log_likelihoods.begin(),
 std::prev(log_likelihoods.end()));
 auto label_idx = std::distance(log_likelihoods.begin(), max_el);
 clusters[label_idx].first.push_back(vector[0]);
 clusters[label_idx].second.push_back(vector[1]);
 }
 PlotClusters(clusters, "GMM", name + "-gmm.png");

We used the CGMM::cluster() method to identify which cluster our objects belong to.
This method returns a vector of probabilities. Then, we searched for the vector's element
with the maximum probability value and took its index as the number of the cluster.

Clustering Chapter 4

[116]

The resulting cluster indices were used as an argument for the PlotClusters() function,
which visualized the clustering result, as illustrated in the following screenshot:

Clustering Chapter 4

[117]

In the preceding screenshot, we can see how the GMM algorithm works on different
artificial datasets.

K-means clustering with Shogun
The k-means algorithm in the Shogun library is implemented in the CKMeans class. The
constructor of this class takes two parameters: the number of clusters and the object for
distance measure calculation. In the following example, we will use the distance object
defined with the CEuclideanDistance class. After we construct the object of the CKMeans
type, we use the CKMeans::train() method to train our model on our training set, as
follows:

 Some<CDenseFeatures<DataType>> features;
 int num_clusters = 2;
 ...
 CEuclideanDistance* distance = new CEuclideanDistance(features, features);
 CKMeans* clustering = new CKMeans(num_clusters, distance);
 clustering->train(features);

When we have trained the k-means object, we can use the CKMeans::apply() method to
classify the input dataset. If we use this method without arguments, the training dataset is
used for classification. The result of applying classification is a container object with labels.
We can cast it to the CMulticlassLabels type for more natural use. The following code
sample shows how to classify the input data and also plots the results of clustering:

 Clusters clusters;
 auto feature_matrix = features->get_feature_matrix();
 CMulticlassLabels* result = clustering->apply()->as<CMulticlassLabels>();
 for (index_t i = 0; i < result->get_num_labels(); ++i) {
 auto label_idx = result->get_label(i);
 auto vector = feature_matrix.get_column(i);
 clusters[label_idx].first.push_back(vector[0]);
 clusters[label_idx].second.push_back(vector[1]);
 }
 PlotClusters(clusters, "K-Means", name + "-kmeans.png");

We used the CMulticlassLabels::get_label() method for getting the index of a
cluster for a particular sample in our dataset. The CMulticlassLabels::get_label()
method takes the sample's index as an argument.

Clustering Chapter 4

[118]

We used resulting cluster indices to visualize the clustering result with the
PlotClusters() function, as illustrated in the following screenshot:

Clustering Chapter 4

[119]

In the preceding screenshot, we can see how the k-means algorithm works on different
artificial datasets.

Hierarchical clustering with Shogun
There is no feature-complete implementation of the hierarchical clustering algorithm in the
Shogun library. There is the CHierarachical class, which implements the hierarchical
clustering of the distance values. The distances can represent distances between actual
objects for clustering. However, the CHierarachical object returns the new distance
values it got after clustering. So, such an object cannot be directly used for object clustering;
instead, we can use it as a building block for a custom clustering algorithm.

Examples of using the Shark-ML library for
dealing with the clustering task samples
The Shark-ML library implements two clustering algorithms: hierarchical clustering and
the k-means algorithm.

Hierarchical clustering with Shark-ML
The Shark-ML library implements the hierarchical clustering approach in the following
way: first, we need to put our data into a space-partitioning tree. For example, we can use
the object of the LCTree class, which implements binary space partitioning. Also, there is
the KHCTree class, which implements kernel-induced feature space partitioning. The
constructor of this class takes the data for partitioning and an object that implements some
stopping criteria for the tree construction. We use the TreeConstruction object, which we
configure with the maximal depth of the tree and the maximum number of objects in the
tree node. The LCTree class assumes the existence of a Euclidean distance function for the
feature type used in the dataset. The code can be seen in the following block:

UnlabeledData<RealVector>& features;
int num_clusters = 2;
 ...
LCTree<RealVector> tree(features,
 TreeConstruction(0,
features.numberOfElements() / num_clusters));

Clustering Chapter 4

[120]

Having constructed the partitioning tree, we initialize an object of the
HierarchicalClustering class with the tree object as an argument.
The HierarchicalClustering class implements the actual clustering algorithm. There
are two strategies to get clustering results—namely, hard and soft. In the hard clustering
strategy, each object is assigned to one cluster. However, in the soft strategy, each object is
assigned to all clusters, but with a specific probability or likelihood value. In the following
example, we use the object of the HardClusteringModel class to assign objects to distinct
clusters. Objects of the HardClusteringModel class override the function operator, so you
can use them as functors for evaluation. The code can be seen in the following snippet:

 HierarchicalClustering<RealVector> clustering(&tree);
 HardClusteringModel<RealVector> model(&clustering);
 Data<unsigned> clusters = model(features);

The clustering result is a container with cluster indices for each element in the dataset, as
shown in the following code snippet:

for (std::size_t i = 0; i != features.numberOfElements(); i++) {
 auto cluster_idx = clusters.element(i);
 auto element = features.element(i);
 ...
}

We iterated over all items in the features container and got a cluster index for each item
to visualize our clustering result. This index was used to assign a distinct color for every
item, as illustrated in the following screenshot:

Clustering Chapter 4

[121]

Clustering Chapter 4

[122]

In the preceding screenshot, we can see how the hierarchical clustering algorithm
implemented in the Shark-ML library works on different artificial datasets.

K-means clustering with Shark-ML
The Shark-ML library implements the k-means algorithm in the kMeans() function, which
takes three parameters: the training dataset, the desired number of clusters, and the output
parameter for cluster centroids. The following code sample shows how to use this function:

 UnlabeledData<RealVector> features;
 int num_clusters = 2;
 ...
 Centroids centroids;
 kMeans(features, num_clusters, centroids);

After we get the centroids, we can initialize an object of the HardClusteringModel class.
As in the previous example, we can use this object for the evaluation of the trained model
on new data or the training data, as follows:

 HardClusteringModel<RealVector> model(¢roids);
 Data<unsigned> clusters = model(features);

 for (std::size_t i = 0; i != features.numberOfElements(); i++) {
 auto cluster_idx = clusters.element(i);
 auto element = features.element(i);
 ...
 }

After, we used the model object as a functor to perform clustering. The result was a
container with cluster indices for each element of the input dataset. Then, we used these
cluster indices to visualize the final result, as illustrated in the following screenshot:

Clustering Chapter 4

[123]

Clustering Chapter 4

[124]

In the preceding screenshot, we can see how the k-means clustering algorithm
implemented in the Shark-ML library works on different artificial datasets.

Examples of using the Dlib library for
dealing with the clustering task samples
The Dlib library provides the following clustering methods: k-means, spectral,
hierarchical, and two more graph clustering algorithms: Newman and Chinese Whispers.

K-means clustering with Dlib
The Dlib library uses kernel functions as the distance functions for the k-means algorithm.
An example of such a function is the radial basis function. As an initial step, we define the
required types, as follows:

 typedef matrix<double, 2, 1> sample_type;
 typedef radial_basis_kernel<sample_type> kernel_type;

Then, we initialize an object of the kkmeans type. Its constructor takes an object that will
define cluster centroids as input parameters. We can use an object of the kcentroid type
for this purpose. Its constructor takes three parameters: the first one is the object that
defines the kernel (distance function), the second is the numerical accuracy for the centroid
estimation, and the third one is the upper limit on the runtime complexity (actually, the
maximum number of dictionary vectors the kcentroid object is allowed to use), as
illustrated in the following code snippet:

 kcentroid<kernel_type> kc(kernel_type(0.1), 0.01, 8);
 kkmeans<kernel_type> kmeans(kc);

Clustering Chapter 4

[125]

As a next step, we initialize cluster centers with the pick_initial_centers() function.
This function takes the number of clusters, the output container for center objects, the
training data, and the distance function object as parameters, as follows:

 std::vector<sample_type> samples; //training data-set
 ...
 size_t num_clusters = 2;
 std::vector<sample_type> initial_centers;
 pick_initial_centers(num_clusters, initial_centers, samples,
 kmeans.get_kernel());

When initial centers are selected, we can use them for the kkmeans::train() method to
determine exact clusters, as follows:

 kmeans.set_number_of_centers(num_clusters);
 kmeans.train(samples, initial_centers);

 for (size_t i = 0; i != samples.size(); i++) {
 auto cluster_idx = kmeans(samples[i]);
 ...
 }

Clustering Chapter 4

[126]

We used the kmeans object as a functor to perform clustering on a single data item. The
clustering result will be the cluster's index for the item. Then, we used cluster indices to
visualize the final clustering result, as illustrated in the following screenshot:

Clustering Chapter 4

[127]

In the preceding screenshot, we can see how the k-means clustering algorithm
implemented in the Dlib library works on different artificial datasets.

Spectral clustering with Dlib
The spectral clustering algorithm in the Dlib library is implemented in the
spectral_cluster function. It takes the distance function object, the training dataset, and
the number of clusters as parameters. As a result, it returns a container with cluster indices,
which have the same ordering as the input data. In the following sample, the object of the
knn_kernel type is used as a distance function. You will find its implementation in the
samples provided with the book. This knn_kernel distance function object estimates the
first k-nearest neighbor (KNN) objects to the given one. These objects are determined with
the KNN algorithm, which uses the Euclidean distance for the distance measure, as follows:

 typedef matrix<double, 2, 1> sample_type;
 typedef knn_kernel<sample_type> kernel_type;
 ...
 std::vector<sample_type> samples;
 ...
 std::vector<unsigned long> clusters =
 spectral_cluster(kernel_type(samples, 15), samples, num_clusters);

Clustering Chapter 4

[128]

The spectral_cluster() function call filled the clusters object with cluster index
values, which we can use to visualize the clustering result, as illustrated in the following
screenshot:

Clustering Chapter 4

[129]

In the preceding screenshot, we can see how the spectral clustering algorithm implemented
in the Dlib library works on different artificial datasets.

Hierarchical clustering with Dlib
The Dlib library implements the agglomerative hierarchical (bottom-up) clustering
algorithm. The bottom_up_cluster() function implements this algorithm. This function
takes the matrix of distances between dataset objects, the cluster indices container (as the
output parameter), and the number of clusters as input parameters. Notice that it returns
the container with cluster indices in the order of distances provided in the matrix.

In the following code sample, we fill the distance matrix with pairwise Euclidean distances
between each pair of elements in the input dataset:

 matrix<double> dists(inputs.nr(), inputs.nr());
 for (long r = 0; r < dists.nr(); ++r) {
 for (long c = 0; c < dists.nc(); ++c) {
 dists(r, c) = length(subm(inputs, r, 0, 1, 2) - subm(inputs, c, 0,
 1, 2));
 }
 }
 std::vector<unsigned long> clusters;
 bottom_up_cluster(dists, clusters, num_clusters);

Clustering Chapter 4

[130]

The bottom_up_cluster() function call filled the clusters object with cluster index
values, which we can use to visualize the clustering result, as illustrated in the following
screenshot:

Clustering Chapter 4

[131]

In the preceding screenshot, we can see how the hierarchical clustering algorithm
implemented in the Dlib library works on different artificial datasets.

Newman modularity-based graph clustering
algorithm with Dlib
Implementation of this algorithm is based on the work Modularity and community structure
in networks by M. E. J. Newman. This algorithm is based on the modularity matrix for a
network or a graph and it is not based on particular graph theory, but it has instead some
similarities with spectral clustering because it also uses eigenvectors.

The Dlib library implements this algorithm in the newman_cluster() function, which
takes a vector of weighted graph edges and outputs the container with cluster indices for
each vertex. The initial step for using this algorithm is the definition of graph edges. In the
following code sample, we make edges between almost every pair of dataset objects. Notice
that we use pairs only with a distance greater than a threshold (this was done for
performance considerations).

Also, this algorithm does not require prior knowledge of the number of clusters. It can
determine the number of clusters by itself. The code can be seen in the following block:

 std::vector<sample_pair> edges;
 for (long i = 0; i < inputs.nr(); ++i) {
 for (long j = 0; j < inputs.nr(); ++j) {
 auto dist = length(subm(inputs, i, 0, 1, 2) - subm(inputs, j, 0,
 1, 2));
 if (dist < 0.5)
 edges.push_back(sample_pair(i, j, dist));
 }
 }
 remove_duplicate_edges(edges);
 std::vector<unsigned long> clusters;
 const auto num_clusters = newman_cluster(edges, clusters);

The newman_cluster() function call filled the clusters object with cluster index values,
which we can use to visualize the clustering result. Notice that another approach for edge
weight calculation can lead to another clustering result. Also, edge weight values should be
initialized according to a certain task. The edge length was chosen only for demonstration
purposes.

Clustering Chapter 4

[132]

The result can be seen in the following screenshot:

Clustering Chapter 4

[133]

In the preceding screenshot, we can see how the Newman clustering algorithm
implemented in the Dlib library works on different artificial datasets.

Chinese Whispers – graph clustering algorithm
with Dlib
The Chinese Whispers algorithm is an algorithm to partition the nodes of weighted,
undirected graphs. It was described in the paper Chinese Whispers—an Efficient Graph
Clustering Algorithm and its Application to Natural Language Processing Problems by Chris
Biemann. This algorithm also does not use any unique graph theory methods but it uses the
idea of using local contexts for clustering, so it can be classified as a density-based method.

In the Dlib library, this algorithm is implemented in the chinese_whispers() function,
which takes the vector of weighted graph edges and outputs the container with cluster
indices for each of the vertices. For the performance consideration, we limit the number of
edges between dataset objects with a threshold on distance. Moreover, as with the Newman
algorithm, this one also determines the number of resulting clusters by itself. The code can
be seen in the following snippet:

 std::vector<sample_pair> edges;
 for (long i = 0; i < inputs.nr(); ++i) {
 for (long j = 0; j < inputs.nr(); ++j) {
 auto dist = length(subm(inputs, i, 0, 1, 2) - subm(inputs, j,
 0, 1, 2));
 if (dist < 1)
 edges.push_back(sample_pair(i, j, dist));
 }
 }
 std::vector<unsigned long> clusters;
 const auto num_clusters = chinese_whispers(edges, clusters);

The chinese_whispers() function call filled the clusters object with cluster index
values, which we can use to visualize the clustering result. Notice that we used 1 as the
threshold for edge weights, and another threshold value can lead to another clustering
result. Also, edge weight values should be initialized according to a certain task. The edge
length was chosen only for demonstration purposes.

Clustering Chapter 4

[134]

The result can be seen in the following screenshot:

Clustering Chapter 4

[135]

In the preceding screenshot, we can see how the Chinese Whispers clustering algorithm
implemented in the Dlib library works on different artificial datasets.

In the current and previous sections, we saw a lot of examples of images that show
clustering results. The following section will show details of using the plotcpp library,
which we used to plot these images.

Plotting data with C++
We plot with the plotcpp library, which is a thin wrapper around the gnuplot command-
line utility. With this library, we can draw points on a scatter plot or draw lines. The initial
step to start plotting with this library is creating an object of the Plot class. Then, we have
to specify the output destination of the drawing. We can set the destination with the
Plot::SetTerminal() method and this method takes a string with a destination point
abbreviation. It can be the qt string value to show the operating system (OS) window with
our drawing, or it can be a string with a picture file extension to save a drawing to a file, as
in the code sample that follows. Also, we can configure a title of the drawing, the axis
labels, and some other parameters with the Plot class methods. However, it does not cover
all possible configurations available for gnuplot. In a case where we need some unique
options, we can use the Plot::gnuplotCommand() method to make direct gnuplot
configuration.

There are two drawing modes to draw a set of different graphics on one plot. We can use
the Draw2D() method with objects of the Points or Lines classes, but in this case, we
should specify all graphics configurations before compilation. The second option is to use
the Plot::StartDraw2D() method to get an intermediate drawing state object. Then, we
can use the Plot::AddDrawing() method to add different drawings to the one plot. The
Plot::EndDraw2D() method should be called after we drew the last graphics.

We can use the Points type for drawing points. An object of this type should be initialized
with start and end forward iterators to the integral numeric data types, which represent
coordinates. We should specify three iterators to points coordinates, two iterators for the x
coordinates where they start and end, and one iterator to the y coordinates' start. The
number of coordinates in the containers should be the same. The last parameter is the
gnuplot visual style configuration. Objects of the Lines class can be configured in the
same way.

Clustering Chapter 4

[136]

When we have completed all drawing operations, we should call the Plot::Flush()
method to render all commands to the window or the file, as shown in the following code
block:

 ...
 using Coords = std::vector<DataType>;
 using PointCoords = std::pair<Coords, Coords>;
 using Clusters = std::unordered_map<index_t, PointCoords>;

 const std::vector<std::string> colors{"black", "red", "blue",
 "green", "cyan", "yellow",
 "brown", "magenta"};
 ...
 void PlotClusters(const Clusters& clusters,
 const std::string& name,
 const std::string& file_name) {
 plotcpp::Plot plt;
 plt.SetTerminal("png");
 plt.SetOutput(file_name);
 plt.SetTitle(name);
 plt.SetXLabel("x");
 plt.SetYLabel("y");
 plt.SetAutoscale();
 plt.gnuplotCommand("set grid");

 auto draw_state = plt.StartDraw2D<Coords::const_iterator>();
 for (auto& cluster : clusters) {
 std::stringstream params;
 params << "lc rgb '" << colors[cluster.first] << "' pt 7";
 plt.AddDrawing(draw_state,
 plotcpp::Points(
 cluster.second.first.begin(), cluster.second.first.end(),
 cluster.second.second.begin(),
 std::to_string(cluster.first) + " cls", params.str()));
 }

 plt.EndDraw2D(draw_state);
 plt.Flush();
 }

Clustering Chapter 4

[137]

Summary
In this chapter, we considered what clustering is and how it differs from classification. We
saw different types of clustering methods, such as the partition-based, the spectral, the
hierarchical, the density-based, and the model-based methods. Also, we observed that
partition-based methods could be divided into more categories, such as the distance-based
methods and the ones based on graph theory. We used implementations of these
algorithms, including the k-means algorithm (the distance-based method), the GMM
algorithm (the model-based method), the Newman modularity-based algorithm, and the
Chinese Whispers algorithm for graph clustering. We also saw how to use the hierarchical
and spectral clustering algorithm implementations in programs. We saw that the crucial
issues for successful clustering are as follows:

The choice of the distance measure function
The initialization step
The splitting or merging strategy
Prior knowledge about cluster numbers

The combination of these issues is unique for each specific algorithm. Also, we saw that a
clustering algorithm's results depend a lot on dataset characteristics and that we should
choose the algorithm according to these.

The list of application areas where clustering is applied is comprehensive: image
segmentation, marketing, anti-fraud, forecasting, and text analysis, among many others. At
the present stage, clustering is often used as the first step in data analysis. The task of
clustering was formulated in such scientific areas as statistics, pattern recognition,
optimization, and machine learning. At the moment, the number of methods for
partitioning groups of objects into clusters is quite large—several dozen algorithms, and
even more when you take into account their various modifications.

At the end of the chapter, we studied how we can visualize clustering results with the
plotcpp library.

In the following chapter, we will learn what a data anomaly is and what machine learning
algorithms exist for anomaly detection. Also, we will see how anomaly detection
algorithms can be used for solving real-life problems, and which properties of such
algorithms play a more significant role in different tasks.

Clustering Chapter 4

[138]

Further reading
The 5 Clustering Algorithms Data Scientists Need to Know: https://
towardsdatascience.com/the-5-clustering-algorithms-data-scientists-
need-to-know-a36d136ef68

Clustering: https://scikit-learn.org/stable/modules/clustering.html

Different Types of Clustering Algorithm: https://www.geeksforgeeks.org/
different-types-clustering-algorithm/

An Introduction to Clustering and different methods of clustering: https://www.
analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-
different-methods-of-clustering/

Graph theory introductory book: Graph Theory (Graduate Texts in Mathematics) by
Adrian Bondy and U.S.R. Murty.
This book covers a lot of aspects of ML theory and algorithms: The Elements of
Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie, Robert
Tibshirani, and Jerome Friedman

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.geeksforgeeks.org/different-types-clustering-algorithm/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/

5
Anomaly Detection

Anomaly detection is where we search for unexpected values in a given dataset.
An anomaly is a system behavior deviation or data value deviation from the standard
value. There are other names for anomalies, such as outliers, errors, deviations, and
exceptions. They can occur in data that's of diverse nature and structure as a result of
technical failures, accidents, deliberate hacks, and more.

There are many methods and algorithms we can use to search for anomalies in various
types of data. These methods use different approaches to solve the same problem. There are
unsupervised, supervised, and semi-supervised algorithms. However, in practice,
unsupervised methods are the most popular. The unsupervised anomaly detection
technique detects anomalies in unlabeled test datasets, under the assumption that most of
the dataset is normal. It does this by searching for data points that are unlikely to fit the rest
of the dataset. Unsupervised algorithms are more popular because of the nature of anomaly
events, which are significantly rare compared to the normal or expected data, so it is
usually very difficult to get a suitably labeled dataset for anomaly detection.

Broadly speaking, anomaly detection applies to a wide range of areas, such as intrusion
detection, fraud detection, fault detection, health monitoring, event detection (in sensor
networks), and the detection of environmental disruptions. Often, anomaly detection is
used as the preprocessing step for data preparation, before the data is passed on to other
algorithms.

So, in this chapter, we'll discuss the most popular unsupervised algorithms for anomaly
detection and its applications.

The following topics will be covered in this chapter:

Exploring the applications of anomaly detection
Learning approaches for anomaly detection
Examples of using different C++ libraries for anomaly detection

Anomaly Detection Chapter 5

[140]

Technical requirements
The list of software that you'll need to complete the examples in this chapter is as follows:

Shogun-toolbox library
Shark-ML library
Dlib library
PlotCpp library
Modern C++ compiler with C++17 support
CMake build system version >= 3.8

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05

Exploring the applications of anomaly
detection
There are two areas in data analysis that look for anomalies: outlier detection and novelty
detection.

A new object or novelty is an object that differs in its properties from the objects in the
training dataset. Unlike an outlier, the new object is not in the dataset itself, but it can
appear at any point after a system has started working. Its task is to detect when it
appears. For example, if we were to analyze existing temperature measurements and
identify abnormally high or low values, then we would be detecting outliers. On the other
hand, if we were to create an algorithm that, for every new measurement, evaluates the
temperature's similarity to past values and identifies significantly unusual ones, then we
are detecting novelties.

The reasons for outliers appearing include data errors, the presence of noise, misclassified
objects, and foreign objects from other datasets or distributions. Let's explain two of the
most obscure types of outliers: data errors and data from different distributions. Data errors
can broadly refer to inaccuracies in measurements, rounding errors, and incorrect entries.
An example of an object belonging to a different distribution is measurements that have
come from a broken sensor. This is because these values will belong to a range that may be
different from what was expected.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter05

Anomaly Detection Chapter 5

[141]

Novelties usually appear as a result of fundamentally new object behavior. For example, if
our objects are computer system behavior descriptions, then after a virus has penetrated the
computer and deleted some information from these descriptions, they will be rendered as
novelties. Another example of a novelty could be a new group of customers that behave
differently from others but have some similarities to other customers. The main feature of
novelty objects is that they are new, in that it's impossible to have information about all
possible virus infections or breakdowns in the training set. Creating such a training dataset
is a complicated process and often does not make sense. However, fortunately, we can
obtain a large enough dataset by focusing on the ordinary (regular) operations of the
system or mechanism.

Often, the task of anomaly detection is similar to the task of classification, but there is an
essential difference: class imbalances. For example, equipment failures (anomalies) are
significantly rarer than having the equipment functioning normally.

We can observe anomalies in different kinds of data. In the following graph, we can see an
example of anomalies in a numeric series:

Anomaly Detection Chapter 5

[142]

In the following diagram, we can see anomalies in graphs; these anomalies can be as edges
as well as vertices (see elements marked with a lighter color):

The following text shows anomalies in a sequence of characters:

 AABBCCCAABBCCCAACABBBCCCAABB

The quality or performance of anomaly detection tasks can be estimated, just like
classification tasks can, by using, for example, AUC-ROC.

We have discussed what anomalies are, so let's see what approaches there are to detect
them.

Learning approaches for anomaly detection
In this section, we'll look at the most popular and straightforward methods we can use for
anomaly detection.

Detecting anomalies with statistical tests
Statistical tests are usually used to catch extreme values for individual features. The general
name for this type of test is extreme-value analysis. An example of such a test is the use of
the Z-score measure:

Anomaly Detection Chapter 5

[143]

Here, is a sample from the dataset, µ is the mean of all samples from the dataset, and is
the standard deviation of samples in the dataset. Z-values are placed in the interval [-1, 1]
and the smallest values that are close to zero are the most normal or expected ones. The
following graph shows which values from some type of normally distributed data can be
treated as anomalies or outliers by using the Z-score test:

One important concept that we should mention is extreme values – the maximum and
minimum values from the given dataset. It is important to understand that extreme values
and anomalies are different concepts. The following is a small data sample:

[1, 39, 2, 1, 101, 2, 1, 100, 1, 3, 101, 1, 3, 100, 101, 100, 100]

We can consider the value 39 as an anomaly, but not because it is a maximal or minimal
value. It is crucial to understand that an anomaly needn't be an extreme value.

Despite the fact that extreme values are not anomalies in general, in some cases, we can
adapt methods of extreme-value analysis to the needs of anomaly detection. But this
depends on the task at hand and should be carefully analyzed by machine learning
practitioners.

Anomaly Detection Chapter 5

[144]

Detecting anomalies with the Local Outlier Factor
method
The distance measurement-based methods are widely used for solving different machine
learning problems, as well as for anomaly detection. These methods assume that there is a
specific metric in the object space that helps us find anomalies. The general assumption
when we use distance-based methods for anomaly detection is that the anomaly only has a
few neighbors, while a normal point has many. Therefore, for example, the distance to the
kth neighbor can serve as a good measure of anomalies, as reflected in the Local Outlier
Factor (LOF) method. This method is based on estimating the density of objects that have
been checked for anomalies. Objects lying in the areas of lowest density are considered
anomalies or outliers. The advantage of the LOF method over other methods is that it
works in conjunction with the local density of objects. Thus, the LOF successfully
recognizes outliers in situations where there are objects of different classes that are not
necessarily anomalies in the training dataset.

For example, let's assume that there is a distance, k-distance(A), from the object [A] to the kth

nearest neighbor. Note that the set of nearest neighbors includes all objects at this distance.
We denote the set of k nearest neighbors as Nk(A). This distance is used to determine the
reachability distance:

If point A lies among k neighbors of point B, then reachability-distance will be equal to the
k-distance of point B. Otherwise, it will be equal to the exact distance between points A and
B, which is given by the dist function. The local reachability density of an object A is defined
as follows:

Local reachability density is the inverse of the average reachability distance of the object, A,
from its neighbors. Note that this is not the average reachability distance of neighbors from
A (which, by definition, should have been k-distance(A)), but is the distance at which A can
be reached from its neighbors. The local reachability densities are then compared with the
local reachability densities of the neighbors:

Anomaly Detection Chapter 5

[145]

The provided formula gives the average local reachability density of the neighbors, divided
by the local reachability density of the object itself. A value of approximately 1 means that
the object can be compared with its neighbors (and therefore it is not an outlier). A value
less than 1 indicates a dense area (objects have many neighbors), while values that are
significantly larger than 1 indicate anomalies.

The disadvantage of this method is the fact that the resulting values are difficult to
interpret. A value of 1 or less indicates that a point is purely internal, but there is no clear
rule by which a point will be an outlier. In one dataset, the value 1.1 may indicate an
outlier. However, in another dataset with a different set of parameters (for example, if there
is data with sharp local fluctuations), the value 2 may also indicate internal objects. These
differences can also occur within a single dataset due to the locality of the method.

Detecting anomalies with isolation forest
The idea of an isolation forest is based on the Monte Carlo principle: a random partitioning
of the feature space is carried out so that, on average, isolated points are cut off from
normal ones. The final result is averaged over several runs of the stochastic algorithm, and
the result will form an isolation forest of corresponding trees. The isolation tree algorithm
then builds a random binary decision tree. The root of the tree is the whole feature space. In
the next node, a random feature and a random partitioning threshold are selected, and they
are sampled from a uniform distribution on the range of the minimum and maximum
values of the selected feature. The stopping criterion is the identical coincidence of all
objects in the node, which means that the decision tree's construction has finished. The
mark of the leaves is the anomaly_score value of the algorithm, which is the depth of the
leaves in the constructed tree. The following formula shows how the anomaly score can be
calculated:

Here, is the path length of the observation, , is an average of from a
collection of isolation trees, is the average path length of the unsuccessful search in a
binary search tree, and is the number of external nodes.

We're assuming that it is common for anomalies to appear in leaves with a low depth,
which is close to the root, but for regular objects, the tree will build several more levels. The
number of such levels is proportional to the size of the cluster. Consequently,
anomaly_score is proportional to the points lying in it.

Anomaly Detection Chapter 5

[146]

This assumption means that objects from clusters of small sizes (which are potentially
anomalies) will have a lower anomaly_score than those from clusters of regular data:

Detecting anomalies with One-Class SVM
(OCSVM)
The support vector method is a binary classification method based on using a hyperplane
to divide objects into classes. The dimensions of the hyperplane are always chosen so that
they're less than the dimensions of the original space. In , for example, a hyperplane is
an ordinary two-dimensional plane. The distance from the hyperplane to each class should
be as short as possible. The vectors that are closest to the separating hyperplane are called
support vectors. In practice, cases where the data can be divided by a hyperplane – in other
words, linear cases – are quite rare. In this case, all the elements of the training dataset are
embedded in the higher dimension space, , using a special mapping. In this case, the
mapping is chosen so that in the new space, , the dataset is linearly separable.

Anomaly Detection Chapter 5

[147]

One-Class SVM (OCSVM) is an adaptation of the support vector method that focuses on
anomaly detection. OCSVM differs from the standard version of SVM in a way that, the
resulting optimization problem includes an improvement for determining a small
percentage of predetermined anomalous values, which allows this method to be used to
detect anomalies. These anomalous values lie between the starting point and the optimal
separating hyperplane. All other data belonging to the same class falls on the opposite side
of the optimal separating hyperplane.

There's also another type of OCSVM that uses a spherical, instead of a planar (or linear),
approach. The algorithm obtains a spherical boundary, in the feature space, around the
data. The volume of this hypersphere is minimized to reduce the effect of incorporating
outliers in the solution.

OCSVM assigns a label, which is the distance from the test data point to the optimal
hyperplane. Positive values in the OCSVM output represent normal behavior (with higher
values representing greater normality), while negative values represent anomalous
behavior (the lower the value, the more significant the anomaly).

Density estimation approach (multivariate
Gaussian distribution) for anomaly detection
Let's assume we have some samples in a dataset and that they are labeled and normally
distributed (Gaussian distribution). In such a case, we can use distribution properties to
detect anomalies. Let's assume that the function gives us the probability of a sample
being normal. A high probability corresponds to a regular sample, while a low probability
corresponds to an anomaly. We can, therefore, choose thresholds to distinguish between
regular values and anomalies with the following anomaly model formula:

If [] and follows the Gaussian distribution with the mean, , and the variance, , it
is denoted as follows:

The following formula gives the probability of in a Gaussian distribution:

Anomaly Detection Chapter 5

[148]

Here, is the mean and is the variance (is the standard
deviation).

Next, we'll introduce an example of the general approach we follow for anomaly detection
with Gaussian distribution density estimation:

Let's say we're given a new example, .1.
Select the features, , that are regular, meaning they determine anomalous2.
behavior.

Fit the and parameters.3.

Compute using an equation to calculate the probability of in a4.
Gaussian distribution.
Determine if is an anomaly by comparing it with the threshold, ; see the5.
anomaly model formula.

The following graph shows an example of Gaussian distribution density estimation for
normally distributed data:

Anomaly Detection Chapter 5

[149]

In this approach, we assume that selected features are independent, but usually, in real
data, there are some correlations between them. In such a case, we should use a
multivariate Gaussian distribution model instead of a univariate one.

The following formula gives the probability of in a multivariate Gaussian distribution:

Here, is the mean, is the correlation matrix, and is the determinant of the matrix, :

The following diagram shows the difference between the univariate and the multivariate
Gaussian distribution estimation models for a dataset with correlated data. Notice how
distribution boundaries cover the regular data with a blue color, while the anomalies are
marked with a lighter color:

Anomaly Detection Chapter 5

[150]

We can see that the multivariate Gaussian distribution can take into account correlations in
the data and adapt its shape to them. This characteristic allows us to detect anomalies
correctly for types of data whose distribution follows a Gaussian (normal) distribution
shape.

In the current section, we discussed various anomaly detection approaches, and in the
following sections, we will see how to use various C++ libraries to deal with the anomaly
detection task.

Examples of using different C++ libraries for
anomaly detection
In this section, we'll look at some examples of how to implement the algorithms we
described previously for anomaly detection.

C++ implementation of the isolation forest
algorithm for anomaly detection
Isolation forest algorithms can be easily implemented in pure C++ because its logic is pretty
straightforward. Also, there are no implementations of this algorithm in popular C++
libraries. Let's assume that our implementation will only be used with two-dimensional
data. We are going to detect anomalies in a range of samples where each sample contains
the same number of features.

Because our dataset is large enough, we can define a wrapper for the actual data container.
This allows us to reduce the number of copy operations we perform on the actual data:

 using DataType = double;
 template <size_t Cols>
 using Sample = std::array<DataType, Cols>;
 template <size_t Cols>
 using Dataset = std::vector<Sample<Cols>>;
 ...
 template <size_t Cols>
 struct DatasetRange {
 DatasetRange(std::vector<size_t>&& indices, const Dataset<Cols>*
 dataset)
 : indices(std::move(indices)), dataset(dataset) {}
 size_t size() const { return indices.size(); }
 DataType at(size_t row, size_t col) const {
 return (*dataset)[indices[row]][col];

Anomaly Detection Chapter 5

[151]

 }

 std::vector<size_t> indices;
 const Dataset<Cols>* dataset;
 };

The DatasetRange type holds a reference to the vector of Sample type objects and to the
container of indices that point to the samples in the dataset. These indices define the exact
dataset objects that this DatasetRange object points to.

Next, we define the elements of the isolation tree, with the first one being the Node type:

struct Node {
 Node() {}
 Node(const Node&) = delete;
 Node& operator=(const Node&) = delete;
 Node(std::unique_ptr<Node> left,
 std::unique_ptr<Node> right,
 size_t split_col,
 DataType split_value)
 : left(std::move(left)),
 right(std::move(right)),
 split_col(split_col),
 split_value(split_value) {}
 Node(size_t size) : size(size), is_external(true) {}
 std::unique_ptr<Node> left;
 std::unique_ptr<Node> right;
 size_t split_col{0};
 DataType split_value{0};
 size_t size{0};
 bool is_external{false};
 };

This type is a regular tree node structure. The following members are specific to the
isolation tree algorithm:

split_col: This is the index of the feature column where the algorithm caused a
split.
split_value: This is the value of the feature where the algorithm caused a split.
size: This is the number of underlying items for the node.
is_external: This is the flag that indicates whether the node is a leaf.

Taking the Node type as a basis, we can define the procedure of building an isolation tree.
We aggregate this procedure with the auxiliary IsolationTree type. Because the current
algorithm is based on random splits, the auxiliary data is the random engine object.

Anomaly Detection Chapter 5

[152]

We only need to initialize this object once, and then it will be shared among all tree type
objects. This approach allows us to make the results of the algorithm reproducible in the
case of constant seeding. Furthermore, it makes debugging the randomized algorithm
much simpler:

 template <size_t Cols>
 class IsolationTree {
 public:
 using Data = DatasetRange<Cols>;

 IsolationTree(const IsolationTree&) = delete;
 IsolationTree& operator=(const IsolationTree&) = delete;
 IsolationTree(std::mt19937* rand_engine, Data data, size_t hlim)
 : rand_engine(rand_engine) {
 root = MakeIsolationTree(data, 0, hlim);
 }
 IsolationTree(IsolationTree&& tree) {
 rand_engine = std::move(tree.rand_engine);
 root = td::move(tree.root);
 }

 double PathLength(const Sample<Cols>& sample) {
 return PathLength(sample, root.get(), 0);
 }

 private:
 std::unique_ptr<Node> MakeIsolationTree(const Data& data,
 size_t height,
 size_t hlim);
 double PathLength(const Sample<Cols>& sample,
 const Node* node,
 double height);

 private:
 std::mt19937* rand_engine;
 std::unique_ptr<Node> root;
 };

Next, we'll do the most critical work in the MakeIsolationTree() method, which is used
in the constructor to initialize the root data member:

std::unique_ptr<Node> MakeIsolationTree(const Data& data,
 size_t height,
 size_t hlim) {
 auto len = data.size();
 if (height >= hlim || len <= 1) {
 return std::make_unique<Node>(len);

Anomaly Detection Chapter 5

[153]

 } else {
 std::uniform_int_distribution<size_t> cols_dist(0, Cols - 1);
 auto rand_col = cols_dist(*rand_engine);
 std::unordered_set<DataType> values;
 for (size_t i = 0; i < len; ++i) {
 auto value = data.at(i, rand_col);
 values.insert(value);
 }
 auto min_max = std::minmax_element(values.begin(), values.end());
 std::uniform_real_distribution<DataType>
 value_dist(*min_max.first, *min_max.second);
 auto split_value = value_dist(*rand_engine);
 std::vector<size_t> indices_left;
 std::vector<size_t> indices_right;
 for (size_t i = 0; i < len; ++i) {
 auto value = data.at(i, rand_col);
 if (value < split_value) {
 indices_left.push_back(data.indices[i]);
 } else {
 indices_right.push_back(data.indices[i]);
 }
 }
 return std::make_unique<Node>(
 MakeIsolationTree(Data{std::move(indices_left), data.dataset},
 height + 1, hlim),
 MakeIsolationTree(Data{std::move(indices_right),
 data.dataset}, height + 1, hlim),
 rand_col,
 split_value);
 }
 }

Initially, we checked the termination conditions to stop the splitting process. If we meet
them, we return a new node marked as an external leaf. Otherwise, we start splitting the
passed data range. For splitting, we randomly select the feature column and determine the
unique values of the selected feature. Then, we randomly select a value from an interval
between the max and the min values among the feature values from all the samples. After
we make these random selections, we compare the values of the selected splitting feature to
all the samples from the input data range and put their indices into two lists. One list is for
values higher than the splitting values, while another list is for values that are lower than
them. Then, we return a new tree node initialized with references to the left and right
nodes, which are initialized with recursive calls to the MakeIsolationTree() method.

Anomaly Detection Chapter 5

[154]

Another vital method of the IsolationTree type is the PathLength() method. We use it
for anomaly score calculations. It takes the sample as an input parameter and returns the
amortized path length to the corresponding tree leaf from the root node:

double PathLength(const Sample<Cols>& sample,
 const Node* node,
 double height) {
 assert(node != nullptr);
 if (node->is_external) {
 return height + CalcC(node->size);
 } else {
 auto col = node->split_col;
 if (sample[col] < node->split_value) {
 return PathLength(sample, node->left.get(), height + 1);
 } else {
 return PathLength(sample, node->right.get(), height + 1);
 }
 }
 }

The PathLength() method finds the leaf node during tree traversal based on sample
feature values. These values are used to select a tree traversal direction based on the current
node splitting values. During each step, this method also increases the resulting height. The
result of this method is a sum of the actual tree traversal height and the value returned
from the call to the CalcC() function, which then returns the average path's length of
unsuccessful searches in a binary search tree of equal height to the leaf node. The CalcC()
function can be implemented in the following way, according to the formula from the
original paper, which describes the isolation forest algorithm (you can find a reference to
this in the Further reading section):

 double CalcC(size_t n) {
 double c = 0;
 if (n > 1)
 c = 2 * (log(n - 1) + 0.5772156649) - (2 * (n - 1) / n);
 return c;
 }

The final part of the algorithm's implementation is the creation of the forest. The forest is an
array of trees built from a limited number of samples, randomly chosen from the original
dataset. The number of samples used to build the tree is a hyperparameter of this
algorithm. Furthermore, this implementation uses heuristics as the stopping criteria, in that,
it is a maximum tree height hlim value.

Anomaly Detection Chapter 5

[155]

Let's see how it is used in the tree building procedure. The hlim value is calculated only
once, and the following code shows this. Moreover, it is based on the number of samples
that are used to build a single tree:

template <size_t Cols>
 class IsolationForest {
 public:
 using Data = DatasetRange<Cols>;
 IsolationForest(const IsolationForest&) = delete;
 IsolationForest& operator=(const IsolationForest&) = delete;
 IsolationForest(const Dataset<Cols>& dataset,
 size_t num_trees,
 size_t sample_size)
 : rand_engine(2325) {
 std::vector<size_t> indices(dataset.size());
 std::iota(indices.begin(), indices.end(), 0);
 size_t hlim = static_cast<size_t>(ceil(log2(sample_size)));
 for (size_t i = 0; i < num_trees; ++i) {
 std::vector<size_t> sample_indices;
 std::sample(indices.begin(), indices.end(),
 std::back_insert_iterator(sample_indices), sample_size,
 rand_engine);
 trees.emplace_back(&rand_engine,
 Data(std::move(sample_indices), &dataset), hlim);
 }
 double n = dataset.size();
 c = CalcC(n);
 }
 double AnomalyScore(const Sample<Cols>& sample) {
 double avg_path_length = 0;
 for (auto& tree : trees) {
 avg_path_length += tree.PathLength(sample);
 }
 avg_path_length /= trees.size();
 double anomaly_score = pow(2, -avg_path_length / c);
 return anomaly_score;
 }
 private:
 std::mt19937 rand_engine;
 std::vector<IsolationTree<Cols>> trees;
 double c{0};
 };
 }

Anomaly Detection Chapter 5

[156]

The tree forest is built in the constructor of the IsolationForest type. We also calculated
the value of the average path length of the unsuccessful search in a binary search tree for all
of the samples in the constructor. We use this forest in the AnomalyScore() method for the
actual process of anomaly detection. It implements the formula for the anomaly score value
for a given sample. It returns a value that can be interpreted in the following way: if the
returned value is close to 1, then the sample has anomalous features, while if the value is
less then 0.5, then we can assume that the sample is a normal one.

The following code shows how we can use this algorithm. Furthermore, it
uses Dlib primitives for the dataset's representation:

void IsolationForest(const Matrix& normal,
 const Matrix& test) {
 iforest::Dataset<2> dataset;
 auto put_to_dataset = [&](const Matrix& samples) {
 for (long r = 0; r < samples.nr(); ++r) {
 auto row = dlib::rowm(samples, r);
 double x = row(0, 0);
 double y = row(0, 1);
 dataset.push_back({x, y});
 }
 };

 put_to_dataset(normal);
 put_to_dataset(test);

 iforest::IsolationForest iforest(dataset, 300, 50);

 double threshold = 0.6; // change this value to see isolation
 // boundary
 for (auto& s : dataset) {
 auto anomaly_score = iforest.AnomalyScore(s);
 // std::cout << anomaly_score << " " << s[0] << " " << s[1]
 // << std::endl;
 if (anomaly_score < threshold) {
 // Do something with normal
 } else {
 // Do something with anomalies
 }
 }
 }

In the preceding example, we converted and merged the given datasets for the container
that's suitable for our algorithm. Then, we initialized the object of the IsolationForest
type, which immediately builds the isolation forest with the following hyperparameters:
the number of trees is 100 and the number of samples used for one tree is 50.

Anomaly Detection Chapter 5

[157]

Finally, we called the AnomalyScore() method for each sample from the dataset in order
to detect anomalies with thresholds and return their values. In the following graph, we can
see the result of anomaly detection after using the Isolation Forest algorithm. The red
points are the anomalies:

Using the Dlib library for anomaly detection
The Dlib library provides a couple of implemented algorithms that we can use for anomaly
detection: the OCSVM model and the multivariate Gaussian model.

One-Cass SVM with Dlib
There is only one algorithm that's implemented in the Dlib library straight out of the box:
OCSVM. There is a svm_one_class_trainer class in this library that can be used to train
the corresponding algorithm, which should be configured with a kernel object, and the nu
parameter, which controls the smoothness (in other words, the degree to which it controls
the ratio between generalization and overfitting) of the solution.

Anomaly Detection Chapter 5

[158]

The most widely used kernel is based on the Gaussian distribution and is known as the
Radial Basis Kernel. It is implemented in the radial_basis_kernel class. Typically, we
represent datasets in the Dlib library as a C++ vector of separate samples. So, before using
this trainer object, we have to convert a matrix dataset into a vector:

void OneClassSvm(const Matrix& normal,
 const Matrix& test) {
 typedef matrix<double, 0, 1> sample_type;
 typedef radial_basis_kernel<sample_type> kernel_type;
 svm_one_class_trainer<kernel_type> trainer;
 trainer.set_nu(0.5); // control smoothness of the solution
 trainer.set_kernel(kernel_type(0.5)); // kernel bandwidth
 std::vector<sample_type> samples;
 for (long r = 0; r < normal.nr(); ++r) {
 auto row = rowm(normal, r);
 samples.push_back(row);
 }
 decision_function<kernel_type> df = trainer.train(samples);
 Clusters clusters;
 double dist_threshold = -2.0;
 auto detect = [&](auto samples) {
 for (long r = 0; r < samples.nr(); ++r) {
 auto row = dlib::rowm(samples, r);
 auto dist = df(row);
 if (p > dist_threshold) {
 // Do something with anomalies
 } else {
 // Do something with normal
 }
 }
 };
 detect(normal);
 detect(test);
 }

The result of the training process is a decision function object of the
decision_function<kernel_type> class that we can use for single sample classification.
Objects of this type can be used as a regular function. The result of a decision function is the
distance from the normal class boundary, so the most distant samples can be classified as
anomalies. The following diagram shows an example of how the OCSVM algorithm from
the Dlib library works. Note that the red dots correspond to anomalies:

Anomaly Detection Chapter 5

[159]

Multivariate Gaussian model with Dlib
Using the linear algebra facilities of the Dlib library (or any other library, for that matter),
we can implement anomaly detection with the multivariate Gaussian distribution
approach. The following example shows how to implement this approach with
the Dlib linear algebra routines:

void multivariateGaussianDist(const Matrix& normal,
 const Matrix& test) {
 // assume that rows are samples and columns are features
 // calculate per feature mean
 dlib::matrix<double> mu(1, normal.nc());
 dlib::set_all_elements(mu, 0);
 for (long c = 0; c < normal.nc(); ++c) {
 auto col_mean = dlib::mean(dlib::colm(normal, c));
 dlib::set_colm(mu, c) = col_mean;
 }
 // calculate covariance matrix
 dlib::matrix<double> cov(normal.nc(), normal.nc());
 dlib::set_all_elements(cov, 0);
 for (long r = 0; r < normal.nr(); ++r) {
 auto row = dlib::rowm(normal, r);
 cov += dlib::trans(row - mu) * (row - mu);
 }
 cov *= 1.0 / normal.nr();

Anomaly Detection Chapter 5

[160]

 double cov_det = dlib::det(cov); // matrix determinant
 dlib::matrix<double> cov_inv = dlib::inv(cov); // inverse matrix
 // define probability function
 auto first_part =
 1. / std::pow(2. * M_PI, normal.nc() / 2.) / std::sqrt(cov_det);
 auto prob = [&](const dlib::matrix<double>& sample) {
 dlib::matrix<double> s = sample - mu;
 dlib::matrix<double> exp_val_m = s * (cov_inv * dlib::trans(s));
 double exp_val = -0.5 * exp_val_m(0, 0);
 double p = first_part * std::exp(exp_val);
 return p;
 };
 // change this parameter to see the decision boundary
 double prob_threshold = 0.001;
 auto detect = [&](auto samples) {
 for (long r = 0; r < samples.nr(); ++r) {
 auto row = dlib::rowm(samples, r);
 auto p = prob(row);
 if (p >= prob_threshold) {
 // Do something with anomalies
 } else {
 // Do something with normal
 }
 }
 };
 detect(normal);
 detect(test);
 }

The idea of this approach is to define a function that returns the probability of appearing,
given a sample in a dataset. To implement such a function, we calculate the statistical
characteristics of the training dataset. In the first step, we calculate the mean values of each
feature and store them into the one-dimensional matrix. Then, we calculate the covariance
matrix for the training samples using the formula for the correlation matrix that was given
in the prior theoretical section named Density estimation approach for anomaly detection. Next,
we determine the correlation matrix determinant and inverse version. We define a lambda
function named prob to calculate the probability of a single sample using the formula for
the probability calculation that was given in the Density estimation approach for anomaly
detection section. We also define a probability threshold to separate anomalies.

Anomaly Detection Chapter 5

[161]

Then, we iterate over all the examples (including the training and testing datasets) to find
out how the algorithm separates regular samples from anomalies. In the following graph,
we can see the result of this separation. The dots marked with a lighter color are anomalies:

OCSVM with Shogun
Anomaly detection algorithms in the Shogun library are represented with the OCSVM
algorithm. This algorithm is implemented in two classes: CSVMLightOneClass and
CLibSVMOneClass. Note that they have different backends for SVM implementation: the
former uses the SVMLight library (http://svmlight.joachims.org/), while the latter uses
the LibSVM library (https://www.csie.ntu.edu.tw/~cjlin/libsvm/).

 Let's start by looking at using the CLibSVMOneClass class for anomaly detection:

 auto csv_file = some<CCSVFile>(dataset_name.string().c_str());
 Matrix data;
 data.load(csv_file);

 Matrix train = data.submatrix(0, 50);
 train = train.clone();
 Matrix test = data.submatrix(50, data.num_cols);
 test = test.clone();

http://svmlight.joachims.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

Anomaly Detection Chapter 5

[162]

 // create a dataset
 auto features = some<CDenseFeatures<DataType>>(train);
 auto test_features = some<CDenseFeatures<DataType>>(test);

 auto gauss_kernel = some<CGaussianKernel>(features, features, 0.5);

 auto c = 0.5;
 auto svm = some<CLibSVMOneClass>(c, gauss_kernel);
 svm->train(features);

 double dist_threshold = -3.15;

 auto detect = [&](Some<CDenseFeatures<DataType>> data) {
 auto labels = svm->apply(data);
 for (int i = 0; i < labels->get_num_labels(); ++i) {
 auto dist = labels->get_value(i);
 if (dist > dist_threshold) {
 // Do something with anomalies
 } else {
 // Do something with normal
 }
 }
 };

 detect(features);
 detect(test_features);

First, we loaded the dataset from the CSV file so that it's an object of the Matrix type and
split it into two parts for training and testing. Then, we declared objects of the
CDenseFeatures type in order to use loaded data in the Shogun algorithms. Next, we
declared the kernel object of the CGaussianKernel type and used it to initialize the SVM
algorithm object of the CLibSVMOneClass type. Note that the SVM object also takes a
parameter that controls the smoothness of the solution. After we had the SVM object in
place, we used the train() method with the training dataset to fit the algorithm to our
data. Finally, we defined a distance threshold and used the apply() method on each of the
datasets to detect anomalies. Notice that we used a different threshold value here than for
the Dlib implementation. The following graph shows that the result of this algorithm is the
same as our multivariate Gaussian distribution approach. The two samples from the
dataset were detected as anomalies because they were artificially added to the dataset:

Anomaly Detection Chapter 5

[163]

OCSVM with Shark-ML
The Shark-ML library also implements the OCSVM algorithm for anomaly detection. In
this case, the OneClassSvmTrainer and the KernelExpansion classes implement the
algorithm. The following example shows how it works:

 UnlabeledData<RealVector> data;
 importCSV(data, dataset_name);

 // separate last two samples in test dataset
 data.splitBatch(0, 50);
 auto test_data = data.splice(1);

 double gamma = 0.5; // kernel bandwidth parameter
 GaussianRbfKernel<> kernel(gamma);
 KernelExpansion<RealVector> ke(&kernel);

 double nu = 0.5; // parameter of the method for controlling the
 //smoothness of the solution

 OneClassSvmTrainer<RealVector> trainer(&kernel, nu);
 trainer.stoppingCondition().minAccuracy = 1e-6;
 trainer.train(ke, data);

 double dist_threshold = -0.2;
 RealVector output;

Anomaly Detection Chapter 5

[164]

 auto detect = [&](const UnlabeledData<RealVector>& data) {
 for (size_t i = 0; i < data.numberOfElements(); ++i) {
 ke.eval(data.element(i), output);
 if (output[0] > dist_threshold) {
 // Do something with anomalies
 } else {
 // Do something with normal
 }
 }
 };
 detect(data);
 detect(test_data);

First, we loaded the object of the UnlabeledData class from the CSV file and split it into
two parts: one for training and one for testing. Then, we declared the kernel object of the
GaussianRbfKernel type and initialized an object of the KernelExpansion class with it.
The KernelExpansion class implements an affine linear kernel expansion. This can be
represented with the following formula:

Using this object's type is a requirement defined by the Shark-ML API, but we can use it for
a more precise configuration of the algorithm. After we put the kernel expansion object in
place, we initialized an object of the OneClassSvmTrainer class and configured it. We also
configured the stopping criteria and the solution smoothness parameter. Then, we used the
train() method to fit this algorithm to our training data. After training was completed,
we used the eval() method of the KernelExpansion object to detect anomalies. This
method returns values that we can interpret as distances from the class boundary. By doing
this, we can compare them with the threshold.

Summary
In this chapter, we examined anomalies in data. We discussed several approaches to
anomaly detection and looked at two kinds of anomalies: outliers and novelties. We
considered the fact that anomaly detection is primarily an unsupervised learning problem,
but despite this, some algorithms require labeled data, while others are semi-supervised.
The reason for this is that, generally, there is a tiny number of positive examples (that is,
anomalous samples) and a large number of negative examples (that is, standard samples) in
anomaly detection tasks.

Anomaly Detection Chapter 5

[165]

In other words, we usually don't have enough positive samples to train algorithms. That is
why some solutions use labeled data to improve algorithm generalization and precision.
On the contrary, supervised learning usually requires a large number of positive and
negative examples, and their distribution needs to be balanced.

Also, notice that the task of detecting anomalies does not have a single formulation and that
it is often interpreted differently, depending on the nature of the data and the goal of the
concrete task. Moreover, choosing the correct anomaly detection method depends primarily
on the task, data, and available a priori information. We also learned that different libraries
can give slightly different results, even for the same algorithms.

In the following chapter, we will discuss the dimension reduction methods. Such methods
help us to reduce the dimensionality of data with high dimensionality into a new
representation of data with lower dimensionality while preserving the essential
information from the original data.

Further reading
Anomaly Detection Learning Resources: https://github.com/yzhao062/
anomaly-detection-resources.
Anomaly Detection: A Tutorial : http://webdocs.cs.ualberta.ca/~icdm2011/
downloads/ICDM2011_anomaly_detection_tutorial.pdf.
Anomaly Detection (Basics of Machine Learning Series): https://
machinelearningmedium.com/2018/05/02/anomaly-detection/.
Outlier Detection with One-Class SVMs: An Application to Melanoma Prognosis:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/.
Introduction to One-class Support Vector Machines: http://rvlasveld.github.
io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/.
Isolation Forest: https://feitonyliu.files.wordpress.com/2009/07/liu-
iforest.pdf.

https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
https://github.com/yzhao062/anomaly-detection-resources
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://machinelearningmedium.com/2018/05/02/anomaly-detection/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041295/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
http://rvlasveld.github.io/blog/2013/07/12/introduction-to-one-class-support-vector-machines/
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf
https://feitonyliu.files.wordpress.com/2009/07/liu-iforest.pdf

6
Dimensionality Reduction

In this chapter, we'll go through a number of dimension reduction tasks. We'll look at
the conditions in which dimension reduction is required and learn how to use dimension
reduction algorithms efficiently in C++ with various libraries. Dimensionality reduction is
where you transfer data that has a higher dimension into a new data representation with a
lower dimension, all while preserving the most crucial information from the original data.
Such a transformation can help us visualize multidimensional space, which can be useful in
the data exploration stage or when identifying the most relevant features in dataset
samples. Some machine learning (ML) techniques can perform better or faster if our data
has a smaller number of features since it can consume fewer computational resources. The
main purpose of this kind of transformation is to save the essential features—those features
that hold the most critical information present in the original data.

The following topics will be covered in this chapter:

An overview of dimension reduction methods
Exploring linear methods for dimension reduction
Exploring non-linear methods for dimension reduction
 Understanding dimension reduction algorithms with various С++ libraries

Technical requirements
The technologies you'll need for this chapter are as follows:

The Shogun-toolbox library
The Shark-ML library
The Dlib library
The plotcpp library
A modern C++ compiler with C++17 support
The CMake build system, version >= 3.8

Dimensionality Reduction Chapter 6

[167]

The code files for this chapter can be found at the following GitHub repo: https://github.
com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06

An overview of dimension reduction
methods
The main goal of dimension reduction methods is to make the dimension of the
transformed representation correspond with the internal dimension of the data. In other
words, it should be similar to the minimum number of variables necessary to express all the
possible properties of the data. Reducing the dimension helps mitigate the impact of the
curse of dimensionality and other undesirable properties that occur in high-dimensional
spaces. As a result, reducing dimensionality can effectively solve problems regarding
classification, visualization, and compressing high-dimensional data. It makes sense to
apply dimensionality reduction only when particular data is redundant; otherwise, we can
lose important information. In other words, if we are able to solve the problem using data
of smaller dimensions with the same level of efficiency and accuracy, then some of our data
is redundant. Dimensionality reduction allows us to reduce the time and computational
costs of solving a problem. It also makes data and the results of data analysis easier to
interpret.

It makes sense to reduce the number of features when the information that can be used to
solve the problem at hand qualitatively is contained in a specific subset of features. Non-
informative features are a source of additional noise and affect the accuracy of the model
parameter's estimation. In addition, datasets with a large number of features can contain
groups of correlated variables. The presence of such feature groups leads to the duplication
of information, which may distort the model's results and affect how well it estimates the
values of its parameters.

The methods surrounding dimensionality reduction are mainly unsupervised because we
don't know which features or variables can be excluded from the original dataset without
losing the most crucial information.

Dimensionality reduction methods can be classified into two groups: feature selection and
the creation of new low-dimensional features. These methods can then be subdivided into
linear and non-linear approaches, depending on the nature of the data and the mathematical
apparatus being used.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter06

Dimensionality Reduction Chapter 6

[168]

Feature selection methods
Feature selection methods don't change the initial values of the variables or features;
instead, they remove particular features from the source dataset that aren't relevant. Some
of the feature selection methods we can use are as follows:

Missing value ratio: This method is based on the idea that a feature that misses
many values should be eliminated from a dataset because it doesn't contain
valuable information and can distort the model's performance results. So, if we
have some criteria for identifying missing values, we can calculate their ratio to
typical values and set a threshold that we can use to eliminate features with a
high missing value ratio.
Low variance filter: This method is used to remove features with low variance
because such features don't contain enough information to improve model
performance. To apply this method, we need to calculate the variance for each
feature, sort them in ascending order by this value, and leave only those with the
highest variance values.
High correlation filter: This method is based on the idea that if two features have
a high correlation, then they carry similar information. Also, highly correlated
features can significantly reduce the performance of some machine learning
models, such as linear and logistic regression. Therefore, the primary goal of this
method is to leave only the features that have a high correlation with target
values and don't have much correlation between each other.
Random forest: This method can be used for feature selection effectively
(although it wasn't initially designed for this kind of task). After we've built the
forest, we can estimate what features are most important by estimating the
impurity factor in the tree's nodes. This factor shows the measure of split
distinctness in the tree's nodes, and it demonstrates how well the current feature
(a random tree only uses one feature in a node to split input data) splits data into
two distinct buckets. Then, this estimation can be averaged across all the trees in
the forest. Features that split data better than others can be selected as the most
important ones.

Dimensionality Reduction Chapter 6

[169]

Backward feature elimination and forward feature selection: These are iterative
methods that are used for feature selection. In backward feature elimination,
after we've trained the model with a full feature set and estimated its
performance, we remove its features one by one and train the model with a
reduced feature set. Then, we compare the model's performances and decide
how much performance is improved by removing feature changes – in other
words, we're deciding how important each feature is. In forward feature
selection, the training process goes in the opposite direction. We start with one
feature and then add more of them. These methods are very computationally
expensive and can only be used on small datasets.

Dimensionality reduction methods
Dimensionality reduction methods transform an original feature set into a new feature set
that usually contains new features that weren't present in the initial dataset. These methods
can also be divided into two subclasses—linear and non-linear. The non-linear methods are
usually more computationally expensive, so if we have a prior assumption about our
feature's data linearity, we can choose the more suitable class of methods at the initial stage.

The following sections will describe the various linear and non-linear methods we can use
for dimension reduction.

Exploring linear methods for dimension
reduction
This section describes the most popular linear methods that are used for dimension
reduction.

Principal component analysis
Principal component analysis (PCA) is one of the most intuitively simple and frequently
used methods for applying dimension reduction to data and projecting it onto an
orthogonal subspace of features. In a very general form, it can be represented as the
assumption that all our observations look like some ellipsoid in the subspace of our original
space. Our new basis in this space coincides with the axes of this ellipsoid. This assumption
allows us to get rid of strongly correlated features simultaneously since the basis vectors of
the space we project them onto are orthogonal.

Dimensionality Reduction Chapter 6

[170]

The dimension of this ellipsoid is equal to the dimension of the original space, but our
assumption that the data lies in a subspace of a smaller dimension allows us to discard the
other subspaces in the new projection; namely, the subspace with the least extension of the
ellipsoid. We can do this greedily, choosing a new element one by one on the basis of our
new subspace, and then taking the axis of the ellipsoid with maximum dispersion
successively from the remaining dimensions.

To reduce the dimension of our data from to , we need to choose the top axes of
such an ellipsoid, sorted in descending order by dispersion along the axes. To begin with,
we calculate the variances and covariances of the original features. This is done by using a
covariance matrix. By the definition of covariance, for two signs, and , their
covariance should be as follows:

Here, is the mean of the feature.

In this case, we note that the covariance is symmetric and that the covariance of the vector
itself is equal to its dispersion. Thus, the covariance matrix is a symmetric matrix where the
dispersions of the corresponding features lie on the diagonal and the covariances of the
corresponding pairs of features lie outside the diagonal. In the matrix view, where is the
observation matrix, our covariance matrix looks like this:

The covariance matrix is a generalization of variance in the case of multidimensional
random variables – it also describes the shape (spread) of a random variable, as does the
variance. Matrices such as linear operators have eigenvalues and eigenvectors. They are
interesting because when we act on the corresponding linear space or transform it with our
matrix, the eigenvectors remain in place, and they are only multiplied by the corresponding
eigenvalues. This means they define a subspace that remains in place or goes into itself when
we apply a linear operator matrix to it. Formally, an eigenvector, , with an eigenvalue for
a matrix is defined simply as .

Dimensionality Reduction Chapter 6

[171]

The covariance matrix for our sample, , can be represented as a product, . From the
Rayleigh relation, it follows that the maximum variation of our dataset can be achieved
along the eigenvector of this matrix, which corresponds to the maximum eigenvalue. This is
also true for projections on a higher number of dimensions – the variance (covariance
matrix) of the projection onto the m-dimensional space is maximum in the direction of
eigenvectors with maximum eigenvalues. Thus, the principal components that we would
like to project our data for are simply the eigenvectors of the corresponding top k pieces of
the eigenvalues of this matrix.

The largest vector has a direction similar to the regression line, and by projecting our
sample onto it, we lose information, similar to the sum of the residual members of the
regression. It is necessary to make the operation, (the vector length (magnitude) should
be equal to one), perform the projection. If we don't have a single vector and have a
hyperplane instead, then instead of the vector, , we take the matrix of basis vectors, .
The resulting vector (or matrix) is an array of projections of our observations; that is, we
need to multiply our data matrix on the basis vectors matrix, and we get the projection of
our data orthogonally. Now, if we multiply the transpose of our data matrix and the matrix
of the principal component vectors, we restore the original sample in the space where we
projected it onto the basis of the principal components. If the number of components was
less than the dimension of the original space, we lose some information.

Singular value decomposition
Singular value decomposition (SVD) is an important method that's used to analyze data.
The resulting matrix decomposition has a meaningful interpretation from a machine
learning point of view. It can also be used to calculate PCA. SVD is rather slow. Therefore,
when the matrices are too large, randomized algorithms are used. However, the SVD
calculation is computationally more efficient than the calculation for the covariance matrix
and its eigenvalues in the original PCA approach. Therefore, PCA is often implemented in
terms of SVD. Let's take a look.

The essence of SVD is pure—any matrix (real or complex) is represented as a product of
three matrices:

Dimensionality Reduction Chapter 6

[172]

Here, is a unitary matrix of order and is a matrix of size on the main diagonal,
which is where there are non-negative numbers called singular values (elements outside
the main diagonal are zero—such matrices are sometimes called rectangular diagonal
matrices). is a Hermitian-conjugate matrix of order . The columns of the matrixes

 and columns of the matrix are called the left and right singular vectors of matrix ,
respectively. To reduce the number of dimensions, matrix is important, the elements of
which, when raised to the second power, can be interpreted as a variance that each
component puts into a joint distribution, and they are in descending order:

. Therefore, when we choose the number of components in SVD
(as in PCA), we should take the sum of their variances into account.

The relation between SVD and PCA can be described in the following way: is the
covariance matrix given by . It is a symmetric matrix, so it can be
diagonalized: , where is a matrix of eigenvectors (each column is an eigenvector)
and is a diagonal matrix of eigenvalues, , in decreasing order on the diagonal. The
eigenvectors are called principal axes or principal directions of the data. Projections of the
data on the principal axes are called principal components, also known as principal
component scores. They are newly transformed variables. The principal component is
given by the column of . The coordinates of the data point in the new principal
component's space are given by the row of .

By performing SVD on , we get , where is a unitary matrix and is the diagonal

matrix of singular values, . We can observe that , which
means that the right singular vectors, , are principal directions and that singular values
are related to the eigenvalues of the covariance matrix via . Principal
components are given by .

Dimensionality Reduction Chapter 6

[173]

Independent component analysis
The independent component analysis (ICA) method was proposed as a way to solve the
problem of blind signal separation (BSS); that is, selecting independent signals from
mixed data. Let's look at an example of the task of BSS. Suppose we have two people in the
same room who are talking, generating acoustic waves. We have two microphones in
different parts of the room, recording sound. The analysis system receives two signals from
the two microphones, each of which is a digitized mixture of two acoustic waves – one from
people speaking and one from some other noise (for example, playing music). Our goal is
to select our initial signals from the incoming mixtures. Mathematically, the problem can be
described as follows. We represent the incoming mixture in the form of a linear
combination, where represents the displacement coefficients and represents the values
of the vector of independent components:

In matrix form, this can be expressed as follows:

Here, we have to find the following:

In this equation, is a matrix of input signal values, is a matrix of displacement
coefficients or mixing matrix, and is a matrix of independent components. Thus, the
problem is divided into two. The first part is to get the estimate, , of the variables,

, of the original independent components. The second part is to find the matrix, .
How this method works is based on two principles:

Independent components must be statistically independent (matrix values).
Roughly speaking, the values of one vector of an independent component do not
affect the values of another component.
Independent components must have a non-Gaussian distribution.

Dimensionality Reduction Chapter 6

[174]

The theoretical basis of ICA is the central limit theorem, which states that the distribution of
the sum (average or linear combination) of independent random variables approaches
Gaussian for . In particular, if are random variables independent of each
other, taken from an arbitrary distribution with an average, ,and a variance of , then if

we denote the mean of these variables as , we can say that approaches the
Gaussian with a mean of 0 and a variance of 1. To solve the BSS problem, we need to find
the matrix, , so that . Here, the should be as close as possible to the original
independent sources. We can consider this approach as the inverse process of the central
limit theorem. All ICA methods are based on the same fundamental approach – finding a
matrix, W, that maximizes non-Gaussianity, thereby minimizing the independence of .

The Fast ICA algorithm aims to maximize the function, , where are
components of . Therefore, we can rewrite the function's equation in the following
form:

Here, the vector is the ith row of the matrix, W.

The ICA algorithm performs the following steps:

Chooses the initial value of w.1.

Calculates , where is the2.
derivative of the function, G(z).

Normalizes .3.
Repeats the previous two steps until w stops changing.4.

Dimensionality Reduction Chapter 6

[175]

To measure non-Gaussianity, Fast ICA relies on a nonquadratic nonlinear function, G (z),
that can take the following forms:

Linear discriminant analysis
Linear discriminant analysis (LDA) is a type of multivariate analysis that allows us to
estimate differences between two or more groups of objects at the same time. The basis of
discriminant analysis is the assumption that the descriptions of the objects of each kth class
are instances of a multidimensional random variable that's distributed according to the
normal (Gaussian) law, , with an average, , and the following covariance
matrix:

The index, , indicates the dimension of the feature space. Consider a simplified geometric
interpretation of the LDA algorithm for the case of two classes. Let the discriminant
variables, , be the axes of the -dimensional Euclidean space. Each object (sample) is a
point of this space with coordinates representing the fixed values of each variable. If both
classes differ from each other in observable variables (features), they can be represented as
clusters of points in different regions of the considered space that may partially overlap. To
determine the position of each class, we can calculate its centroid, which is an imaginary
point whose coordinates are the average values of the variables (features) in the class. The
task of discriminant analysis is to create an additional axis that passes through a cloud of
points in such a way that the projections on it provide the best separability into two classes
(in other words, it maximizes the distance between classes). Its position is given by a linear
discriminant function (linear discriminant, LD) with weights, , that determine the
contribution of each initial variable, :

Dimensionality Reduction Chapter 6

[176]

If we assume that the covariance matrices of the objects of classes 1 and 2 are equal, that is,
, then the vector of coefficients, , of the linear discriminant, , can be

calculated using the formula , where is the inverse of the covariance
matrix and is the mean of the class. The resulting axis coincides with the equation of
a line passing through the centroids of two groups of class objects. The generalized
Mahalanobis distance, which is equal to the distance between them in the multidimensional
feature space, is estimated as . Thus, in addition to the assumption regarding
the normal (Gaussian) distribution of class data, which in practice occurs quite rarely, the
LDA has a stronger assumption about the statistical equality of intragroup dispersions and
correlation matrices. If there are no significant differences between them, they are
combined into a calculated covariance matrix, as follows:

This principle can be generalized to a larger number of classes. The final algorithm may
look like this:

The interclass scattering matrix is calculated like this:

Here, is the mean of all objects (samples), is the number of classes, is the

number of objects in the ith class, is the intraclass' mean, is the

scattering matrix for the ith class, and is a centering matrix where is the n x n
matrix of all 1s.

Dimensionality Reduction Chapter 6

[177]

Based on these matrices, the matrix is calculated, for which the eigenvalues and the
corresponding eigenvectors are determined. In the diagonal elements of the matrix, we
must select the s of the largest eigenvalues and transform the matrix, leaving only the
corresponding s rows in it. The resulting matrix can be used to convert all objects into the
lower-dimensional space.

This method requires labeled data, meaning it is a supervised method.

Factor analysis
Factor analysis is used to reduce the number of variables that are used to describe data and
determine the relationships between them. During the analysis, variables that correlate
with each other are combined into one factor. As a result, the dispersion between
components is redistributed, and the structure of factors becomes more understandable.
After combining the variables, the correlation of components within each factor becomes
higher than their correlation with components from other factors. It is assumed that known
variables depend on a smaller number of unknown variables and that we have a random
error that can be expressed as follows:

Here, is the load and is the factor.

The concept of factor load is essential. It is used to describe the role of the factor (variable)
when we wish to form a specific vector from a new basis. The essence of factor analysis is
the procedure of rotating factors, that is, redistributing the dispersion according to a
specific method. The purpose of rotations is to define a simple structure of factor loadings.
Rotation can be orthogonal and oblique. In the first form of rotation, each successive factor
is determined to maximize the variability that remains from the previous factors. Therefore,
the factors are independent and uncorrelated with each other. The second type is a
transformation in which factors correlate with each other. There are about 13 methods of
rotation that are used in both forms. The factors that have a similar effect on the elements of
the new basis are combined into one group. Then, from each group, it is recommended to
leave one representative. Some algorithms, instead of choosing a representative, calculate a
new factor with some heuristics that becomes central to the group.

Dimensionality Reduction Chapter 6

[178]

Dimensionality reduction occurs while transitioning to a system of factors that are
representatives of groups, and the other factors are discarded. There are several commonly
used criteria for determining the number of factors. Some of these criteria can be used
together to complement each other. An example of a criterion that's used to determine the
number of factors is the Kaiser criterion or the eigenvalue criterion: only factors with
eigenvalues equal to or greater than one are selected. This means that if a factor does not
select a variance equivalent to at least one variance of one variable, then it is omitted. The
general factor analysis algorithm follows these steps:

Calculates the correlation matrix.1.
Selects the number of factors for inclusion, for example, with the Kaiser criterion.2.
Extracts the initial set of factors. There are several different extraction methods,3.
including maximum likelihood, principal component analysis, and principal axis
extraction.
Rotates the factors to a final solution that is equal to the one that was obtained in4.
the initial extraction but that has the most straightforward interpretation.

Multidimensional scaling
Multidimensional scaling (MDS) can be considered as an alternative to factor analysis
when, in addition to the correlation matrices, an arbitrary type of object similarity matrix
can be used as input data. MDS is not so much a formal mathematical procedure but rather
a method of efficiently placing objects, thus keeping an appropriate distance between them
in a new feature space. The dimension of the new space in MDS is always substantially less
than the original space. The data that's used for analysis by MDS is often obtained from the
matrix of pairwise comparisons of objects. The main MDS algorithm's goal is to restore the
unknown dimension, , of the analyzed feature space and assign coordinates to each object
in such a way that the calculated pairwise Euclidean distances between the objects coincide
as much as possible with the specified pairwise comparison matrix. We are talking about
restoring the coordinates of the new reduced feature space with the accuracy of orthogonal
transformation, ensuring the pairwise distances between the objects do not change.

Thus, the aim of multidimensional scaling methods can also be formulated in order to
display the configuration information of the original multidimensional data that's given by
the pairwise comparison matrix. This is provided as a configuration of points in the
corresponding space of lower dimension.

Dimensionality Reduction Chapter 6

[179]

Classical MDS assumes that the unknown coordinate matrix, , can be expressed by
eigenvalue decomposition, . can be computed from the proximity matrix (a
matrix with distances between samples) by using double centering. The general MDS
algorithm follows these steps:

Computes the squared proximity matrix, .1.

Applies double centering, , using the centering matrix, ,2.
where is the number of objects.
Determines the largest eigenvalues, , and the corresponding3.
eigenvectors, , of (where is the number of dimensions desired
for the output).

Computes , where is the matrix of eigenvectors and is the4.
diagonal matrix of eigenvalues of .

The disadvantage of the multidimensional scaling method is that it does not take into
account the distribution of nearby points since it uses Euclidean distances in calculations. If
you ever find multidimensional data lying on a curved manifold, the distance between data
points can be much more than Euclidean.

Now that we've discussed the linear methods we can use for dimension reduction, let's look
at what non-linear methods exist.

Exploring non-linear methods for dimension
reduction
In this section, we'll discuss the widespread non-linear methods and algorithms that are
used for dimension reduction.

Dimensionality Reduction Chapter 6

[180]

Kernel PCA
Classic PCA is a linear projection method that works well if the data is linearly separable.
However, in the case of linearly non-separable data, a non-linear approach is required. The
basic idea of working with linearly inseparable data is to project it into a space with a larger
number of dimensions, where it becomes linearly separable. We can choose a non-linear
mapping function, , so that the sample mapping, x, can be written as . This is called
the kernel function. The term kernel describes a function that calculates the scalar product
of mapping (in a higher-order space) samples x with . This scalar
product can be interpreted as the distance measured in the new space. In other words, the
 function maps the original d-dimensional elements into the k-dimensional feature space of
a higher dimension by creating non-linear combinations of the original objects. For
example, a function that displays 2D samples, , in 3D space can look like

.

In a linear PCA approach, we are interested in the principal components that maximize the
variance in the dataset. We can maximize variance by calculating the eigenvectors
(principal components) that correspond to the largest eigenvalues based on the covariance
matrix of our data and project our data onto these eigenvectors. This approach can be
generalized to data that is mapped into a higher dimension space using the kernel function.
But in practice, the covariance matrix in a multidimensional space is not explicitly
calculated since we can use a method called the kernel trick. The kernel trick allows us to
project data onto the principal components without explicitly calculating the projections,
which is much more efficient. The general approach is as follows:

Compute the kernel matrix equal to .1.
Make it so that it has a zero mean value, , where is2.
a matrix of N x N size with 1/N elements.
Calculate the eigenvalues and eigenvectors of .3.
Sort the eigenvectors in descending order, according to their eigenvalues.4.
Take eigenvectors that correspond to the largest eigenvalues, where is the5.
number of dimensions of a new feature space.

Dimensionality Reduction Chapter 6

[181]

These eigenvectors are projections of our data onto the corresponding main components.
The main difficulty of this process is selecting the correct kernel and configuring its
hyperparameters. Two frequently used kernels are the polynomial kernel

and the Gaussian (RBF) ones.

IsoMap
The IsoMap algorithm is based on the manifold projection technique. In mathematics, the
manifold is a topological space (which is, in general, a set of points with their neighbors)
that locally resembles the Euclidian space near each point. For example, one-dimensional
manifolds include lines and circles but not figures with self-intersections. Two-dimensional
manifolds are called surfaces; for example, they can be a sphere, a plane, or a torus, but
these surfaces can't have self-intersection. For example, a circle is a one-dimensional
manifold embedded into a two-dimensional space. Here, each arc of the circle locally
resembles a straight line segment. A 3D curve can also be a manifold if it can be divided
into straight-line segments that can be embedded in 3D space without self-intersections. A
3D shape can be a manifold if its surface can be divided into flat plane patches without self-
intersections.

The basics of applying manifold projection techniques are to search for a manifold that is
close to the data, project the data onto the manifold, and then unfold it. The most popular
technique that's used to find the manifold is to build a graph based on information about
data points. Usually, these data points are placed into the graph nodes, and the edges
simulate the relationships between the data points.

The IsoMap algorithm depends on two parameters:

The number of neighbors, , used to search for geodetic distances
The dimension of the final space,

In brief, the IsoMap algorithm follows these steps:

First, it constructs a graph representing geodesic distances. For each point, we1.
search the nearest neighbors and construct a weighted, undirected graph from
the distances to these nearest neighbors. The edge weight is the Euclidean
distance to the neighbor.

Dimensionality Reduction Chapter 6

[182]

Using an algorithm to find the shortest distance in the graph, for example,2.
Dijkstra's algorithm, we need to find the shortest distance between each pair of
vertices. We can consider this distance as a geodesic distance on a manifold.
Based on the matrix of pairwise geodesic distances we obtained in the previous3.
step, train the MDS algorithm.
The MDS algorithm associates a set of points in the -dimensional space with4.
the initial set of distances.

Sammon mapping
Sammon mapping is one of the first non-linear dimensionality reduction algorithms. In
contrast to traditional dimensionality reduction methods, such as PCA, Sammon mapping
does not define a data conversion function directly. On the contrary, it only determines the
measure of how well the conversion results (a specific dataset of a smaller dimension)
correspond to the structure of the original dataset. In other words, it does not try to find the
optimal transformation of the original data; instead, it searches for another dataset of lower
dimensions with a structure that's as close to the original one as possible. The algorithm can
be described as follows. Let's say we have -dimensional vectors, . Here,

 vectors are defined in the -dimensional space, , which is denoted by . The
distances between the vectors in the -dimensional space will be denoted by
and in the -dimensional space, . To determine the distance between the
vectors, we can use any metric; in particular, the Euclidean distance. The goal of non-linear
Sammon mapping is to search a selection of vectors, , in order to minimize the error
function, , which is defined by the following formula:

Dimensionality Reduction Chapter 6

[183]

To minimize the error function, , Sammon used Newton's minimization method, which
can be simplified as follows:

Here, η is the learning rate.

Distributed stochastic neighbor embedding
The stochastic neighbor embedding (SNE) problem is formulated as follows: we have a
dataset with points described by a multidimensional variable with a dimension of space
substantially higher than three. It is necessary to obtain a new variable that exists in a two-
dimensional or three-dimensional space that would maximally preserve the structure and
patterns in the original data. The difference between t-SNE and the classic SNE lies in the
modifications that simplify the process of finding the global minima. The main
modification is replacing the normal distribution with the Student's t-distribution for low-
dimensional data. SNE begins by converting the multidimensional Euclidean distance
between points into conditional probabilities that reflect the similarity of points.
Mathematically, it looks like this:

This formula shows how close the point lies to the point with a Gaussian distribution
around , with a given deviation of . is different for each point. It is chosen so that the
points in areas with higher density have less variance than others.

Dimensionality Reduction Chapter 6

[184]

Let's denote two-dimensional or three-dimensional mappings of the (,) pair as the (,
) pair. It is necessary to estimate the conditional probability using the same formula. The

standard deviation is :

If the mapping points, and , correctly simulate the similarity between the original
points of the higher dimension, and , then the corresponding conditional
probabilities, and , will be equivalent. As an obvious assessment of the quality of
how reflects , divergence, or the Kullback-Leibler distance, is used. SNE minimizes
the sum of such distances for all mapping points using gradient descent. The following
formula determines the loss function for this method:

It has the following gradient:

The authors of this problem proposed the following physical analogy for the optimization
process. Let's imagine that springs connect all the mapping points. The stiffness of the
spring connecting points and depends on the difference between the similarity of two
points in a multidimensional space and two points in a mapping space. In this analogy, the
gradient is the resultant force that acts on a point in the mapping space. If we let the system
go, after some time, it results in balance, and this is the desired distribution.
Algorithmically, it searches for balance while taking the following moments into account:

Here, is the learning rate and is the coefficient of inertia. Classic SNE also allows us to
get good results but can be associated with difficulties when optimizing the loss function
and the crowding problem. t-SNE doesn't solve these problems in general, but it makes
them much more manageable.

Dimensionality Reduction Chapter 6

[185]

The loss function in t-SNE has two principal differences from the loss function of the classic
SNE. The first one is that it has a symmetric form of similarity in a multidimensional space
and a simpler gradient version. Secondly, instead of using a Gaussian distribution for
points from the mapping space, the t-distribution (Student) is used.

Autoencoders
Autoencoders represent a particular class of neural networks that are configured so that the
output of the autoencoder is as close as possible to the input signal. In its most
straightforward representation, the autoencoder can be modeled as a multilayer perceptron
in which the number of neurons in the output layer is equal to the number of inputs. The
following diagram shows that by choosing an intermediate hidden layer of a smaller
dimension, we compress the source data into the lower dimension. Usually, values from
this intermediate layer are a result of an autoencoder:

Now that we have learned about the linear and non-linear methods that can be used for
dimension reduction and explored the components of each of the methods in detail, we can
enhance our implementation of dimension reduction with the help of some practical
examples.

Dimensionality Reduction Chapter 6

[186]

Understanding dimension reduction
algorithms with various С++ libraries
Let's look at how to use dimensionality reduction algorithms in practice. All of these
examples use the same dataset, which contains four normally distributed 2D point sets that
have been transformed with Swiss roll mapping, , into a 3D
space. The following graph shows the result of this mapping. You can find the original
dataset and mapping details at http://people.cs.uchicago.edu/~dinoj/manifold/
swissroll.html:

This dataset is labeled. Each of the normally distributed parts has its own labels, and we
can see these labels as a certain color on the result. We use these colors to show
transformation results for each of the algorithms we'll be using in the following samples.
This gives us an idea of how the algorithm works. The following sections provide concrete
examples of how to use the Dlib, Shogun, and Shark-ML libraries.

http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html

Dimensionality Reduction Chapter 6

[187]

Using the Dlib library
There are three dimensionality reduction methods in the Dlib library – two linear ones,
known as PCA and LDA, and one non-linear one, known as Sammon mapping.

PCA
PCA is one of the most popular dimensionality reduction algorithms and it has a couple of
implementations in the Dlib library. There is the Dlib::vector_normalizer_pca type,
for which objects can be used to perform PCA on user data. This implementation also
normalizes the data. In some cases, this automatic normalization is useful because we
always have to perform PCA on normalized data. An object of this type should be
parameterized with the input data sample type. After we've instantiated an object of this
type, we use the train() method to fit the model to our data. The train() method takes
std::vector as samples and the eps value as parameters. The eps value controls how
many dimensions should be preserved after the PCA has been transformed. This can be
seen in the following code:

 void PCAReduction(const std::vector<Matrix> &data, double target_dim) {
 Dlib::vector_normalizer_pca<Matrix> pca;
 pca.train(data, target_dim / data[0].nr());

 std::vector<Matrix> new_data;
 new_data.reserve(data.size());
 for (size_t i = 0; i < data.size(); ++i) {
 new_data.emplace_back(pca(data[i]));
 }

 for (size_t r = 0; r < new_data.size(); ++r) {
 Matrix vec = new_data[r];
 double x = vec(0, 0);
 double y = vec(1, 0);
 }
 }

Dimensionality Reduction Chapter 6

[188]

After the algorithm has been trained, we use the object to transform individual samples.
Take a look at the first loop in the code and notice how the pca([data[i]]) call performs
this transformation.

The following graph shows the result of the PCA transformation:

Data compression with PCA
We can use dimensionality reduction algorithms for a slightly different task – data
compression with information loss. This can be easily demonstrated when applying the
PCA algorithm to images. Let's implement PCA from scratch with the Dlib library using
SVD decomposition. We can't use an existing implementation because it performs
normalization in a way we can't fully control.

First, we need to load an image and transform it into matrix form:

 void PCACompression(const std::string& image_file, long target_dim) {
 array2d<Dlib::rgb_pixel> img;
 load_image(img, image_file);

 array2d<unsigned char> img_gray;
 assign_image(img_gray, img);
 save_png(img_gray, "original.png");

 array2d<DataType> tmp;
 assign_image(tmp, img_gray);

Dimensionality Reduction Chapter 6

[189]

 Matrix img_mat = Dlib::mat(tmp);
 img_mat /= 255.; // scale

 std::cout << "Original data size " << img_mat.size() << std::endl;

After we've loaded the RGB image, we convert it into grayscale and transform its values
into floating points. The next step is to transform the image matrix into samples that we can
use for PCA training. This can be done by splitting the image into rectangular patches that
are 8 x 8 in size with the Dlib::subm() function and then flattening them with the
Dlib::reshape_to_column_vector() function:

 std::vector<Matrix> data;
 int patch_size = 8;

 for (long r = 0; r < img_mat.nr(); r += patch_size) {
 for (long c = 0; c < img_mat.nc(); c += patch_size) {
 auto sm = Dlib::subm(img_mat, r, c, patch_size, patch_size);
 data.emplace_back(Dlib::reshape_to_column_vector(sm));
 }
 }

When we have our samples, we can normalize them by subtracting the mean and dividing
them by their standard deviation. We can make these operations vectorized by converting
our vector of samples into the matrix type. We do this with the Dlib::mat() function:

 // normalize data
 auto data_mat = mat(data);
 Matrix m = mean(data_mat);
 Matrix sd = reciprocal(sqrt(variance(data_mat)));

 matrix<decltype(data_mat)::type, 0, 1,
decltype(data_mat)::mem_manager_type>
 x(data_mat);
 for (long r = 0; r < x.size(); ++r)
 x(r) = pointwise_multiply(x(r) - m, sd);

After we've prepared the data samples, we calculate the covariance matrix with the
Dlib::covariance() function and perform SVD with the Dlib::svd() function. The
SVD results are the eigenvalues matrix and the eigenvectors matrix. We sorted the
eigenvectors according to the eigenvalues and left only a small number (in our case, 10 of
them) of eigenvectors correspondent to the biggest eigenvalues. The number of
eigenvectors we left is the number of dimensions in the new feature space:

 Matrix temp, eigen, pca;
 // Compute the svd of the covariance matrix
 Dlib::svd(covariance(x), temp, eigen, pca);

Dimensionality Reduction Chapter 6

[190]

 Matrix eigenvalues = diag(eigen);

 rsort_columns(pca, eigenvalues);

 // leave only required number of principal components
 pca = trans(colm(pca, range(0, target_dim)));

Our PCA transformation matrix is called pca. We used it to reduce the dimensions of each
of our samples with simple matrix multiplication. Look at the following cycle and notice
the pca * data[i] operation:

 // dimensionality reduction
 std::vector<Matrix> new_data;
 size_t new_size = 0;
 new_data.reserve(data.size());
 for (size_t i = 0; i < data.size(); ++i) {
 new_data.emplace_back(pca * data[i]);
 new_size += static_cast<size_t>(new_data.back().size());
 }

 std::cout << "New data size " << new_size +
 static_cast<size_t>(pca.size())
 << std::endl;

Our data has been compressed and we can see its new size in the console output. Now, we
can restore the original dimension of the data to be able to see the image. To do this, we
need to use the transposed PCA matrix to multiply the reduced samples. Also, we need to
denormalize the restored sample to get actual pixel values. This can be done by multiplying
the standard deviation and adding the mean we got from the previous steps:

 auto pca_matrix_t = Dlib::trans(pca);
 Matrix isd = Dlib::reciprocal(sd);
 for (size_t i = 0; i < new_data.size(); ++i) {
 Matrix sample = pca_matrix_t * new_data[i];
 new_data[i] = Dlib::pointwise_multiply(sample, isd) + m;
 }

After we've restored the pixel values, we reshape them and place them in their original
location in the image:

 size_t i = 0;
 for (long r = 0; r < img_mat.nr(); r += patch_size) {
 for (long c = 0; c < img_mat.nc(); c += patch_size) {
 auto sm = Dlib::reshape(new_data[i], patch_size, patch_size);
 Dlib::set_subm(img_mat, r, c, patch_size, patch_size) = sm;
 ++i;
 }

Dimensionality Reduction Chapter 6

[191]

 }

 img_mat *= 255.0;
 assign_image(img_gray, img_mat);
 equalize_histogram(img_gray);
 save_png(img_gray, "compressed.png");
 }

Let's look at the result of compressing a standard test image that is widely used in image
processing. The following is the Lena 512 x 512 image:

Its original grayscaled size is 262,144 bytes. After we perform PCA compression with only
10 principal components, its size becomes 45,760 bytes. We can see the result in the
following image:

Dimensionality Reduction Chapter 6

[192]

Here, we can see that most of the essential visual information was preserved, despite the
high compression rate.

LDA
The Dlib library also has an implementation of the linear discriminant analysis algorithm,
which can be used for dimensionality reduction. It's a supervised algorithm, so it needs
labeled data. This algorithm is implemented with the Dlib::compute_lda_transform()
function, which takes four parameters. The first one is the input/output parameter – as
input, it is used to pass input training data (in matrix form) and as output, it receives the
LDA transformation matrix. The second parameter is the output for the mean values. The
third parameter is the labels for the input data, while the fourth one is the desired number
of target dimensions. The following code shows an example of how to use LDA for
dimension reduction with the Dlib library:

 void LDAReduction(const Matrix &data,
 const std::vector<unsigned long> &labels,
 unsigned long target_dim) {
 Dlib::matrix<DataType, 0, 1> mean;
 Matrix transform = data;
 Dlib::compute_lda_transform(transform, mean, labels, target_dim);

 for (long r = 0; r < data.nr(); ++r) {
 Matrix row = transform * Dlib::trans(Dlib::rowm(data, r)) - mean;
 double x = row(0, 0);
 double y = row(1, 0);
 }
 }

To perform an actual LDA transform after the algorithm has been trained, we multiply our
samples with the LDA matrix. In our case, we also transposed them. The following code
shows the essential part of this example:

 transform * Dlib::trans(Dlib::rowm(data, r))

Dimensionality Reduction Chapter 6

[193]

The following graph shows the result of using LDA reduction on two components:

Sammon mapping
In the Dlib library, Sammon mapping is implemented with the
Dlib::sammon_projection type. We need to create an instance of this type and then use
it as a functional object. Functional object call arguments are the data that we need to
transform and the number of dimensions of the new feature space. The input data should
be in the form of the std::vector of the single samples of the Dlib::matrix type. All
samples should have the same number of dimensions. The result of using this functional
object is a new vector of samples with a reduced number of dimensions:

 void SammonReduction(const std::vector<Matrix> &data, long target_dim) {
 Dlib::sammon_projection sp;
 auto new_data = sp(data, target_dim);

 for (size_t r = 0; r < new_data.size(); ++r) {
 Matrix vec = new_data[r];
 double x = vec(0, 0);
 double y = vec(1, 0);
 }
 }

Dimensionality Reduction Chapter 6

[194]

The following graph shows the result of using this dimensionality reduction algorithm:

Using the Shogun library
The Shogun library contains numerous dimensionality reduction algorithms, both linear
and non-linear ones. It uses the Tapkee library (http://tapkee.lisitsyn.me/) for backend
implementation.

PCA
In the Shogun library, the PCA algorithm is implemented in the CPCA class. It has one
primary configuration option – the number of target dimensions, which can be modified
with the set_target_dim() method. After we make this configuration, we need to
execute the fit() method for training purposes and then use the
apply_to_feature_vector() method to transform an individual sample:

 void PCAReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {
 auto pca = some<CPCA>();
 pca->set_target_dim(target_dim);
 pca->fit(features);

http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/
http://tapkee.lisitsyn.me/

Dimensionality Reduction Chapter 6

[195]

 auto feature_matrix = features->get_feature_matrix();
 for (index_t i = 0; i < features->get_num_vectors(); ++i) {
 auto vector = feature_matrix.get_column(i);
 auto new_vector = pca->apply_to_feature_vector(vector);
 }
 }

The following graph shows the result of applying Shogun PCA implementation to our data:

Kernel PCA
The non-linear version of PCA in the Shogun library is implemented in the CKernelPCA
class. It works the same as if we were to use the linear version of the CPCA class. The main
difference is that it's configured with an additional method, set_kernel(), which should
be used to pass the pointer to the specific kernel object. In the following example, we're
initializing the instance of the CGaussianKernel class for a kernel object:

 void KernelPCAReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {
 auto gauss_kernel = some<CGaussianKernel>(features, features, 0.5);
 auto pca = some<CKernelPCA>();
 pca->set_kernel(gauss_kernel.get());
 pca->set_target_dim(target_dim);
 pca->fit(features);

Dimensionality Reduction Chapter 6

[196]

 auto feature_matrix = features->get_feature_matrix();
 for (index_t i = 0; i < features->get_num_vectors(); ++i) {
 auto vector = feature_matrix.get_column(i);
 auto new_vector = pca->apply_to_feature_vector(vector);
 }
 }

The following graph shows the result of applying Shogun kernel PCA implementation to
our data:

We can see that this type of kernel makes some parts of the data separated, but that other
ones were reduced too much.

MDS
A multidimensional scaling algorithm is implemented in the Shogun library in the
MultidimensionalScaling class. Objects of this class should be configured, along with
the number of desired features, with the set_target_dim() method. Then, the fit()
method should be used for training. Unlike the previous types, this class provides
the transform() method, which transforms the whole dataset into a new number of
dimensions. It returns a pointer to the CDenseFeatures type object:

 void MDSReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {

Dimensionality Reduction Chapter 6

[197]

 auto IsoMap = some<CMultidimensionalScaling>();
 IsoMap->set_target_dim(target_dim);
 IsoMap->fit(features);

 auto new_features =
 static_cast<CDenseFeatures<DataType> *>(IsoMap->transform
 (features));

 auto feature_matrix = new_features->get_feature_matrix();
 for (index_t i = 0; i < new_features->get_num_vectors(); ++i) {
 auto new_vector = feature_matrix.get_column(i);
 }
 }

The following graph shows the result of applying the Shogun MDS algorithm to our data:

IsoMap
In the Shogun library, the IsoMap dimensionality reduction algorithm is implemented in
the CIsoMap class. Objects of this class should be configured with the target number of
dimensions and the number of neighbors for graph construction. The set_target_dim()
and set_k() methods should be used for this. The fit() and transform() methods
should be used for the training and data dimensionality reduction, respectively:

void IsoMapReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {
 auto IsoMap = some<CIsoMap>();

Dimensionality Reduction Chapter 6

[198]

 IsoMap->set_target_dim(target_dim);
 IsoMap->set_k(100);
 IsoMap->fit(features);

 auto new_features =
 static_cast<CDenseFeatures<DataType> *>(IsoMap->transform
 (features));

 auto feature_matrix = new_features->get_feature_matrix();
 for (index_t i = 0; i < new_features->get_num_vectors(); ++i) {
 auto new_vector = feature_matrix.get_column(i);
 }
 }

The following graph shows the result of applying the Shogun IsoMap implementation to
our data:

ICA
In the Shogun library, the ICA algorithm is implemented in the CFast ICA class. There is
no particular configuration for the object of this class. The fit() and transform()
methods should be used for training and data dimensionality reduction, respectively. After
we've transformed the data, we can use some components as new features.

Dimensionality Reduction Chapter 6

[199]

We can also use a reduced number of features to make low-dimensional data:

 void ICAReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {
 auto ica = some<CFast ICA>();
 ica->fit(features);

 auto new_features =
 static_cast<CDenseFeatures<DataType> *>(ica->transform(features));
 auto casted =
 CDenseFeatures<float64_t>::obtain_from_generic(new_features);

 Clusters clusters;
 auto unmixed_signal = casted->get_feature_matrix();
 for (index_t i = 0; i < new_features->get_num_vectors(); ++i) {
 auto new_vector = unmixed_signal.get_column(i);
 // choose 1 and 2 as our main components
 new_vector[1];
 new_vector[2];
 }
 }

The following graph shows the result of applying the Shogun ICA implementation to our
data. In this example, we've only used two components for the visualization:

Dimensionality Reduction Chapter 6

[200]

Factor analysis
In the Shogun library, the factor analysis algorithm is implemented in the
CFactorAnalysis class. Objects of this class should be configured with the target number
of dimensions. The set_target_dim() method should be used to modify the value of the
target dimensions, while the fit() and transform() methods should be used for training
and data dimensionality reduction, respectively:

 void FAReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {
 auto fa = some<CFactorAnalysis>();
 fa->set_target_dim(target_dim);
 fa->fit(features);

 auto new_features =
 static_cast<CDenseFeatures<DataType> *>(fa->transform(features));

 auto feature_matrix = new_features->get_feature_matrix();
 for (index_t i = 0; i < new_features->get_num_vectors(); ++i) {
 auto new_vector = feature_matrix.get_column(i);
 }
 }

The following graph shows the result of applying Shogun factor analysis implementation to
our data:

Dimensionality Reduction Chapter 6

[201]

t-SNE
In the Shogun library, the t-SNE algorithm is implemented in
the CTDistributedStochasticNeighborEmbedding class. Objects of this class should be
configured with the target number of dimensions and the set_target_dim() method.
The fit() and transform() methods should be used for training and data
dimensionality reduction, respectively:

 void TSNEReduction(Some<CDenseFeatures<DataType>> features,
 const int target_dim) {
 auto tsne = some<CTDistributedStochasticNeighborEmbedding>();
 tsne->set_target_dim(target_dim);
 tsne->fit(features);

 auto new_features =
 static_cast<CDenseFeatures<DataType> *>(tsne->transform(features));

 auto feature_matrix = new_features->get_feature_matrix();
 for (index_t i = 0; i < new_features->get_num_vectors(); ++i) {
 auto new_vector = feature_matrix.get_column(i);
 }
 }

The following graph shows the result of applying the Shogun t-SNE implementation to our
data:

Dimensionality Reduction Chapter 6

[202]

Using the Shark-ML library
The Shark-ML library contains implementations of the PCA and LDA algorithms, both of
which can be used for data dimensionality reduction.

PCA
The PCA algorithms in the Shark-ML library are implemented in the PCA class. Objects of
this class should be configured with the number of target dimensions. We can use the
encoder() method for this. This method takes two parameters: the first one is the
reference to the object of the LinearModel class, while the second one is the number of
target dimensions. After the object of the LinearModel class has been configured, it can be
used for data transformation regarding the functional object. Its called result is a new object
of the Data<RealVector> class:

 void PCAReduction(const UnlabeledData<RealVector> &data,
 const UnlabeledData<RealVector>& lables,
 size_t target_dim) {
 PCA pca(data);
 LinearModel<> encoder;
 pca.encoder(encoder, target_dim);
 auto new_data = encoder(data);

 for (size_t i = 0; i < new_data.numberOfElements(); ++i) {
 auto x = new_data.element(i)[0];
 auto y = new_data.element(i)[1];
 }
 }

Dimensionality Reduction Chapter 6

[203]

The following graph shows the result of applying the Shark-ML PCA implementation to
our data:

LDA
The LDA algorithms in the Shark-ML library are implemented in the LDA class. First, we
have to train the algorithm with the train() method, which takes two parameters: the first
one is a reference to the object of the LinearClassifier class, while the second is the
dataset reference. Notice that the LDA algorithm uses objects of LinearClassifier
because, in the Shark-ML library, LDA is used mostly for classification. Also, because this is
a supervised algorithm, we should provide labels for the data. We can do this by
initializing the LabeledData<RealVector, unsigned int> class object. In the following
example, we can see how to combine UnlabeledData<RealVector> datasets with the
labeled one. Note that labels should start from 0.

Dimensionality Reduction Chapter 6

[204]

After the object of the LinearClassifier class has been trained, we can use it for data
classification as the functional object. Its call result is a new labeled dataset. For
dimensionality reduction, we have to use the decision function for data transformation.
This function can be retrieved using the decisionFunction() method of the
LinearClassifier class. The decision function object can be used to transform the input
data into a new projection that can be obtained with the LDA. After we have the new labels
and projected data, we can use them to obtain dimensionality reduced data. In the
following example, we only used one label, which corresponds to the one dimension of the
projection so that we can visualize the result. This means we're performing dimensionality
reduction for the only feature (component):

 void LDAReduction(const UnlabeledData<RealVector> &data,
 const UnlabeledData<RealVector> &labels,
 size_t target_dim) {
 LinearClassifier<> encoder;
 LDA lda;

 LabeledData<RealVector, unsigned int> dataset(
 labels.numberOfElements(), InputLabelPair<RealVector, unsigned int>(
 RealVector(data.element(0).size()), 0));

 for (size_t i = 0; i < labels.numberOfElements(); ++i) {
 // labels should start from 0
 dataset.element(i).label =
 static_cast<unsigned int>(labels.element(i)[0]) - 1;
 dataset.element(i).input = data.element(i);
 }
 lda.train(encoder, dataset);

 // project data
 auto new_labels = encoder(data);
 auto dc = encoder.decisionFunction();
 auto new_data = dc(data);

 for (size_t i = 0; i < new_data.numberOfElements(); ++i) {
 auto l = new_labels.element(i);
 auto x = new_data.element(i)[l];
 auto y = new_data.element(i)[l];
 }
 }

Dimensionality Reduction Chapter 6

[205]

The following graph shows the result of applying Shark-ML LDA dimensionality reduction
to our data on the only feature:

Summary
In this chapter, we learned that dimensionality reduction is the process of transferring data
that has a higher dimension into a new representation of data with a lower dimension. It is
used to reduce the number of correlated features in a dataset and extract the most
informative features. Such a transformation can help increase the performance of other
algorithms, reduce computational complexity, and make human-readable visualizations.

We learned that there are two different approaches to solve this task. One is feature
selection, which doesn't create new features, while the second one is dimensionality
reduction algorithms, which make new feature sets. We also learned that dimensionality
reduction algorithms are linear and non-linear and that we should select either type,
depending on our data. We saw that there are a lot of different algorithms with different
properties and computational complexity and that it makes sense to try different ones to
see which are the best solution for particular tasks. Note that different libraries have
different implementations for identical algorithms, so their results can differ, even for the
same data.

Dimensionality Reduction Chapter 6

[206]

The area of dimensionality reduction algorithms is a field that's in continual development.
There is, for example, a new algorithm called Uniform Manifold Approximation and
Projection (UMAP) that's based on Riemannian geometry and algebraic topology. It
competes with the t-SNE algorithm in terms of visualization quality but also preserves
more of the original data's global structure after the transformation is complete. It is also
much more computationally effective, which makes it suitable for large-scale datasets.
However, at the moment, there is no C++ implementation of it.

In the next chapter, we will discuss classification tasks and how to solve them. Usually,
when we have to solve a classification task, we have to divide a group of objects into
several subgroups. Objects in such subgroups share some common properties that are
distinct from the properties in other subgroups.

Further reading
A survey of dimensionality reduction techniques: https://arxiv.org/pdf/1403.
2877.pdf

A short tutorial for dimensionality reduction: https://www.math.uwaterloo.ca/
~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf

Guide to 12 dimensionality reduction techniques (with Python code): https://
www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-
techniques-python/

A geometric and intuitive explanation of the covariance matrix and its
relationship with linear transformation, an essential building block for
understanding and using PCA and SVD: https://datascienceplus.com/
understanding-the-covariance-matrix

The kernel trick: https://dscm.quora.com/The-Kernel-Trick

https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://arxiv.org/pdf/1403.2877.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/readings/tutorial_stat890.pdf
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://datascienceplus.com/understanding-the-covariance-matrix
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick
https://dscm.quora.com/The-Kernel-Trick

7
Classification

In machine learning, the task of classification is that of dividing a set of observations
(objects) into groups called classes, based on an analysis of their formal description. For
classification, each observation (object) is mapped to a certain group or nominal category
based on a certain qualitative property. Classification is a supervised task because it
requires known classes for training samples. Labeling of a training set is usually done
manually, with the involvement of specialists in the given field of study. It's also notable
that if classes are not initially defined, then there will be a problem with clustering.
Furthermore, in the classification task, there may be more than two classes (multi-class),
and each of the objects may belong to more than one class (intersecting).

In this chapter, we will discuss various approaches to solving a classification task with
machine learning. We are going to look at some of the most well-known and widespread
algorithms that are logistic regression, Support Vector Machine (SVM), and k-Nearest
Neighbors (kNNs). Logistic regression is one of the most straightforward algorithms based
on linear regression and a special loss function. SVM is based on a concept of support
vectors that helps to build a decision boundary to separate data. This approach can be
effectively used with high-dimensional data. kNN has a simple implementation algorithm
that uses the idea of data compactness. Also, we will show how the multi-class
classification problem can be solved with the algorithms mentioned previously. We will
implement program examples to see how to use these algorithms to solve the classification
task with different C++ libraries.

The following topics are covered in this chapter:

An overview of classification methods
Exploring various classification methods
Examples of using C++ libraries for dealing with the classification task

Classification Chapter 7

[208]

Technical requirements
The required technologies and installations for this chapter include the following:

The Shogun toolbox library
The Shark-ML library
The Dlib library
The plotcpp library
A modern C++ compiler with C++17 support
CMake build system version >= 3.8

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07

An overview of classification methods
The classification task is one of the basic tasks of applied statistics and machine learning, as
well as artificial intelligence (AI) as a whole. This is because classification is one of the
most understandable and easy-to-interpret data analysis technologies, and classification
rules can be formulated in a natural language. In machine learning, a classification task is
solved using supervised algorithms because the classes are defined in advance, and the
objects in the training set have class labels. Analytical models that solve a classification task
are called classifiers.

Classification is the process of moving an object to a predetermined class based on its
formalized features. Each object in this problem is usually represented as a vector in N-
dimensional space. Each dimension in that space is a description of one of the features of
the object.

We can formulate the classification task with mathematical notation. Let X denote the set of
descriptions of objects, and Y be a finite set of names or class labels. There is an unknown
objective function—namely, the mapping , whose values are known only on the
objects of the final training sample . So, we have to construct
an algorithm, capable of classifying an arbitrary object. In mathematical
statistics, classification problems are also called discriminant analysis problems.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter07

Classification Chapter 7

[209]

The classification task is applicable to many areas, including the following:

Trade: The classification of customers and products allows a business to optimize
marketing strategies, stimulate sales, and reduce costs.
Telecommunications: The classification of subscribers allows a business to
appraise customer loyalty, and therefore develop loyalty programs.
Medicine and health care: Assisting the diagnosis of disease by classifying the
population into risk groups.
Banking: The classification of customers is used for credit-scoring procedures.

Classification can be solved by using the following methods:

Logistic regression
The kNN method
SVM
Discriminant analysis
Decision trees
Neural networks

We have looked into discriminant analysis in Chapter 6, Dimensionality Reduction, as an
algorithm for dimensionality reduction, but most libraries provide an application
programming interface (API) for working with the discriminant analysis algorithm as a
classifier, too. We will discuss decision trees in Chapter 9, Ensemble Learning, focusing
on algorithm ensembles. We will also discuss neural networks in the chapter that follows
this: Chapter 10, Neural Networks for Image Classification.

Now we've discussed what the classification task is, let's look at various classification
methods.

Exploring various classification methods
In this chapter, we will discuss some of the classification methods such as logistic
regression, kernel ridge regression (KRR), the kNN method, and SVM approaches.

Classification Chapter 7

[210]

Logistic regression
Logistic regression determines the degree of dependence between the categorical
dependent and one or more independent variables by using the logistic function. It aims to
find the values of the coefficients for the input variables, as with linear regression. The
difference, in the case of logistic regression, is that the output value is converted by using a
non-linear (logistic) function. The logistic function essentially looks like a big letter S and
converts any value to a number in a range from 0 to 1. This property is useful because we
can apply the rule to the output of the logistic function to bind 0 and 1 to a class prediction.
The following screenshot shows a logistic function graph:

For example, if the result of the function is less than 0.5, then the output is 0. Prediction is
not just a simple answer (+1 or -1) either, and we can interpret it as a probability of being
classified as +1.

In many tasks, this interpretation is an essential business requirement. For example, in the
task of credit scoring, where logistic regression is traditionally used, the probability of a
loan being defaulted on is a common prediction. As with the case of linear regression,
logistic regression performs the task better if outliers and correlating variables are removed.
The logistic regression model can be quickly trained and is well suited for binary
classification problems.

Classification Chapter 7

[211]

The basic idea of a linear classifier is that the feature space can be divided by a hyperplane
into two half-spaces, in each of which one of the two values of the target class is predicted.
If we can divide a feature space without errors, then the training set is called linearly
separable. Logistic regression is a unique type of a linear classifier, but it is able to predict
the probability of , attributing the example of to the class +, as illustrated here:

Consider the task of binary classification, with labels of the target class denoted by +1
(positive examples) and -1 (negative examples). We want to predict the probability of

; so, for now, we can build a linear forecast using the following optimization
technique: . So, how do we convert the resulting value into a probability
whose limits are [0, 1]? This approach requires a specific function. In the logistic regression

model, the specific function is used for this.

Let's denote P(X) by the probability of the occurring event X. The probability odds ratio

OR(X) is determined from . This is the ratio of the probabilities of whether the
event will occur or not. We can see that the probability and the odds ratio both contain the
same information. However, while P(X) is in the range of 0 to 1, OR(X) is in the range of 0
to . If you calculate the logarithm of OR(X) (known as the logarithm of the odds, or the
logarithm of the probability ratio), it is easy to see that the following applies:

.

Using the logistic function to predict the probability of , it can be obtained from the
probability ratio (for the time being, let's assume we have the weights too) as follows:

So, the logistic regression predicts the probability of classifying a sample to the + class as a
sigmoid transformation of a linear combination of the model weights vector, as well as the
sample's features vector, as follows:

Classification Chapter 7

[212]

From the maximum likelihood principle, we can obtain an optimization problem that the
logistic regression solves—namely, the minimization of the logistic loss function. For the -
class, the probability is determined by a similar formula, as illustrated here:

The expressions for both classes can be combined into one, as illustrated here:

Here, the expression is called the margin of classification of the object.
The classification margin can be understood as a model's confidence in the object's
classification. An interpretation of this margin is as follows:

If the margin vector's absolute value is large and is positive, the class label is set
correctly, and the object is far from the separating hyperplane. Such an object is
therefore classified confidently.
If the margin is large (by modulo) but is negative, then the class label is set
incorrectly. The object is far from the separating hyperplane. Such an object is
most likely an anomaly.
If the margin is small (by modulo), then the object is close to the separating
hyperplane. In this case, the margin sign determines whether the object is
correctly classified.

In the discrete case, the likelihood function can be interpreted as the
probability that the sample X1 , . . . , Xn is equal to x1 , . . . , xn in the given set of experiments.
Furthermore, this probability depends on θ, as illustrated here:

The maximum likelihood estimate for the unknown parameter is called the value of ,
for which the function reaches its maximum (as a function of θ, with fixed

), as illustrated here:

Classification Chapter 7

[213]

Now, we can write out the likelihood of the sample—namely, the probability of observing
the given vector in the sample . We make one assumption—objects arise independently
from a single distribution, as illustrated here:

Let's take the logarithm of this expression since the sum is much easier to optimize than the
product, as follows:

In this case, the principle of maximizing the likelihood leads to a minimization of the
expression, as illustrated here:

This formula is a logistic loss function, summed over all objects of the training sample.
Usually, it is a good idea to add some regularization to a model to deal with overfitting. L2
regularization of logistic regression is arranged in much the same way as linear regression
(ridge regression). However, it is common to use the controlled variable decay parameter
C that is used in SVM models, where it denotes soft margin parameter denotation. So, for

logistic regression, C is equal to the inverse regularization coefficient . The
relationship between C and would be the following: lowering C would strengthen the
regularization effect. Therefore, instead of the functional , the following
function should be minimized:

Classification Chapter 7

[214]

For this function minimization, we can apply different methods—for example, the method
of least squares, or the gradient descent (GD) method. The vital issue with logistic
regression is that it is generally a linear classifier, in order to deal with non-linear decision
boundaries, which typically use polynomial features with original features as a basis for
them. This approach was discussed in the earlier chapters when we discussed polynomial
regression.

KRR
KRR combines linear ridge regression (linear regression and L2 norm regularization) with
the kernel trick and can be used for classification problems. It learns a linear function in the
higher-dimensional space produced by the chosen kernel and training data. For non-linear
kernels, it learns a non-linear function in the original space.

The model learned by KRR is identical to the SVM model, but these approaches have the
following differences:

The KRR method uses squared error loss, while the SVM model uses insensitive
loss or hinge loss for classification.
In contrast to the SVM method, the KRR training can be completed in the closed-
form so that it can be trained faster for medium-sized datasets.
The learned KRR model is non-sparse and can be slower than the SVM model
when it comes to prediction times.

Despite these differences, both approaches usually use L2 regularization.

SVM
The SVM method is a set of algorithms used for classification and regression analysis tasks.
Considering that in an N-dimensional space, each object belongs to one of two classes, SVM
generates an (N-1)-dimensional hyperplane to divide these points into two groups. It's
similar to an on-paper depiction of points of two different types that can be linearly
divided. Furthermore, the SVM selects the hyperplane, which is characterized by the
maximum distance from the nearest group elements.

The input data can be separated using various hyperplanes. The best hyperplane is a
hyperplane with the maximum resulting separation and the maximum resulting difference
between the two classes.

Classification Chapter 7

[215]

Imagine the data points on the plane. In the following case, the separator is just a straight
line:

Let's draw distinct straight lines that divide the points into two sets. Then, choose a straight
line as far as possible from the points, maximizing the distance from it to the nearest point
on each side. If such a line exists, then it is called the maximum margin hyperplane.
Intuitively, a good separation is achieved due to the hyperplane itself (which has the
longest distance to the nearest point of the training sample of any class), since, in general,
the bigger the distance, the smaller the classifier error.

Classification Chapter 7

[216]

Consider learning samples given with the set consisting of objects with
parameters, where takes the values -1 or 1, therefore defining the point's classes. Each
point is a vector of the dimension . Our task is to find the maximum margin hyperplane
that separates the observations. We can use analytic geometry to define any hyperplane as a
set of points that satisfy the condition, as illustrated here:

Here, and .

Thus, the linear separating (discriminant) function is described by the equation g(x)=0. The
distance from the point to the separating function g(x)=0 (the distance from the point to the
plane) is equal to the following:

 lies in the closure of the boundary that is . The border, which is the width of
the dividing strip, needs to be as large as possible. Considering that the closure of the
boundary satisfies the condition , then the distance from is as
follows:

Thus, the width of the dividing strip is . To exclude points from the dividing strip, we
can write out the following conditions:

Let's also introduce the index function that shows to which class belongs, as follows:

Classification Chapter 7

[217]

Thus, the task of choosing a separating function that generates a corridor of the greatest
width can be written as follows:

The J(w) function was introduced with the assumption that for all . Since
the objective function is quadratic, this problem has a unique solution.

According to the Kuhn-Tucker theorem, this condition is equivalent to the following
problem:

This is provided that and , where , are new variables.
We can rewrite in the matrix form, as follows:

The H coefficients of the matrix can be calculated as follows: $. Quadratic
programming methods can solve the task .

After finding the optimal for every , one of the two following conditions
is fulfilled:

 (i corresponds to a non-support vector.)1.

 (i corresponds to a support vector.)2.

Classification Chapter 7

[218]

Then, can be found from the relation , and the value of can be

determined, considering that for any and , as follows:

Finally, we can obtain the discriminant function, illustrated here:

Note that the summation is not carried out over all vectors, but only over the set S, which is
the set of support vectors .

Unfortunately, the described algorithm is realized only for linearly separable datasets,
which in itself occurs rather infrequently. There are two approaches for working with
linearly non-separable data.

One of them is called a soft margin, which chooses a hyperplane that divides the training
sample as purely (with minimal error) as possible, while at the same time maximizing the
distance to the nearest point on the training dataset. For this, we have to introduce
additional variables , which characterize the magnitude of the error on each object xi.
Furthermore, we can introduce the penalty for the total error into the goal functional, like
this:

Classification Chapter 7

[219]

Here, is a method tuning parameter that allows you to adjust the relationship between
maximizing the width of the dividing strip and minimizing the total error. The value of the
penalty for the corresponding object xi depends on the location of the object xi relative to
the dividing line. So, if xi lies on the opposite side of the discriminant function, then we can
assume the value of the penalty , if xi lies in the dividing strip, and comes from its
class. The corresponding weight is, therefore, . In the ideal case, we assume that

. The resulting problem can then be rewritten as follows:

Notice that elements that are not an ideal case are involved in the minimization process too,
as illustrated here:

Here, the constant β is the weight that takes into account the width of the strip. If β is small,
then we can allow the algorithm to locate a relatively high number of elements in a non-
ideal position (in the dividing strip). If β is vast, then we require the presence of a small
number of elements in a non-ideal position (in the dividing strip). Unfortunately, the
minimization problem is rather complicated due to the discontinuity. Instead, we can
use the minimization of the following:

This occurs under restrictions , as illustrated here:

Classification Chapter 7

[220]

Another idea of the SVM method in the case of the impossibility of a linear separation of
classes is the transition to a space of higher dimension, in which such a separation is
possible. While the original problem can be formulated in a finite-dimensional space, it
often happens that the samples for discrimination are not linearly separable in this space.
Therefore, it is suggested to map the original finite-dimensional space into a larger
dimension space, which makes the separation much easier. To keep the computational load
reasonable, the mappings used in support vector algorithms provide ease of calculating
points in terms of variables in the original space, specifically in terms of the kernel function.

First, the function of the mapping is selected to map the data of into a space of a
higher dimension. Then, a non-linear discriminant function can be written in the form

. The idea of the method is to find the kernel function
and maximize the objective function, as illustrated here:

Here, to minimize computations, the direct mapping of data into a space of a higher
dimension is not used. Instead, an approach called the kernel trick (see Chapter 6,
Dimensionality Reduction) is used—that is, K(x, y), which is a kernel matrix.

In general, the more support vectors the method chooses, the better it generalizes. Any
training example that does not constitute a support vector is correctly classified if it appears
in the test set because the border between positive and negative examples is still in the
same place. Therefore, the expected error rate of the support vector method is, as a rule,
equal to the proportion of examples that are support vectors. As the number of
measurements grows, this proportion also grows, so the method is not immune from the
curse of dimensionality, but it is more resistant to it than most algorithms.
It is also worth noting that the support vector method is sensitive to noise and data
standardization.

Also, the method of SVMs is not only limited to the classification task but can also be
adapted for solving regression tasks too. So, you can usually use the same SVM software
implementation for solving classification and regression tasks.

Classification Chapter 7

[221]

kNN method
The kNN is a popular classification method that is sometimes used in regression problems.
It is one of the most natural approaches to classification. The essence of the method is to
classify the current item by the most prevailing class of its neighbors. Formally, the basis of
the method is the hypothesis of compactness: if the metric of the distance between the
examples is clarified successfully, then similar examples are more likely to be in the same
class. For example, if you don't know what type of product to specify in the ad for a
Bluetooth headset, you can find five similar headset ads. If four of them are categorized as
Accessories and only one as Hardware, common sense will tell you that your ad should
probably be in the Accessories category.

In general, to classify an object, you must perform the following operations sequentially:

Calculate the distance from the object to other objects in the training dataset.1.
Select the k of training objects, with the minimal distance to the object that is2.
classified.
Set the classifying object class to the class most often found among the nearest3.
k neighbors.

If we take the number of nearest neighbors k = 1, then the algorithm loses the ability to
generalize (that is, to produce a correct result for data not previously encountered in the
algorithm), because the new item is assigned to the closest class. If we set too high a value,
then the algorithm may not reveal many local features.

The function for calculating the distance must meet the following rules:

 only when x = y

 in the case when points x, y, z don't lie on one straight
line

In this case, x, y, z are feature vectors of compared objects. For ordered attribute values,
Euclidean distance can be applied, as illustrated here:

In this case, n is the number of attributes.

Classification Chapter 7

[222]

For string variables that cannot be ordered, the difference function can be applied, which is
set as follows:

When finding the distance, the importance of the attributes is sometimes taken into
account. Usually, attribute relevance can be determined subjectively by an expert or
analyst, and is based on their own experience, expertise, and problem interpretation. In this
case, each ith square of the difference in the sum is multiplied by the coefficient Zi. For
example, if the attribute A is three times more important than the attribute (,

), then the distance is calculated as follows:

This technique is called stretching the axes, which reduces the classification error.

The choice of class for the object of classification can also be different, and there are two
main approaches to make this choice: unweighted voting and weighted voting.

For unweighted voting, we determine how many objects have the right to vote in the
classification task by specifying the k number. We identify such objects by their minimal
distance to the new object. The individual distance to each object is no longer critical for
voting. All have equal rights in a class definition. Each existing object votes for the class to
which it belongs. We assign a class with the most votes to a new object. However, there
may be a problem if several classes scored an equal number of votes. Weighted voting
removes this problem.

During the weighted vote, we also take into account the distance to the new object. The
smaller the distance, the more significant the contribution of the vote. The votes for the
class (formula) is as follows:

In this case, is the square of the distance from the known object to the new object
, while is the number of known objects of the class for which votes are calculated.

class is the name of the class. The new object corresponds to the class with the most votes.
In this case, the probability that several classes gain the same number of votes is much
lower. When , the new object is assigned to the class of the nearest neighbor.

Classification Chapter 7

[223]

A notable feature of the kNN approach is its laziness. Laziness means that the calculations
begin only at the moment of the classification. When using training samples with the kNN
method, we don't simply build the model, but also do sample classification simultaneously.
Note that the method of nearest neighbors is a well-studied approach (in machine learning,
econometrics, and statistics, only linear regression is more well known). For the method of
nearest neighbors, there are quite a few crucial theorems that state that on infinite samples,
kNN is the optimal classification method. The authors of the classic book The Elements of
Statistical Learning consider kNN to be a theoretically ideal algorithm, the applicability of
which is limited only by computational capabilities and the curse of dimensionality.

kNN is one of the simplest classification algorithms, so it is often ineffective in real-world
tasks. The KNN algorithm has several disadvantages. Besides a low classification accuracy
when we don't have enough samples, the kNN classifier's problem is the speed of
classification: if there are N objects in the training set and the dimension of the space is K,
then the number of operations for classifying a test sample can be estimated as .
The dataset used for the algorithm must be representative. The model cannot be separated
from the data: to classify a new example, you need to use all the examples.

The positive features include the fact that the algorithm is resistant to abnormal outliers,
since the probability of such a record falling into the number of kNN is small. If this
happens, then the impact on the vote (uniquely weighted) with is also likely to be
insignificant, and therefore, the impact on the classification result is also small. The
program implementation of the algorithm is relatively simple, and the algorithm result is
easily interpreted. Experts in applicable fields, therefore, understand the logic of the
algorithm, based on finding similar objects. The ability to modify the algorithm by using
the most appropriate combination functions and metrics allows you to adjust the algorithm
for a specific task.

Multi-class classification
Most of the existing methods of multi-class classification are either based on binary
classifiers or are reduced to them. The general idea of such an approach is to use a set of
binary classifiers trained to separate different groups of objects from each other. With such
a multi-class classification, various voting schemes for a set of binary classifiers are used.

Classification Chapter 7

[224]

In the one-against-all strategy for N classes, N classifiers are trained, each of which
separates its class from all other classes. At the recognition stage, the unknown vector X is
fed to all N classifiers. The membership of the vector X is determined by the classifier that
gave the highest estimate. This approach can meet the problem of class imbalances when
they arise. Even if the task of a multi-class classification is initially balanced (that is, it has
the same number of training samples in each class), when training a binary classifier, the
ratio of the number of samples in each binary problem increases with an increase in the
number of classes, which therefore significantly affects tasks with a notable number of
classes.

The each-against-each strategy allocates classifiers. These classifiers are trained to
distinguish all possible pairs of classes of each other. For the input vector, each classifier
gives an estimate of , reflecting membership in the classes and . The result is a class

with a maximum sum , where g is a monotonically non-decreasing
function—for example, identical or logistic.

The shooting tournament strategy also involves training classifiers that distinguish
all possible pairs of classes. Unlike the previous strategy, at the stage of classification of the
vector X, we arrange a tournament between classes. We create a tournament tree, where
each class has one opponent and only a winner can go to the next tournament stage. So, at
each step, only the one classifier determines the vector X class, then the winning class is
used to determine the next classifier with the next pair of classes. The process is carried out
until there is only one winning class left, which should be considered the result.

Some methods can produce multi-class classification immediately, without additional
configuration and combinations. The kNN algorithms or neural networks can be
considered examples of such methods.

Now we have become familiar with some of the most widespread classification algorithms,
let's look at how to use them in different C++ libraries.

Examples of using C++ libraries for dealing
with the classification task
Let's now see how to use the methods we've described for solving a classification task on
artificial datasets, which we can see in the following screenshot:

Classification Chapter 7

[225]

Classification Chapter 7

[226]

As we can see, these datasets contain two and three different classes of objects, so it makes
sense to use methods for multi-class classification because such tasks appear more often in
real life; they can be easily reduced to binary classification.

Classification is a supervised technique, so we usually have a training dataset, as well as
new data for classification. To model this situation, we will use two datasets in our
examples, one for training and one for testing. They come from the same distribution in one
large dataset. However, the test set won't be used for training, therefore we can evaluate the
accuracy metric and see how well models perform and generalize.

Using the Shogun library
In this section, we show how to use the Shogun library for solving the classification task.
This library provides the implementation of all three main types of classification
algorithms: logistic regression, kNN, and SVM.

With logistic regression
The Shogun library implements multi-class logistic regression in the
CMulticlassLogisticRegression class. This class has a single configurable parameter
named z, and it is a regularization coefficient. To select the best value for it, we use the grid
search approach with cross-validation. The following code snippets show this approach.

Assume we have the following train and test data:

Some<CDenseFeatures<DataType>> features;
Some<CMulticlassLabels> labels;
Some<CDenseFeatures<DataType>> test_features;
Some<CMulticlassLabels> test_labels;

As we decided to use a cross-validation process, let's define the required objects as follows:

// search for hyper-parameters
auto root = some<CModelSelectionParameters>();
// z - regularization parameter
CModelSelectionParameters* z = new CModelSelectionParameters("m_z");
root->append_child(z);
z->build_values(0.2, 1.0, R_LINEAR, 0.1);

Classification Chapter 7

[227]

Firstly, we created a configurable parameter tree with instances of the
CModelSelectionParameters class. As we already saw in Chapter 3, Measuring
Performance and Selecting Models, there should always be a root node and a child with exact
parameter names and value ranges. Every trainable model in the Shogun library has the
print_model_params() method, which prints all model parameters available for
automatic configuration with the CGridSearchModelSelection class, so it's useful to
check exact parameter names. The code can be seen in the following block:

index_t k = 3;
CStratifiedCrossValidationSplitting* splitting =
 new CStratifiedCrossValidationSplitting(labels, k);

auto eval_criterium = some<CMulticlassAccuracy>();

auto log_reg = some<CMulticlassLogisticRegression>();
auto cross = some<CCrossValidation>(log_reg, features, labels, splitting,
eval_criterium);

cross->set_num_runs(1);

We configured the instance of the CCrossValidation class, which took instances of a
splitting strategy and an evaluation criterium object, as well as training features and labels
for initialization. The splitting strategy is defined by the instance of the
CStratifiedCrossValidationSplitting class and evaluation metric. We used the
instance of the CMulticlassAccuracy class as an evaluation criterium, as illustrated in the
following code block:

auto model_selection = some<CGridSearchModelSelection>(cross, root);
CParameterCombination* best_params =
wrap(model_selection->select_model(false));
best_params->apply_to_machine(log_reg);
best_params->print_tree();

After we configured the cross-validation objects, we used it alongside the parameters tree
to initialize the instance of the CGridSearchModelSelection class, and then we used its
method (namely, select_model()) to search for the best model parameters.

Classification Chapter 7

[228]

This method returned the instance of the CParameterCombination class, which used
the apply_to_machine() method for the initialization of model parameters with this
object's specific values, as illustrated in the following code block:

// train
log_reg->set_labels(labels);
log_reg->train(features);

// evaluate model on test data
auto new_labels = wrap(log_reg->apply_multiclass(test_features));

// estimate accuracy
auto accuracy = eval_criterium->evaluate(new_labels, test_labels);

// process results
auto feature_matrix = test_features->get_feature_matrix();
for (index_t i = 0; i < new_labels->get_num_labels(); ++i) {
 auto label_idx_pred = new_labels->get_label(i);
 auto vector = feature_matrix.get_column(i)
 ...
}

After we found out the best parameters, we trained our model on the full training dataset
and evaluated it on the test set. The CMulticlassLogisticRegression class has a
method named apply_multiclass() that we used for a model evaluation on the test
data. This method returned an object of the CMulticlassLabels class. The get_label()
method was then used to access labels values.

The following screenshot shows the results of applying the Shogun implementation of the
logistic regression algorithm to our datasets:

Classification Chapter 7

[229]

Notice that we have classification errors in the Dataset 0, Dataset 1, and Dataset 2 datasets,
and other datasets were classified almost correctly.

Classification Chapter 7

[230]

With SVMs
The Shogun library also has an implementation of the multi-class SVM algorithm in
the CMulticlassLibSVM class. The instances of this class can be configured with a
parameter named C, which is a measure of the allowance of misclassification with a kernel
object. In the following example, we use an instance of the CGaussianKernel class for the
kernel object. This object also has parameters for configuration, but we used only one
named the combined_kernel_weight parameter because it gave the most reasonable
configuration for our model after a series of experiments. Let's look at the code in the
following block:

Some <CDenseFeatures<DataType>> features;
Some<CMulticlassLabels> labels;
Some<CDenseFeatures<DataType>> test_features;
Some<CMulticlassLabels> test_labels;

These are our train and test dataset objects' definition:

auto kernel = some<CGaussianKernel>(features, features, 5);
// one vs one classification
auto svm = some<CMulticlassLibSVM>();
svm->set_kernel(kernel);

Using these datasets, we initialized the CMulticlassLibSVM class object and configured its
kernel, as follows:

 // search for hyper-parameters
 auto root = some<CModelSelectionParameters>();
 // C - how much you want to avoid misclassifying
 CModelSelectionParameters* c = new CModelSelectionParameters("C");
 root->append_child(c);
 c->build_values(1.0, 1000.0, R_LINEAR, 100.);

 auto params_kernel = some<CModelSelectionParameters>("kernel", kernel);
 root->append_child(params_kernel);

 auto params_kernel_width =
 some<CModelSelectionParameters>("combined_kernel_weight");
 params_kernel_width->build_values(0.1, 10.0, R_LINEAR, 0.5);

 params_kernel->append_child(params_kernel_width);

Then, we configured cross-validation parameters objects to look for the best
hyperparameters combination, as follows:

 index_t k = 3;
 CStratifiedCrossValidationSplitting* splitting =

Classification Chapter 7

[231]

 new CStratifiedCrossValidationSplitting(labels, k);

 auto eval_criterium = some<CMulticlassAccuracy>();

 auto cross =
 some<CCrossValidation>(svm, features, labels, splitting,
 eval_criterium);
 cross->set_num_runs(1);

 auto model_selection = some<CGridSearchModelSelection>(cross, root);
 CParameterCombination* best_params =
 wrap(model_selection->select_model(false));
 best_params->apply_to_machine(svm);
 best_params->print_tree();

Having configured the cross-validation parameters, we initialized the CCrossValidation
class object and ran the grid-search process for model selection, as follows:

 // train SVM
 svm->set_labels(labels);
 svm->train(features);

 // evaluate model on test data
 auto new_labels = wrap(svm->apply_multiclass(test_features));

 // estimate accuracy
 auto accuracy = eval_criterium->evaluate(new_labels, test_labels);
 std::cout << "svm " << name << " accuracy = " << accuracy << std::endl;

 // process results
 auto feature_matrix = test_features->get_feature_matrix();
 for (index_t i = 0; i < new_labels->get_num_labels(); ++i) {
 auto label_idx_pred = new_labels->get_label(i);
 auto vector = feature_matrix.get_column(i);
 ...
 }

When the best hyperparameters were found and applied to the model, we repeated training
and did the evaluation.

Notice that, with the exception of the different parameters for model configuration, the
code is the same as for the previous example. We created the parameters' tree, the cross-
validation object, the same evaluation metrics object, and used the grid-search approach for
finding the best combination of the model parameters. Then, we trained the model and
used the apply_multiclass() method for evaluation. These facts show you that the
library has a unified API for different algorithms, which allows us to try different models
with minimal modifications in the code.

Classification Chapter 7

[232]

The following screenshot shows the results of applying the Shogun implementation of the
SVM algorithm to our datasets:

Classification Chapter 7

[233]

Notice that SVM made another classification error, and we have incorrect labels in Dataset
2, Dataset 3, and Dataset 4. Other datasets were classified almost correctly.

With the kNN algorithm
The Shogun library also has an implementation of the kNN algorithm, and it is placed in
the CKNN class. Before using this algorithm, we have to calculate the distance between all
features in the training dataset. This operation can be done, for example, with the instance
of the CEuclideanDistance class (or an alternative), which implements the CDistance
interface. There are many distance implementation classes in the Shogun library, such as
cosine similarity, and Manhattan and Hamming distances. After we have the object
containing the distances for our training set, we can initialize the object of the CKNN class,
which takes the distance object, training labels, and the k parameter (which is the number of
searched-for neighbors). This object uses the train() method to perform model training.
The following code shows this approach:

 void KNNClassification(Some<CDenseFeatures<DataType>> features,
 Some<CMulticlassLabels> labels,
 Some<CDenseFeatures<DataType>> test_features,
 Some<CMulticlassLabels> test_labels) {
 int32_t k = 3;
 auto distance = some<CEuclideanDistance>(features, features);
 auto knn = some<CKNN>(k, distance, labels);
 knn->train();

 // evaluate model on test data
 auto new_labels = wrap(knn->apply_multiclass(test_features));

 // estimate accuracy
 auto eval_criterium = some<CMulticlassAccuracy>();
 auto accuracy = eval_criterium->evaluate(new_labels, test_labels);

 // process results
 auto feature_matrix = test_features->get_feature_matrix();
 for (index_t i = 0; i < new_labels->get_num_labels(); ++i) {
 auto label_idx_pred = new_labels->get_label(i);
 ...
 }
 }

As we can see, the code is pretty simple. After the model is trained, we can use the already
known apply_multiclass() method for evaluation.

Classification Chapter 7

[234]

The following screenshot shows the results of applying the Shogun implementation of the
kNN algorithm to our datasets:

Classification Chapter 7

[235]

Notice that the kNN algorithm classified all datasets almost correctly.

Using the Dlib library
The Dlib library doesn't have many classification algorithms. There are two that are most
applicable: KRR and SVM. These methods are implemented as binary classifiers, but for
multi-class classification, this library provides the one_vs_one_trainer class, which
implements the voting strategy. Note that this class can use classifiers of different types so
that you can combine the KRR and the SVM for one classification task. We can also specify
which classifiers should be used for which distinct classes.

With KRR
The following code sample shows how to use Dlib's KRR algorithm implementation for the
multi-class classification:

 void KRRClassification(const Samples& samples,
 const Labels& labels,
 const Samples& test_samples,
 const Labels& test_labels) {
 using OVOtrainer = one_vs_one_trainer<any_trainer<SampleType>>;
 using KernelType = radial_basis_kernel<SampleType>;

 krr_trainer<KernelType> krr_trainer;
 krr_trainer.set_kernel(KernelType(0.1));

 OVOtrainer trainer;
 trainer.set_trainer(krr_trainer);

 one_vs_one_decision_function<OVOtrainer> df = trainer.train(samples,
 labels);

 // process results and estimate accuracy
 DataType accuracy = 0;
 for (size_t i = 0; i != test_samples.size(); i++) {
 auto vec = test_samples[i];
 auto class_idx = static_cast<size_t>(df(vec));
 if (static_cast<size_t>(test_labels[i]) == class_idx)
 ++accuracy;
 ...
 }

 accuracy /= test_samples.size();
 }

Classification Chapter 7

[236]

Firstly, we initialized the object of the krr_trainer class, and then we configured it with
the instance of a kernel object. In this example, we used the radial_basis_kernel type
for the kernel object, in order to deal with samples that can't be linearly separated. After we
obtained the binary classifier object, we initialized the instance of the
one_vs_one_trainer class and added this classifier to its stack with the set_trainer()
method. Then, we used the train() method for training our multi-class classifier. As with
most of the algorithms in the Dlib library, this one assumes that the training samples and
labels have the std::vector type, whereby each element has a matrix type. The train()
method returns a decision function—namely, the object that behaves as a functor, which
then takes a single sample and returns a classification label for it. This decision function is
an object of the one_vs_one_decision_function type. The following piece of code
demonstrates how we can use it:

 auto vec = test_samples[i];
 auto class_idx = static_cast<size_t>(df(vec));

There is no explicit implementation for the accuracy metric in the Dlib library; so, in this
example, accuracy is calculated directly as a ration of correctly classified test samples
against the total number of test samples.

The following screenshot shows the results of applying the Dlib implementation of the KRR
algorithm to our datasets:

Classification Chapter 7

[237]

Notice that the KRR algorithm performed a correct classification on all datasets.

Classification Chapter 7

[238]

With SVM
The following code sample shows how to use Dlib's SVM algorithm implementation for
multi-class classification:

 void SVMClassification(const Samples& samples,
 const Labels& labels,
 const Samples& test_samples,
 const Labels& test_labels) {
 using OVOtrainer = one_vs_one_trainer<any_trainer<SampleType>>;
 using KernelType = radial_basis_kernel<SampleType>;

 svm_nu_trainer<KernelType> svm_trainer;
 svm_trainer.set_kernel(KernelType(0.1));

 OVOtrainer trainer;
 trainer.set_trainer(svm_trainer);

 one_vs_one_decision_function<OVOtrainer> df = trainer.train(samples,
 labels);

 // process results and estimate accuracy
 DataType accuracy = 0;
 for (size_t i = 0; i != test_samples.size(); i++) {
 auto vec = test_samples[i];
 auto class_idx = static_cast<size_t>(df(vec));
 if (static_cast<size_t>(test_labels[i]) == class_idx)
 ++accuracy;
 ...
 }

 accuracy /= test_samples.size();
 }

This sample shows that the Dlib library also has a unified API for using different
algorithms, and the main difference from the previous example is the object of binary
classifier. For the SVM classification, we used an object of the svm_nu_trainer type,
which was also configured with the kernel object of the radial_basis_kernel type.

The following screenshot shows the results of applying the Dlib implementation of the KRR
algorithm to our datasets:

Classification Chapter 7

[239]

Classification Chapter 7

[240]

You can see the Dlib implementation of the SVM algorithm also did correct classification on
all datasets without additional configurations. Remember that the Shogun implementation
of the same algorithm made incorrect classification in some cases.

Using the Shark-ML library
The Shark-ML library has a more low-level approach to the multi-class classification
problem. Logistic regression and SVM classifiers are implemented as binary classifiers. The

user therefore has to explicitly train classifiers and configure the object of the
OneVersusOneClassifier class to combine them in a multi-class classifier. The kNN
algorithm is a multi-class classifier by nature.

With logistic regression
The following example shows how to implement the multi-class classification with Shark-
ML and the logistic regression algorithm. The following code snippet introduces a function
declaration for this kind of task:

void LRClassification(const ClassificationDataset& train,
 const ClassificationDataset& test,
 unsigned int num_classes) {
...
}

The following code snippet shows how to configure an object for multi-class classification:

OneVersusOneClassifier<RealVector> ovo;
unsigned int pairs = num_classes * (num_classes - 1) / 2;
std::vector<LinearClassifier<RealVector> > lr(pairs);

for (std::size_t n = 0, cls1 = 1; cls1 < num_classes; cls1++) {
 using BinaryClassifierType =
 OneVersusOneClassifier<RealVector>::binary_classifier_type;
 std::vector<BinaryClassifierType*> ovo_classifiers;
 for (std::size_t cls2 = 0; cls2 < cls1; cls2++, n++) {
 // get the binary subproblem
 ClassificationDataset binary_cls_data =
 binarySubProblem(train, cls2, cls1);

 // train the binary machine
 LogisticRegression<RealVector> trainer;
 trainer.train(lr[n], binary_cls_data);

Classification Chapter 7

[241]

 ovo_classifiers.push_back(&lr[n]);
 }
 ovo.addClass(ovo_classifiers);
}

In the previous code snippet, we used the following steps, which showed us how to
configure an object for multi-class classification:

Firstly, we defined the ovo object of the OneVersusOneClassifier class, which1.
encapsulates the single multi-class classifier.
Then, we initialized all binary classifiers for the one-versus-one strategy and2.
placed them in the lr container object of the
std::vector<LinearClassifier<RealVector>> type.
We then trained the set of binary classifiers with the trainer object of the3.
LogisticRegression type and put them into the lr container.
We then ran the training with nested cycles over all classes. Notice that the lr4.
container holds the instances of classifiers, but the ovo object needs pointers to
classifiers' instances to perform the final classification.
The ovo_classifiers object contains the pointers to binary classifiers. These
classifiers are configured in such a way that each of them classifies a single class
(cls1) as positive, and all other classes are treated as negative (cls2).
We then used the ovo_classifiers object to populate the ovo object, using the5.
addClass method.

Another important factor is how we separate the data needed for training a single binary
classifier. The Shark-ML library has a particular function for this task called
binarySubProblem, which takes the object of the ClassificationDataset type and
splits it in a way that is suitable for binary classification, even if the original dataset is a
multi-class one. The second and the third arguments of this function are the zero class
label index and the one class label index respectively.

Classification Chapter 7

[242]

After we trained all binary classifiers and configured the OneVersusOneClassifier
object, we used it for model evaluation on a test set. This object can be used as a functor to
classify the set of test examples, but they need to have the UnlabeledData type. In our
example, the test dataset has the ClassificationDataset type, so it is labeled. We used
the inputs() method to retrieve unlabeled samples from it. The result of the classification
has the Data<unsigned int> type.

The following code snippet shows how to use a trained ovo object for evaluation:

// estimate accuracy
ZeroOneLoss<unsigned int> loss;
Data<unsigned int> output = ovo(test.inputs());
double accuracy = 1. - loss.eval(test.labels(), output);

// process results
for (std::size_t i = 0; i != test.numberOfElements(); i++) {
 auto cluser_idx = output.element(i);
 auto element = test.inputs().element(i);
 ...
}

For an evaluation metric, we used the object of the ZeroOneLoss type, which returns the
value opposite to the accuracy, therefore we inverted it for our purposes.

The following screenshot shows the results of applying the Shark-ML implementation of
the logistic regression algorithm to our datasets:

Classification Chapter 7

[243]

Classification Chapter 7

[244]

You can see that the multi-class logistic regression algorithm implementation performs
better than its implementation in the Shogun library. However, it made some errors in the
Dataset 0 and Dataset 1 datasets.

With SVM
To implement the SVM multi-class classification with the Shark-ML library, we should use
the same approach as we used before for the logistic regression approach. The main
difference is the type of binary classifiers. In this case, it is the KernelClassifier class,
and the trainer for it is the CSvmTrainer class.

In the following sample, we will use two predefined parameters for the model, one being
the C parameter for the SVM algorithm, and the second being the gamma for the kernel. The
kernel object in this sample has the GaussianRbfKernel type, to deal with non-linearly
separable data.

The following code snippet shows a function declaration with dataset objects as arguments:

void SVMClassification(const ClassificationDataset& train,
 const ClassificationDataset& test,
 unsigned int num_classes) {
 ...
}

Then, we define a kernel object, as follows:

double gamma = 0.5;
GaussianRbfKernel<> kernel(gamma);

Classification Chapter 7

[245]

The following code snippet shows how to initialize and configure a one-versus-one
classifier object:

OneVersusOneClassifier<RealVector> ovo;
unsigned int pairs = num_classes * (num_classes - 1) / 2;
std::vector<KernelClassifier<RealVector> > svm(pairs);
for (std::size_t n = 0, cls1 = 1; cls1 < num_classes; cls1++) {
 using BinaryClassifierType =
 OneVersusOneClassifier<RealVector>::binary_classifier_type;
 std::vector<BinaryClassifierType*> ovo_classifiers;
 for (std::size_t cls2 = 0; cls2 < cls1; cls2++, n++) {
 // get the binary subproblem
 ClassificationDataset binary_cls_data =
 binarySubProblem(train, cls2, cls1);

 // train the binary machine
 double c = 10.0;
 CSvmTrainer<RealVector> trainer(&kernel, c, false);
 trainer.train(svm[n], binary_cls_data);
 ovo_classifiers.push_back(&svm[n]);
 }
 ovo.addClass(ovo_classifiers);
}

And after the training completion, we use the ovo object for evaluation, as follows:

// estimate accuracy
ZeroOneLoss<unsigned int> loss;
Data<unsigned int> output = ovo(test.inputs());
double accuracy = 1. - loss.eval(test.labels(), output);

// process results
for (std::size_t i = 0; i != test.numberOfElements(); i++) {
 auto cluser_idx = output.element(i);
 auto element = test.inputs().element(i);
 ...
}

Classification Chapter 7

[246]

The following screenshot shows the results of applying the Shark-ML implementation of
the SVM algorithm to our datasets:

Notice that the Shark-ML SVM algorithm implementation did the correct classification on
all datasets.

Classification Chapter 7

[247]

With the kNN algorithm
The kNN classification algorithm in the Shark-ML library is implemented in the
NearestNeighborModel class. An object of this class can be initialized with different
nearest neighbor algorithms. The two main types are the brute-force option and the space
partitioning trees option. In this sample, we will use the TreeNearestNeighbors
algorithm, because it has better performance for medium-sized datasets. The following
code block shows the use of the kNN algorithm with the Shark-ML library:

 void KNNClassification(const ClassificationDataset& train,
 const ClassificationDataset& test,
 unsigned int num_classes) {
 KDTree<RealVector> tree(train.inputs());
 TreeNearestNeighbors<RealVector, unsigned int> nn_alg(train, &tree);
 const unsigned int k = 5;
 NearestNeighborModel<RealVector, unsigned int> knn(&nn_alg, k);

 // estimate accuracy
 ZeroOneLoss<unsigned int> loss;
 Data<unsigned int> predictions = knn(test.inputs());
 double accuracy = 1. - loss.eval(test.labels(), predictions);

 // process results
 for (std::size_t i = 0; i != test.numberOfElements(); i++) {
 auto cluser_idx = predictions.element(i);
 auto element = test.inputs().element(i);
 ...
 }
 }

The first step was the creation of the object of the KDTree type, which defined the KD-Tree
space partitioning of our training samples. Then, we initialized the object of the
TreeNearestNeighbors class, which takes the instances of previously created tree
partitioning and the training dataset. We also predefined the k parameter of the kNN
algorithm and initialized the object of the NearestNeighborModel class with the
algorithm instance and the k parameter.

This model doesn't have a particular training method because the kNN algorithm uses all
the data for evaluation. The building of a KD-Tree can, therefore, be interpreted as the
training step in this case, because the tree doesn't change the evaluation data. So, after we
initialized the object that implements the kNN algorithm, we can use it as a functor to
classify the set of test samples. This API technique is the same for all classification models
in the Shark-ML library. For the accuracy evaluation metric, we also used the object of the
ZeroOneLoss type.

Classification Chapter 7

[248]

The following screenshot shows the results of applying the Shark-ML implementation of
the kNN algorithm to our datasets:

Classification Chapter 7

[249]

You can see that the Shark-ML kNN algorithm implementation also did the correct
classification on all datasets, without any significant number of errors.

Summary
In this chapter, we discussed supervised machine learning approaches to solving
classification tasks. These approaches use trained models to determine the class of an object
according to its characteristics. We considered two methods of binary classification: logistic
regression and SVMs. We looked at the approaches for the implementation of multi-class
classification with the use of binary classifiers.

We also examined the nearest neighbor method, which can deal with multi-class
classification without additional actions. We saw that working with non-linear data
requires additional improvements in the algorithms and their tuning. Implementations of
classification algorithms differ in terms of performance, as well as the amount of required
memory and the amount of time required for learning. Therefore, the classification
algorithm's choice should be guided by a specific task and business requirements.
Furthermore, their implementations in different libraries can produce different results, even
for the same algorithm. Therefore, it makes sense to have several libraries for your
software.

In the next chapter, we will discuss recommender systems. We will see how they work,
which algorithms exist for their implementation, and how to train and evaluate them. In the
simplest sense, recommender systems are used to predict which objects (goods or services)
are of interest to a user. Examples of such systems can be seen in many online stores such as
Amazon or on streaming sites such as Netflix, which recommend you new content based
on your previous consumption.

Classification Chapter 7

[250]

Further reading
Logistic Regression—Detailed Overview: https://towardsdatascience.com/
logistic-regression-detailed-overview-46c4da4303bc

Understanding Support Vector Machine (SVM) algorithm from examples
(along with code):
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vecto
r-machine-example-code/

Understanding Support Vector Machines: A Primer: https://
appliedmachinelearning.blog/2017/03/09/understanding-support-vector-
machines-a-primer/

Support Vector Machine: Kernel Trick; Mercer's Theorem: https://
towardsdatascience.com/understanding-support-vector-machine-part-2-
kernel-trick-mercers-theorem-e1e6848c6c4d

SVMs with Kernel Trick (lecture): https://ocw.mit.edu/courses/sloan-
school-of-management/15-097-prediction-machine-learning-and-
statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf

Support Vector Machines—Kernels and the Kernel Trick: https://cogsys.
uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.
pdf

A Complete Guide to K-Nearest-Neighbors with Applications in Python and
R: https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor

https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://www.analyticsvidhya.com/blog/2017/09/understaing-support-vector-machine-example-code/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://appliedmachinelearning.blog/2017/03/09/understanding-support-vector-machines-a-primer/
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec13.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

8
Recommender Systems

Recommender systems are algorithms, programs, and services whose main task is to use
data to predict which objects (goods or services) are of interest to a user. There are two
main types of recommender systems: content-based and collaborative filtering. Content-based
recommender systems are based on data collected from specific products. They
recommend objects to a user that are similar to ones the user has previously acquired or
shown interest in. Collaborative filtering recommender systems filter out objects that a
user might like based on the reaction history of other similar users of these systems. They
usually consider the user's previous reactions, too.

In this chapter, we'll look at the implementation of recommender system algorithms based
on both content and collaborative filtering. We are going to discuss different approaches for
implementing collaborative filtering algorithms, implement systems using only the linear
algebra library, and see how to use the mlpack library to solve collaborative filtering
problems. We'll use the MovieLens dataset provided by GroupLens from a research lab in
the Department of Computer Science and Engineering at the University of
Minnesota: https://grouplens.org/datasets/movielens/

The following topics will be covered in this chapter:

An overview of recommender system algorithms
Understanding collaborative filtering method details
Examples of item-based collaborative filtering with C++

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Recommender Systems Chapter 8

[252]

Technical requirements
The required technologies and installations for the chapter are as follows:

Eigen library
Armadillo library
mlpack library
Modern C++ compiler with C++17 support
CMake build system version >= 3.8

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08

An overview of recommender system
algorithms
A recommender system's task is to inform a user about an object that could be the most
interesting to them at a given time. Most often, such an object is a product or service, but it
may be information—for example, in the form of a recommended news article.

Despite the many existing algorithms, we can divide recommender systems into several
basic approaches. The most common are as follows:

Summary-based: Non-personal models based on the average product rating
Content-based: Models based on the intersection of product descriptions and
user interests
Collaborative filtering: Models based on interests of similar user groups
Matrix factorization: Methods based on the preferences matrix decomposition

The basis of any recommender system is the preferences matrix. The preferences matrix has
all users of the service laid on one of the axes, and recommendation objects on the other.
The recommendation objects are usually called items. At the intersection of rows and
columns (user, item), this matrix is filled with ratings—this is a known indicator of user
interest in this product, expressed on a given scale (for example, from 1 to 5), as illustrated
in the following table:

item1 item 2 item3
user1 1
user2 2 4

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter08

Recommender Systems Chapter 8

[253]

user3 1 1 1
user4 5
user5 3 1
user6 4

Users usually evaluate only a small number of the items in the catalog, and the task of the
recommender system is to summarize this information and predict the attitude the user
might have toward other items. In other words, you need to fill in all the blank cells in the
preceding table.

People's consumption patterns are different, and new products do not have to be
recommended all the time. You can show repeated items—for example, when a user has
bought something they'll definitely need again. According to this principle, there are the
following two groups of items:

Repeatable: For example, shampoos or razors that are always needed
Unrepeatable: For example, books or films that are rarely purchased repeatedly

If the product cannot be attributed to one of these groups, it makes sense to determine the
group type of repetitive purchases individually (someone usually buys only a specific
brand, but someone else might try everything in the catalog).

Determining what is an interesting product to a user is also subjective. Some users need
things only from their favorite category (conservative recommendations), while someone
else, on the other hand, responds more to non-standard goods (risky recommendations).
For example, a video-hosting service may recommend only new series from their favorite
TV series (conservative), but may periodically recommend new shows or new genres.
Ideally, you should choose a strategy for displaying recommendations for each client
separately, using generalized information about the client's preferences.

The essential part of datasets used to build recommendation models is user reactions to
different objects or items. These reactions are typically named as user ratings of objects. We
can obtain user ratings in the following two ways:

Explicit ratings: The user gives their own rating for the product, leaves a review,
or likes the page.
Implicit ratings: The user clearly does not express their attitude, but an indirect
conclusion can be made from their actions. For example, if they bought a
product, it means they like it; if they read the description for a long time, it
means there is serious interest.

Recommender Systems Chapter 8

[254]

Of course, explicit preferences are better. However, in practice, not all services provide an
opportunity for users to express their interests clearly, and not all users have the desire to
do so. Both types of assessments are most often used in tandem, and complement each
other well.

It is also essential to distinguish between the terms prediction (prediction of the degree of
interest) and the recommendation itself (showing the recommendation). How to show
something is a separate task from the task of what to show. How to show is a task that uses the
estimates obtained in the prediction step, and can be implemented in different ways.

In this section, we discussed the basics of recommender systems. In the following sections,
we will look at essential building blocks of recommender systems. Let's begin by looking at
the main principles of content-based filtering, user- and item-based collaborative filtering,
and collaborative filtering based on matrix factorization.

Non-personalized recommendations
For non-personalized recommendations, the potential interest of the user is determined
simply by the average rating of the product: Everyone likes it—this means you will like it too.
According to this principle, most services work when the user is not authorized on the
system.

Content-based recommendations
Personal recommendations use the maximum information available about the
user—primarily, information on their previous purchases. Content-based filtering was one
of the first approaches to this. In this approach, the product's description (content) is
compared with the interests of the user, obtained from their previous assessments. The
more the product meets these interests, the higher the potential interest of the user. The
obvious requirement here is that all products in the catalog should have a description.

Historically, the subject of content-based recommendations was products with
unstructured descriptions: films, books, or articles. Their features may be—for
example—text descriptions, reviews, or casts. However, nothing prevents the use of usual
numerical or categorical features.

Unstructured features are described in a text-typical way—vectors in the space of words
(vector-space model). Each element of a vector is a feature that potentially characterizes the
interest of the user. Similarly, an item (product) is a vector in the same space.

Recommender Systems Chapter 8

[255]

As users interact with the system (say, they buy films), the vector descriptions of the goods
they've purchased merge (sum up and normalize) into a single vector and, thus, form the
vector of a user's interests. Using this vector of interests, we can find the product, the
description of which is closest to it—that is, solve the problem of finding the nearest
neighbors.

When forming the vector space of a product presentation, instead of individual words, you
can use shingles or n-grams (successive pairs of words, triples of words, or other numbers
of words). This approach makes the model more detailed, but more data is required for
training.

In different places of the description of the product, the weight of keywords may differ (for
example, the description of the film may consist of a title, a brief description, and a detailed
description). Product descriptions from different users can be weighed differently. For
example, we can give more weight to active users who have many ratings. Similarly, you
can weigh them by item. The higher the average rating of an object, the greater its weight
(similar to PageRank). If the product description allows links to external sources, then you
can also analyze all third-party information related to the product.

The cosine distance is often used to compare product representation vectors. This distance
measures the value of proximity between two vectors.

When adding a new assessment, the vector of interests is updated incrementally (only for
those elements that have changed). During the update, it makes sense to give a bit more
weight to new estimates since the user's preferences may change. You'll notice that content-
based filtering almost wholly repeats the query-document matching mechanism used in
search engines such as Google. The only difference lies in the form of a search
query—content filtering systems use a vector that describes the interests of the user, and
search engines use keywords of the requested document. When search engines began to
add personalization, this distinction was erased even more.

User-based collaborative filtering
This class of system began to develop in the '90s. Under this approach, recommendations
are generated based on the interests of other similar users. Such recommendations are the
result of the collaboration of many users, hence the name of the method.

Recommender Systems Chapter 8

[256]

The classical implementation of the algorithm is based on the principle of k-nearest
neighbors (kNN). For every user, we look for the k most similar to them (in terms of
preferences). Then, we supplement the information about the user with known data from
their neighbors. So, for example, if it is known that your neighbors are delighted with a
movie, and you have not watched it for some reason, this is a great reason to recommend
this movie.

The similarity is, in this case, a synonym for a correlation of interests and can be considered
in many ways—Pearson's correlation, cosine distance, Jaccard distance, Hamming distance,
and other types of distances.

The classical implementation of the algorithm has one distinct disadvantage—it is poorly
applicable in practice due to the quadratic complexity of the calculations. As with any
nearest neighbor method, it requires the calculation of all pairwise distances between users
(and there may be millions of users). It is easy to calculate that the complexity of calculating
the distance matrix is , where is the number of users, and is the number of
items (goods).

This problem can be partly solved by purchasing high-performance hardware. But if you
approach it wisely, then it is better to introduce some corrections into the algorithm in the
following way:

Update distances not with every purchase but with batches (for example, once a
day).
Do not recalculate the distance matrix completely, but update it incrementally.
Choose some iterative and approximate algorithms (for example, Alternating
Least Squares (ALS)).

Fulfill the following assumptions to make the algorithm more practical:

The tastes of people do not change over time (or they do change, but they are the1.
same for everyone).
If people's tastes are the same, then they are the same in everything.2.

For example, if two clients prefer the same films, then they also like the same book. This
assumption is often the case when the recommended products are homogeneous (for
example, films only). If this is not the case, then a couple of clients may well have the same
eating habits but their political views might be the opposite; here, the algorithm is less
efficient.

Recommender Systems Chapter 8

[257]

The neighborhood of the user in the space of preferences (the user's neighbors), which we
analyze to generate new recommendations, can be chosen in different ways. We can work
with all users of the system; we can set a certain proximity threshold; we can choose several
neighbors at random, or take the k most similar neighbors (this is the most popular
approach). If we take too many neighbors, we get a higher chance of random noise—and
vice versa. If we take too little, we get more accurate recommendations, but fewer goods
can be recommended.

An interesting development in the collaborative approach is trust-based recommendations,
which take into account not only the proximity of people according to their interests, but
also their social proximity and the degree of trust between them. If, for example, we see that
on Facebook, a girl occasionally visits a page that has her friend's audio recordings, then
she trusts her musical taste. Therefore, when making recommendations to the girl, you can
add new songs from her friend's playlist.

Item-based collaborative filtering
The item-based approach is a natural alternative to the classic user-based approach
described previously, and almost repeats it, except for one thing—it applies to the
transposed preference matrix, which looks for similar products instead of users.

For each client, a user-based collaborative filtering system searches a group of customers
who are similar to this user in terms of previous purchases, and then the system averages
their preferences. These average preferences serve as recommendations for the user. In the
case of item-based collaborative filtering, the nearest neighbors are searched for on a
variety of products (items)—columns of a preference matrix, and the averaging occurs
precisely according to them.

Indeed, if some products are meaningfully similar to each other, then users' reactions to
these products will be the same. Therefore, when we see that some products have a strong
correlation between their estimates, this may indicate that these products are equivalent to
each other.

The main advantage of the item-based approach over the user-based approach is lower
computation complexity. When there are many users (almost always), the task of finding
the nearest neighbor becomes poorly computable. For example, for 1 million users, you
need to calculate and store ~500 billion distances. If the distance is encoded in 8 bytes, this
is 4 terabytes (TB) for the distance matrix alone. If we take an item-based approach, then
the computational complexity decreases from to , and the distance matrix has a
dimension no longer than 1 million per 1 million but 100 by 100 as per the number of items
(goods).

Recommender Systems Chapter 8

[258]

Estimation of the proximity of products is much more accurate than the assessment of the
proximity of users. This assumption is a direct consequence of the fact that there are usually
many more users than items, and therefore the standard error in calculating the correlation
of items is significantly less because we have more information to work from.

In the user-based version, the description of users usually has a very sparse distribution
(there are many goods, but only a few evaluations). On the one hand, this helps to optimize
the calculation—we multiply only those elements where an intersection exists. But, on the
other hand, the list of items that a system can recommend to a user is minimal due to the
limited number of user neighbors (users who have similar preferences). Also, user
preferences may change over time, but the descriptions of the goods are much more stable.

The rest of the algorithm almost wholly repeats the user-based version: it uses the same
cosine distance as the primary measure of proximity and has the same need for data
normalization. Since the correlation of items is considered on a higher number of
observations, it is not so critical to recalculate it after each new assessment, and this can be
done periodically in a batch mode.

Let's now look at another approach to generalize user interests based on matrix
factorization methods.

Factorization algorithms
It would be nice to describe the interests of the user with more extensive features—not in
the format of they love movies X, Y, and Z, but in the format of they love romantic comedies.
Besides the fact that it increases the generalizability of the model, it also solves the problem
of having a large data dimension—after all, the interests are described not by the items
vector, but by a significantly smaller preference vector.

Such approaches are also called spectral decomposition or high-frequency filtering (since
we remove the noise and leave the useful signal). There are many different types of matrix
decomposition in algebra, and one of the most commonly used is called Singular Value
Decomposition (SVD).

Initially, the SVD method was used to select pages that are similar in meaning but not in
content. More recently, it has started being used in recommendations. The method is based
on the decomposition of the original R rating matrix into a product of three matrices,

, where the sizes of the matrices are and r is the rank
of the decomposition, which is the parameter characterizing the degree of detail
decomposition.

Recommender Systems Chapter 8

[259]

Applying this decomposition to our matrix of preferences, we can get the following two
matrices of factors (abbreviated descriptions):

U: A compact description of user preferences.
S: A compact description of the characteristics of the product.

It is important that with this approach, we do not know which particular characteristics
correspond to the factors in the reduced descriptions; for us, they are encoded with some
numbers. Therefore, SVD is an uninterpreted model. It is sufficient to multiply the matrix of
factors to obtain an approximation of the matrix of preferences. By doing this, we get a
rating for all customer-product pairs.

A typical family of such algorithms is called non-negative matrix factorization (NMF). As
a rule, the calculation of such expansions is very computationally expensive. Therefore, in
practice, they often resort to their approximate iterative variants. ALS is a popular iterative
algorithm for decomposing a matrix of preferences into a product of two matrices: user
factors (U) and product factors (I). It works on the principle of minimizing the root-mean-
square error (RMSE) on the affixed ratings. Optimization takes place alternately—first by
user factors, then by product factors. Also, to avoid retraining, the regularization
coefficients are added to the RMSE.

If we supplement the matrix of preferences with a new dimension containing information
about the user or product, then we can work not with the matrix of preferences, but with
the tensor. Thus, we use more available information and possibly get a more accurate
model.

In this section, we considered different approaches to solving recommender systems tasks.
Now, we are going to discuss methods for the estimation of user preferences' similarity.

Similarity or preferences correlation
We can consider the similarity or correlation of two user preferences in different ways, but
in general, we need to compare two vectors. The following list shows some of the most
popular vector comparison measures.

Recommender Systems Chapter 8

[260]

Pearson's correlation coefficient
This measure is a classic coefficient, which is quite applicable when comparing vectors. Its
primary disadvantage is that when the intersection is estimated as low, then the correlation
can be high by accident. To combat accidental high correlation, you can multiply by a factor
of 50/min (50, rating intersection) or any other damping factor, the effect of which decreases
with an increasing number of estimates. An example is shown here:

Spearman's correlation
The main difference compared to Pearson's correlation is the rank factor—that is, it does
not work with absolute values of ratings, but with their sequence numbers. In general, the
result is very close to Pearson's correlation. An example is shown here:

Cosine distance
Cosine distance is another classic measuring factor. If you look closely, the cosine of the
angle between the standardized vectors is Pearson's correlation, the same formula. This
distance uses cosine properties: if the two vectors are co-directed (that is, the angle between
them is 0), then the cosine of the angle between them is 1. Conversely, the cosine of the
angle between perpendicular vectors is 0. An example is shown here:

We discussed methods for user preferences' similarity estimation. The next important issue
we will discuss is data preparation for use in recommender system algorithms.

Recommender Systems Chapter 8

[261]

Data scaling and standardization
All users evaluate (rate) items differently. If someone puts 5s in a row, instead of waiting
for 4s from someone else, it's better to normalize the data before calculating it—that is,
convert the data to a single scale, so that the algorithm can correctly compare the results
with each other. Naturally, the predicted estimate then needs to be converted to the original
scale by inverse transformation (and, if necessary, rounded to the nearest whole number).

There are several ways to normalize data, detailed as follows:

Centering (mean-centering): From the user's ratings, subtract their average
rating. This type of normalization is only relevant for non-binary matrices.
Standardization (z-score): In addition to centering, this divides the user's rating
by the standard deviation of the user. But in this case, after the inverse
transformation, the rating can go beyond the scale (for example, six on a five-
point scale), but such situations are quite rare and are solved simply by rounding
to the nearest acceptable estimate.
Double standardization: The first time normalized by user ratings; the second
time, by item ratings.

The details of these normalization techniques were described in Chapter 2, Data Processing.
The following section will describe a problem of recommender systems known as the cold
start problem, which appears in the early stages of system work when the system doesn't
have enough data to make predictions.

Cold start problem
A cold start is a typical situation when a sufficient amount of data has not yet been
accumulated for the correct operation of the recommender system (for example, when a
product is new or is just rarely bought). If the ratings of only three users estimate the
average rating, such an assessment is not reliable, and users understand this. In such
situations, ratings are often artificially adjusted.

The first way to do this is to show not the average value, but the smoothed average
(damped mean). With a small number of ratings, the displayed rating leans more to a
specific safe average indicator, and as soon as a sufficient number of new ratings are typed,
the averaging adjustment stops operating.

Another approach is to calculate confidence intervals for each rating. Mathematically, the
more estimates we have, the smaller the variation of the average will be and, therefore, the
more confidence we have in its accuracy.

Recommender Systems Chapter 8

[262]

We can display, for example, the lower limit of the interval (low confidence interval (CI)
bound) as a rating. At the same time, it is clear that such a system is quite conservative,
with a tendency to underestimate ratings for new items.

Since the estimates are limited to a specific scale (for example, from 0 to 1), the usual
methods for calculating the confidence interval are poorly applicable here, due to the
distribution tails that go to infinity, and the symmetry of the interval itself. There is a more
accurate way to calculate it—the Wilson CI.

The cold start problem is relevant for non-personalized recommendations too. The general
approach here is to replace what currently cannot be calculated by different heuristics—for
example, replace it with an average rating, use a simpler algorithm, or not use the product
at all until the data is collected.

Another issue that should be considered when we develop a recommender system is the
relevance of recommendations, which considers factors other than the user's interests—for
example, it can be the freshness of a publication or a user's rating.

Relevance of recommendations
In some cases, it is also essential to consider the freshness of the recommendation. This
consideration is especially important for articles or posts on forums. Fresh entries should
often get to the top. The correction factors (damping factors) are usually used to make such
updates. The following formulas are used for calculating the rating of articles on media
sites.

Here is an example of a rating calculation in the Hacker news magazine:

Here, U denotes upvotes, D denotes downvotes, P denotes penalty (additional adjustment
for the implementation of other business rules), and T denotes recording time.

The following equation shows a Reddit rating calculation:

Recommender Systems Chapter 8

[263]

Here, U denotes the number of upvotes, D denotes the number of downvotes, and T
denotes the recording time. The first term evaluates the quality of the record, and the second
makes a correction for the time.

There is no universal formula, and each service invents the formula that best solves its
problem; it can be tested only empirically.

The following section will discuss the existing approaches to testing recommender systems.
This is not a straightforward task because it's usually hard to estimate the quality of a
recommendation without exact target values in a training dataset.

Assessing system quality
Testing a recommender system is a complicated process that always poses many questions,
mainly due to the ambiguity of the concept of quality.

In general, in machine learning problems, there are the following two main approaches to
testing:

Offline model testing on historical data using retro tests
Testing the model using A/B testing (we run several options, and see which one
gives the best result)

Both of the preceding approaches are actively used in the development of recommender
systems. The main limitation that we have to face is that we can evaluate the accuracy of
the forecast only on those products that the user has already evaluated or rated. The
standard approach is cross-validation, with the leave-one-out and leave-p-out methods.
Multiple repetitions of the test and averaging the results provides a more stable assessment
of quality.

The leave-one-out approach uses the model trained on all items except one and evaluated by
the user. This excluded item is used for model testing. This procedure is done for all
n items, and an average is calculated among the obtained n quality estimates.

The leave-p-out approach is the same, but at each step, points are excluded.

We can divide all quality metrics into the following three categories:

Prediction accuracy: Estimates the accuracy of the predicted rating
Decision support: Evaluates the relevance of the recommendations
Rank accuracy metrics: Evaluates the quality of the ranking of recommendations
issued

Recommender Systems Chapter 8

[264]

Unfortunately, there is no single recommended metric for all occasions, and everyone who
is involved in testing a recommender system selects it to fit their goals.

In the following section, we will formalize the collaborative filtering method and show the
math behind it.

Understanding collaborative filtering
method details
In this section, let's formalize the recommender system problem. We have a set of users,

, a set of items, (movies, tracks, products, and so on), and a set of estimates,
. Each estimate is given by user , object , its result , and, possibly, some

other characteristics.

We are required to predict preference as follows:

We are required to predict personal recommendations as follows:

We are required to predict similar objects as follows:

Remember—the main idea behind collaborative filtering is that similar users usually like
similar objects. Let's start with the simplest method, as follows:

Select some conditional measures of similarity of users according to their history
of ratings.
Unite users into groups (clusters) so that similar users will end up in the same
cluster: .

Predict the item's user rating as the cluster's average rating for this object:

Recommender Systems Chapter 8

[265]

This algorithm has several problems, detailed as follows:

There is nothing to recommend to new or atypical users. For such users, there is
no suitable cluster with similar users.
It ignores the specificity of each user. In a sense, we divide all users into classes
(templates).
If no one in the cluster has rated the item, the prediction will not work.

We can improve this method and replace hard clustering with the following formula:

For an item-based version, the formula will be symmetrical, as follows:

These approaches have the following disadvantages:

Cold start problem
Bad predictions for new and atypical users or items
Trivial recommendations
Resource intensity calculations

To overcome these problems, you can use the SVD. The preference (ratings) matrix can be
decomposed into the product of three matrices . Let's denote the product of
the first two matrices for one matrix, , where R is the matrix of preferences, U is
the matrix of parameters of users, and V is the matrix of parameters of items.

To predict the user U rating for an item, , we take vector (parameter set) for a given user
and a vector for a given item, . Their scalar product is the prediction we need:

. Using this approach, we can identify the hidden features of items and user
interests by user history. For example, it may happen that at the first coordinate of the
vector, each user has a number indicating whether the user is more likely to be a boy or a
girl, and the second coordinate is a number reflecting the approximate age of the user. In
the item, the first coordinate shows whether it is more interesting to boys or girls, and the
second one shows the age group of users this item appeals to.

Recommender Systems Chapter 8

[266]

However, there are also several problems. The first one is the preferences matrix R which is
not entirely known to us, so we cannot merely take its SVD decomposition. Secondly, the
SVD decomposition is not the only one, so even if we find at least some decomposition, it is
unlikely that it is optimal for our task.

Here, we need machine learning. We cannot find the SVD decomposition of the matrix
since we do not know the matrix itself. But we can take advantage of this idea and come up
with a prediction model that works like SVD. Our model depends on many
parameters—vectors of users and items. For the given parameters, to predict the estimate,
we take the user vector, the vector of the item, and get their scalar product, . But
since we do not know vectors, they still need to be obtained. The idea is that we have user
ratings with which we can find optimal parameters so that our model can predict these
estimates as accurately as possible using the following equation: .
We want to find such parameters' θ so that the square error is as small as possible. We also
want to make fewer mistakes in the future, but we do not know what estimates we need.
Accordingly, we cannot optimize parameters' θ. We already know the ratings given by
users, so we can try to choose parameters based on the estimates we already have to
minimize the error. We can also add another term, the regularizer, shown here:

Regularization is needed to combat overfitting. To find the optimal parameters, you need to
optimize the following function:

There are many parameters: for each user, for each item, we have our vector that we want
to optimize. The most well-known method for optimizing functions is gradient descent
(GD). Suppose we have a function of many variables, and we want to optimize it. We take
an initial value, and then we look where we can move to minimize this value. The GD
method is an iterative algorithm: it repeatedly takes the parameters of a certain point, looks
at the gradient, and steps against its direction, as shown here:

There are problems with this method: firstly, it works very slowly; and secondly, it finds
local, rather than global, minima. The second problem is not so bad for us because in our
case, the value of the function in local minima is close to the global optimum.

Recommender Systems Chapter 8

[267]

However, the GD method is not always necessary. For example, if we need to calculate the
minimum for a parabola, there is no need to act by this method, as we know precisely
where its minimum is. It turns out that the functionality that we are trying to optimize—the
sum of the squares of errors plus the sum of the squares of all the parameters—is also a
quadratic functional, which is very similar to a parabola. For each specific parameter, if we
fix all the others, it is just a parabola. For those, we can accurately determine at least one
coordinate. The ALS method is based on this assumption. We alternately accurately find
minima in either one coordinate or another, as shown here:

We fix all the parameters of the items, optimize the parameters of users, fix the parameters
of users, and then optimize the parameters of items. We act iteratively, as shown here:

This method works reasonably quickly, and you can parallelize each step. However, there's
still a problem with implicit data because we have neither full user data nor full item data.
So, we can penalize the items that do not have ratings in the update rule. By doing so, we
depend only on the items that have ratings from the users and do not make any assumption
around the items that are not rated. Let's define a weight matrix as such, as follows:

The cost functions that we are trying to minimize look like the following:

Note that we need regularization terms to avoid overfitting the data. Solutions for factor
vectors are as follows:

Here, and are diagonal matrices.

Recommender Systems Chapter 8

[268]

Another approach for dealing with implicit data is to introduce confidence levels. Let's
define a set of binary observation variables, as follows:

Now, we define confidence levels for each . When , we have low confidence. The
reason can be that the user has never been exposed to that item or it may be unavailable at
the time. For example, it could be explained by the user buying a gift for someone else.
Hence, we would have low confidence. When is larger, we should have much more
confidence. For example, we can define confidence as follows:

Here, is a hyperparameter, which should be tuned for a given dataset. The updated
optimization function is as follows:

 is a diagonal matrix with values . Solutions for user and item ratings are as
follows:

However, it is an expensive computational problem to calculate the expression.
However, it can be optimized in the following way: .

This means that can be precomputed at each of the steps, and has the non-zero
entries only where was non-zero. Now that we have learned about the collaborative
filtering method in detail, let's further understand it practically by considering a few
examples about how to implement a collaborative filtering recommender system in the
following section.

In the following sections, we will look at how to use different C++ libraries for developing
recommender systems.

Recommender Systems Chapter 8

[269]

Examples of item-based collaborative
filtering with C++
Let's look at how we can implement a collaborative filtering recommender system. As a
sample dataset for this example, we use the MovieLens dataset provided by GroupLens
from the research lab in the Department of Computer Science and Engineering at the
University of Minnesota: https://grouplens.org/datasets/movielens/. They provide a
full dataset with 20 million movie ratings and a smaller one for education, with 100,000
ratings. We recommend starting with the smaller one because it allows us to see results
earlier and detect implementation errors faster.

This dataset consists of several files, but we are only interested in two of them: ratings.csv
and movies.csv. The rating file contains lines with the following format: the user ID, the
movie ID, the rating, and the timestamp. In this dataset, users made ratings on a 5-star
scale, with half-star increments (0.5 stars—5.0 stars). The movie's file contains lines with the
following format: the movie ID, the title, and the genre. The movie ID is the same in both
files, so we can see which movies users are rating.

Using the Eigen library
For the first sample, let's see how to implement a collaborative filtering recommender
system based on matrix factorization with ALS and with a pure linear algebra library as a
backend. In the following sample, we're using the Eigen library. The steps to implement a
collaborative filtering recommender system are as follows:

 At first, we make base type definitions, as follows:1.

using DataType = float;
// using Eigen::ColMajor is Eigen restriction - todense method
always returns
// matrices in ColMajor order
using Matrix =
Eigen::Matrix<DataType, Eigen::Dynamic, Eigen::Dynamic,
Eigen::ColMajor>;

using SparseMatrix = Eigen::SparseMatrix<DataType,
Eigen::ColMajor>;

using DiagonalMatrix =
Eigen::DiagonalMatrix<DataType, Eigen::Dynamic, Eigen::Dynamic>;

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

Recommender Systems Chapter 8

[270]

These definitions allow us to write less source code for matrices' types and to2.
quickly change floating-point precision. Then, we define and initialize the ratings
(preferences) matrix, list of movie titles, and binary rating flags matrix, as
follows:

SparseMatrix ratings_matrix; // user-item ratings
SparseMatrix p; // binary variables
std::vector<std::string> movie_titles;

We have a particular helper function, LoadMovies, which loads files to the map
container, as shown in the following code snippet:

auto movies_file = root_path / "movies.csv";
auto movies = LoadMovies(movies_file);

auto ratings_file = root_path / "ratings.csv";
auto ratings = LoadRatings(ratings_file);

After data is loaded, we initialize matrix objects with the right size, like this:3.

ratings_matrix.resize(static_cast<Eigen::Index>(ratings.size()),
 static_cast<Eigen::Index>(movies.size()));
ratings_matrix.setZero();
p.resize(ratings_matrix.rows(), ratings_matrix.cols());
p.setZero();
movie_titles.resize(movies.size());

However, because we've loaded data to the map, we need to move the required
rating values to the matrix object.

So, we initialize the movie titles list, convert user IDs to our zero-based4.
sequential order, and initialize the binary rating matrix (this is used in the
algorithm to deal with implicit data), as follows:

Eigen::Index user_idx = 0;
for (auto& r : ratings) {
 for (auto& m : r.second) {
 auto mi = movies.find(m.first);
 Eigen::Index movie_idx = std::distance(movies.begin(), mi);
 movie_titles[static_cast<size_t>(movie_idx)] = mi->second;
 ratings_matrix.insert(user_idx, movie_idx) =
 static_cast<DataType>(m.second);
 p.insert(user_idx, movie_idx) = 1.0;
 }
 ++user_idx;
}
ratings_matrix.makeCompressed();

Recommender Systems Chapter 8

[271]

After the rating matrix is initialized, we define and initialize our training5.
variables, as follows:

auto m = ratings_matrix.rows();
auto n = ratings_matrix.cols();

Eigen::Index n_factors = 100;
auto y = InitializeMatrix(n, n_factors);
auto x = InitializeMatrix(m, n_factors);

In the preceding code snippet, the y matrix corresponds to user preferences, and
the x matrix corresponds to the item parameters. Also, we defined the number of
factors we were interested in after decomposition. These matrices are initialized
with random values and normalized. Such an approach is used to speed up
algorithm convergence, and can be seen in the following code snippet:

Matrix InitializeMatrix(Eigen::Index rows, Eigen::Index cols) {
 Matrix mat = Matrix::Random(rows, cols).array().abs();
 auto row_sums = mat.rowwise().sum();
 mat.array().colwise() /= row_sums.array();
 return mat;
}

Then, we define and initialize the regularization matrix and identity matrices,6.
which are constant during all learning cycles, as follows:

DataType reg_lambda = 0.1f;
SparseMatrix reg = (reg_lambda * Matrix::Identity(n_factors,
n_factors)).sparseView();

// Define diagonal identity terms
SparseMatrix user_diag = -1 * Matrix::Identity(n, n).sparseView();
SparseMatrix item_diag = -1 * Matrix::Identity(m, m).sparseView();

Also, because we implement an algorithm version that can deal with implicit7.
data, we need to convert our rating matrix to another view to decrease
computational complexity. Our version of the algorithm needs user ratings in the
form of and as diagonal matrices for every user and item so that
we can make two containers with corresponding matrix objects. The code for this
can be seen in the following block:

std::vector<DiagonalMatrix> user_weights(static_cast<size_t>(m));
std::vector<DiagonalMatrix> item_weights(static_cast<size_t>(n));
{
 Matrix weights(ratings_matrix);
 weights.array() *= alpha;

Recommender Systems Chapter 8

[272]

 weights.array() += 1;

 for (Eigen::Index i = 0; i < m; ++i) {
 user_weights[static_cast<size_t>(i)] =
 weights.row(i).asDiagonal();
 }
 for (Eigen::Index i = 0; i < n; ++i) {
 item_weights[static_cast<size_t>(i)] =
 weights.col(i).asDiagonal();
 }
}

Now, we are ready to implement the main learning loop. As discussed, the ALS algorithm
can be easily parallelized, so we use the OpenMP compiler extension to calculate user and
item parameters in parallel.

Let's define the main learning cycle, which runs for a specified number of iterations, as
follows:

size_t n_iterations = 5;
for (size_t k = 0; k < n_iterations; ++k) {
 auto yt = y.transpose();
 auto yty = yt * y;
 ...
 // update item parameters
 ...
 auto xt = x.transpose();
 auto xtx = xt * x;
 ...
 // update users preferences
 ...
 auto w_mse = CalculateWeightedMse(x, y, p, ratings_matrix, alpha);
}

The following code shows how to update item parameters:

 #pragma omp parallel
 {
 Matrix diff;
 Matrix ytcuy;
 Matrix a, b, update_y;
 #pragma omp for private(diff, ytcuy, a, b, update_y)
 for (size_t i = 0; i < static_cast<size_t>(m); ++i) {
 diff = user_diag;
 diff += user_weights[i];
 ytcuy = yty + yt * diff * y;
 auto p_val = p.row(static_cast<Eigen::Index>(i)).transpose();

Recommender Systems Chapter 8

[273]

 a = ytcuy + reg;
 b = yt * user_weights[i] * p_val;

 update_y = a.colPivHouseholderQr().solve(b);
 x.row(static_cast<Eigen::Index>(i)) = update_y.transpose();
 }
 }

The following code shows how to update users' preferences:

 #pragma omp parallel
 {
 Matrix diff;
 Matrix xtcux;
 Matrix a, b, update_x;
 #pragma omp for private(diff, xtcux, a, b, update_x)
 for (size_t i = 0; i < static_cast<size_t>(n); ++i) {
 diff = item_diag;
 diff += item_weights[i];
 xtcux = xtx + xt * diff * x;
 auto p_val = p.col(static_cast<Eigen::Index>(i));

 a = xtcux + reg;
 b = xt * item_weights[i] * p_val;

 update_x = a.colPivHouseholderQr().solve(b);
 y.row(static_cast<Eigen::Index>(i)) = update_x.transpose();
 }
 }

We have two parts of the loop body that are pretty much the same because at first, we
updated item parameters with frizzed user options, and then we updated user preferences
with frizzed item parameters. Notice that all matrix objects were moved outside of the
internal loop body to reduce memory allocations and significantly improve program
performance. Also, notice that we parallelized the user and item parameters' calculations
separately because one of them should always be frizzed during the calculation of the other
one. To calculate exact values for user preferences and item parameters, we use this
formula:

Recommender Systems Chapter 8

[274]

X T X and Y T Y are precomputed at each step. Also, notice that these formulas are expressed
in the form of the linear equation system, X = AB. We use the colPivHouseholderQr
function from the Eigen library to solve it and get exact values for the user and item
parameters. This linear equation system can be solved with other methods, too. The
colPivHouseholderQr function was chosen because it shows a better ratio between
computational speed and accuracy in the Eigen library implementation.

To estimate the progress of the learning process of our system, we can calculate the Mean
Squared Error (MSE) between the original rating matrix and a predicted one. To calculate
the predicted rating matrix, we define the next function, as follows:

Matrix RatingsPredictions(const Matrix& x, const Matrix& y) {
 return x * y.transpose();
}

To calculate the MSE, we can use the expression from our optimization
function, like this:

DataType CalculateWeightedMse(const Matrix& x,
 const Matrix& y,
 const SparseMatrix& p,
 const SparseMatrix& ratings_matrix,
 DataType alpha) {
 Matrix c(ratings_matrix);
 c.array() *= alpha;
 c.array() += 1.0;

 Matrix diff(p - RatingsPredictions(x, y));
 diff = diff.array().pow(2.f);

 Matrix weighted_diff = c.array() * diff.array();
 return weighted_diff.array().mean();
}

Please note that we have to use weights and binary ratings to get a meaningful value for the
error because a similar approach was used during the learning process. Direct error
calculation gives the wrong result because the predicted matrix has non-zero predictions in
the place where the original rating matrix has zeros. It is essential to understand that this
algorithm doesn't learn the original scale of ratings (from 0 to 5), but instead it learns
prediction values in the range from 0 to 1. It follows from the function we optimize, shown
here:

Recommender Systems Chapter 8

[275]

We can use the previously defined movies list to show movie recommendations. The
following function shows user preferences and system recommendations. To identify what
a user likes, we show movie titles that the user has rated with a rating value of more than 3.
We show movies that the system rates as equal to or higher than a 0.8 rating coefficient to
identify which movie the system recommends to the user by running the following code:

void PrintRecommendations(const Matrix& ratings_matrix,
 const Matrix& ratings_matrix_pred,
 const std::vector<std::string>& movie_titles) {
 auto n = ratings_matrix.cols();
 std::vector<std::string> liked;
 std::vector<std::string> recommended;
 for (Eigen::Index u = 0; u < 5; ++u) {
 for (Eigen::Index i = 0; i < n; ++i) {
 DataType orig_value = ratings_matrix(u, i);
 if (orig_value >= 3.f) {
 liked.push_back(movie_titles[static_cast<size_t>(i)]);
 }
 DataType pred_value = ratings_matrix_pred(u, i);
 if (pred_value >= 0.8f && orig_value < 1.f) {
 recommended.push_back(movie_titles[
 static_cast<size_t>(i)]);
 }
 }
 std::cout << "\nUser " << u << " liked :";
 for (auto& l : liked) {
 std::cout << l << "; ";
 }
 std::cout << "\nUser " << u << " recommended :";
 for (auto& r : recommended) {
 std::cout << r << "; ";
 }
 std::cout << std::endl;
 liked.clear();
 recommended.clear();
 }
}

This function can be used as follows:

PrintRecommendations(ratings_matrix, RatingsPredictions(x, y),
movie_titles);

Recommender Systems Chapter 8

[276]

Using the mlpack library
The mlpack library is a general-purpose machine learning library that has a lot of different
algorithms inside and command-line tools to process the data and learn these algorithms
without explicit programming. As a basis, this library uses the Armadillo linear algebra
library for math calculations. Other libraries we've used in previous chapters don't have the
collaborative filtering algorithm implementations.

To load the MovieLens dataset, use the same loading helper function as in the previous
section. After the data is loaded, convert it to a format suitable for an object of the
mlpack::cf::CFType type. This type implements a collaborative filtering algorithm and
can be configured with different types of matrix factorization approaches. The object of this
type can use dense as well as sparse rating matrices. In the case of a dense matrix, it should
have three rows. The first row corresponds to users, the second row corresponds to items,
and the third row corresponds to the rating. This structure is called a coordinate list
format. In the case of the sparse matrix, it should be a regular (user, item) table, as in the
previous example. So, let's define the sparse matrix for ratings. It should have the
arma::SpMat<DataType> type from the Armadillo library, as illustrated in the following
code block:

 arma::SpMat<DataType> ratings_matrix(ratings.size(), movies.size());
 std::vector<std::string> movie_titles;
 {
 // fill matrix
 movie_titles.resize(movies.size());
 size_t user_idx = 0;
 for (auto& r : ratings) {
 for (auto& m : r.second) {
 auto mi = movies.find(m.first);
 auto movie_idx = std::distance(movies.begin(), mi);
 movie_titles[static_cast<size_t>(movie_idx)] = mi->second;
 ratings_matrix(user_idx, movie_idx) =
 static_cast<DataType>(m.second);
 }
 ++user_idx;
 }
 }

Now, we can initialize the mlpack::cf::CFType class object. It takes the next parameters
in the constructor: the rating matrix, the matrix decomposition policy, the number of
neighbors, the number of target factors, the number of iterations, and the minimum value
of learning error, after which the algorithm can stop.

Recommender Systems Chapter 8

[277]

For this object, do the nearest neighbor search only on the H matrix. This means you avoid
calculating the full rating matrix, using the observation that if the rating matrix is X = W H,
then the following applies:

distance(X.col(i), X.col(j)) = distance(W H.col(i), W H.col(j))

This expression can be seen as the nearest neighbor search on the H matrix with the
Mahalanobis distance, as illustrated in the following code block:

 // factorization rank
 size_t n_factors = 100;
 size_t neighborhood = 50;

 mlpack::cf::NMFPolicy decomposition_policy;

 // stopping criterions
 size_t max_iterations = 20;
 double min_residue = 1e-3;

 mlpack::cf::CFType cf(ratings_matrix,
 decomposition_policy,
 neighborhood,
 n_factors,
 max_iterations,
 min_residue);

Notice that as a decomposition policy, the object of the mlpack::cf::NMFPolicy type was
used. This is the non-negative matrix factorization algorithm with the ALS approach. There
are several decomposition algorithms in the mlpack library. For example, there is a batch
SVD decomposition implemented in the mlpack::cf::BatchSVDPolicy type. The
constructor of this object also does the complete training, so after its call has finished, we
can use this object to get recommendations. Recommendations can be retrieved with the
GetRecommendations method. This method gets the number of recommendations you
want to get, the output matrix for recommendations, and the list of user IDs for users you
want to get recommendations from, as shown in the following code block:

 arma::Mat<size_t> recommendations;
 // Get 5 recommendations for specified users.
 arma::Col<size_t> users;
 users << 1 << 2 << 3;

 cf.GetRecommendations(5, recommendations, users);

 for (size_t u = 0; u < recommendations.n_cols; ++u) {
 std::cout << "User " << users(u) << " recommendations are: ";
 for (size_t i = 0; i < recommendations.n_rows; ++i) {

Recommender Systems Chapter 8

[278]

 std::cout << movie_titles[recommendations(i, u)] << ";";
 }
 std::cout << std::endl;
 }

Notice that the GetRecommendations method returns the item IDs as its output. So, we
can see that using this library for implementing a recommender system is much easier than
writing it from scratch. Also, there are many more configuration options in the mlpack
library for building such systems; for example, we can configure the neighbor detection
policy and which distance measure to use. These configurations can significantly improve
the quality of the system you build because you can make them according to your own
particular task.

Summary
In this chapter, we discussed what recommender systems are and the types of these that
exist today. We studied two main approaches to building recommender systems: content-
based recommendations and collaborative filtering. We identified two types of
collaborative filtering: user-based and item-based. We looked at the implementation of
these approaches, and their pros and cons. We found out that an important issue in the
implementation of recommender systems is the amount of data and the associated large
computational complexity of algorithms. We considered approaches to overcome
computational complexity problems, such as partial data updates and approximate
iterative algorithms, such as ALS. We found out how matrix factorization can help to solve
the problem with incomplete data, improve the generalizability of the model, and speed up
the calculations. Also, we implemented a system of collaborative filtering based on the
linear algebra library and using the mlpack general-purpose machine learning library.

It makes sense to look at new methods such as autoencoders, variational autoencoders, or
deep collaborative approaches applied to recommender system tasks. In recent research
papers, these approaches show more impressive results than classical methods such as
ALS. All these new methods are non-linear models, so they can potentially beat the limited
modeling capacity of linear factor models.

In the next chapter, we discuss ensemble learning techniques. The main idea of these types
of techniques is to combine either different types of machine learning algorithms or use a
set of the same kind of algorithms to obtain better predictive performance. Combining a
number of algorithms in the one ensemble allows us to get the best characteristics of each
one, to cover disadvantages in a single algorithm.

Recommender Systems Chapter 8

[279]

Further reading
Collaborative Filtering for Implicit Feedback Datasets: http://yifanhu.net/PUB/
cf.pdf

Collaborative Filtering using Alternating Least Squares: http://danielnee.com/
2016/09/collaborative-filtering-using-alternating-least-squares/

ALS Implicit Collaborative Filtering: https://medium.com/radon-dev/als-
implicit-collaborative-filtering-5ed653ba39fe

Collaborative Filtering: https://datasciencemadesimpler.wordpress.com/tag/
alternating-least-squares/

The mlpack library official site: https://www.mlpack.org/

The Armadillo library official site: http://arma.sourceforge.net/

Variational Autoencoders for Collaborative Filtering, by Dawen Liang, Rahul G.
Krishnan, Matthew D. Hoffman, and Tony Jebara: https://arxiv.org/abs/
1802.05814

Deep Learning-Based Recommender System: A Survey and New Perspectives, by Shuai
Zhang, Lina Yao, Aixin Sun, and Yi Tay: https://arxiv.org/abs/1707.07435

Training Deep AutoEncoders for Collaborative Filtering, by Oleksii Kuchaiev, and
Boris Ginsburg: https://arxiv.org/abs/1708.01715

http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://yifanhu.net/PUB/cf.pdf
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
http://danielnee.com/2016/09/collaborative-filtering-using-alternating-least-squares/
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://medium.com/radon-dev/als-implicit-collaborative-filtering-5ed653ba39fe
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://datasciencemadesimpler.wordpress.com/tag/alternating-least-squares/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
https://www.mlpack.org/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
http://arma.sourceforge.net/
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1802.05814
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1707.07435
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715
https://arxiv.org/abs/1708.01715

9
Ensemble Learning

Anyone who works with data analysis and machine learning will come to understand that
no method is ideal or universal. This is why there are so many methods. Researchers and
enthusiasts have been searching for years for a compromise between the accuracy,
simplicity, and interpretability of various models. Moreover, how can we increase the
accuracy of the model, preferably without changing its essence? One way to improve the
accuracy of models is to create and train model ensembles—that is, sets of models used to
solve the same problem. The ensemble training methodology is the training of a final set of
simple classifiers, with the subsequent merging of the results of their predictions into a
single forecast of the aggregated algorithm.

This chapter describes what ensemble learning is, what types of ensembles exist, and how
they can help to obtain better predictive performance. In this chapter, we will also
implement examples of these approaches with different C++ libraries.

The following topics will be covered in this chapter:

An overview of ensemble learning
Learning about decision trees and random forests
Examples of using C++ libraries for creating ensembles

Technical requirements
The technologies and installations required in the chapter are as follows:

The Eigen library
The Armadillo library
The mlpack library
A modern C++ compiler with C++17 support
CMake build system version >= 3.8

Ensemble Learning Chapter 9

[281]

The code files for this chapter can be found at the following GitHub repo: https://github.
com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09

An overview of ensemble learning
The training of an ensemble of models is understood to be the procedure of training a final
set of elementary algorithms, whose results are then combined to form the forecast of an
aggregated classifier. The model ensemble's purpose is to improve the accuracy of the
prediction of the aggregated classifier, particularly when compared with the accuracy of
every single elementary classifier. It is intuitively clear that combining simple classifiers can
give a more accurate result than each simple classifier separately. Despite that, simple
classifiers can be sufficiently accurate on particular datasets, but at the same time, they can
make mistakes on different datasets.

An example of ensembles is Condorcet's jury theorem (1784). A jury must come to a correct
or incorrect consensus, and each juror has an independent opinion. If the probability of the
correct decision of each juror is more than 0.5, then the probability of a correct decision
from the jury as a whole (tending toward 1) increases with the size of the jury. If the
probability of making the correct decision is less than 0.5 for each juror, then the probability
of making the right decision monotonically decreases (tending toward zero) as the jury size
increases.

The theorem is as follows:

N: The number of jury members
: The probability of the jury member making the right decision

μ: The probability of the entire jury making the correct decision
m: The minimum majority of jury members:

: The number of combinations of N by I:

If then

If then

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter09

Ensemble Learning Chapter 9

[282]

Therefore, based on general reasoning, three reasons why ensembles of classifiers can be
successful can be distinguished, as follows:

Statistical: The classification algorithm can be viewed as a search procedure in
the space of the H hypothesis, concerned with the distribution of data in order to
find the best hypothesis. By learning from the final dataset, the algorithm can
find many different hypotheses that describe the training sample equally well. By
building an ensemble of models, we average out the error of each hypothesis and
reduce the influence of instabilities and randomness in the formation of a new
hypothesis.
Computational: Most learning algorithms use methods for finding the extremum
of a specific objective function. For example, neural networks use gradient
descent (GD) methods to minimize prediction errors. Decision trees use greedy
algorithms that minimize data entropy. These optimization algorithms can
become stuck at a local extremum point, which is a problem because their goal is
to find a global optimum. The ensembles of models combining the results of the
prediction of simple classifiers, trained on different subsets of the source data,
have a higher chance of finding a global optimum since they start a search for the
optimum from different points in the initial set of hypotheses.
Representative: A combined hypothesis may not be in the set of possible
hypotheses for simple classifiers. Therefore, by building a combined hypothesis,
we expand the set of possible hypotheses.

Condorcet's jury theorem and the reasons provided previously are not entirely suitable for
real, practical situations because the algorithms are not independent (they solve one
problem, they learn on one target vector, and can only use one model, or a small number of
models).

Therefore, the majority of techniques in applied ensemble development are aimed at
ensuring that the ensemble is diverse. This allows the errors of individual algorithms in
individual objects to be compensated for by the correct operations of other algorithms.
Overall, building the ensemble results in an improvement in both the quality and variety of
simple algorithms.

The simplest type of ensemble is model averaging, whereby each member of the ensemble
makes an equal contribution to the final forecast. The fact that each model has an equal
contribution to the final ensemble's forecast is a limitation of this approach. The problem is
in unbalanced contributions. Despite that, there is a requirement that all members of the
ensemble have prediction skills higher than random chance.

Ensemble Learning Chapter 9

[283]

However, it is known that some models work much better or much worse than other
models. Some improvements can be made to solve this problem, using a weighted
ensemble in which the contribution of each member to the final forecast is weighted by the
performance of the model. When the weight of the model is a small positive value and the
sum of all weights equals 1, the weights can indicate the percentage of confidence in (or
expected performance from) each model.

At this time, the most common approaches to ensemble construction are as follows:

Bagging: This is an ensemble of models studying in parallel on different random
samples from the same training set. The final result is determined by the voting
of the algorithms of the ensemble. For example, in classification, the class that is
predicted by the most classifiers is chosen.
Boosting: This is an ensemble of models trained sequentially, with each
successive algorithm being trained on samples in which the previous algorithm
made a mistake.
Stacking: This is an approach whereby a training set is divided into N blocks,
and a set of simple models is trained on N-1 of them. An N-th model is then
trained on the remaining block, but the outputs of the underlying algorithms
(forming the so-called meta-attribute) are used as the target variable.
Random forest: This is a set of decision trees built independently, and whose
answers are averaged and decided by a majority vote.

The following sections discuss the previously described approaches in detail.

Using a bagging approach for creating
ensembles
Bagging (from the bootstrap aggregation) is one of the earliest and most straightforward
types of ensembles. Bagging is based on the statistical bootstrap method, which aims to
obtain the most accurate sample estimates and to extend the results to the entire
population. The bootstrap method is as follows.

Suppose there is an X dataset of size M. Evenly take from the dataset N objects and return
each object. Before selecting the next one, we can generate N sub-datasets. This procedure
means that N times, we select an arbitrary sample object (we assume that each object is
picked up with the same probability), and each time, we choose from all the original
M objects.

Ensemble Learning Chapter 9

[284]

We can imagine this as a bag from which balls are taken. The ball selected at a given step is
returned to the bag following its selection, and the next choice is again made with equal
probability from the same number of balls. Note that due to the ball being returned each
time, there are repetitions.

Each new selection is denoted as X1. Repeating the procedure k times, we generate k sub-
datasets. Now, we have a reasonably large number of samples, and we can evaluate various
statistics of the original distribution.

The main descriptive statistics are the sample mean, median, and standard deviation.
Summary statistics—for example, the sample mean, median, and correlation—can vary
from sample to sample. The bootstrap idea is to use sampling results as a fictitious
population to determine the sample distribution of statistics. The bootstrap method
analyzes a large number of phantom samples, called bootstrap samples. For each sample,
an estimate of the target statistics is calculated, then the estimates are averaged. The
bootstrap method can be viewed as a modification of the Monte Carlo method.

Suppose there is the X training dataset. With the help of bootstrap, we can generate
 sub-datasets. Now, on each sub-dataset, we can train our classifier. The

final classifier averages these classifier responses (in the case of classification, this

corresponds to a vote), as follows: . The following diagram shows this
scheme:

Ensemble Learning Chapter 9

[285]

Consider the regression problem by using simple algorithms . Suppose that
there is a true answer function for all y(x) objects, and there is also a distribution
on objects. In this case, we can write the error of each regression function as follows:

We can also write the expectation of the Mean Squared Error (MSE) as follows:

The average error of the constructed regression functions is as follows:

Now, suppose the errors are unbiased and uncorrelated, as shown here:

Now, we can write a new regression function that averages the responses of the functions
we have constructed, as follows:

Let's find its root MSE (RMSE) to see an effect of averaging, as follows:

Thus, averaging the answers allowed us to reduce the average square of the error by
n times.

Ensemble Learning Chapter 9

[286]

Bagging also allows us to reduce the variance of the trained algorithm and prevent
overfitting. The effectiveness of bagging is based on the underlying algorithms, which are
trained on various sub-datasets that are quite different, and their errors are mutually
compensated during voting. Also, outlying objects may not fall into some of the training
sub-datasets, which also increases the effectiveness of the bagging approach.

Bagging is useful with small datasets when the exclusion of even a small number of
training objects leads to the construction of substantially different simple algorithms. In the
case of large datasets, sub-datasets are usually generated that are significantly smaller than
the original one.

Notice that the assumption about uncorrelated errors is rarely satisfied. If this assumption
is incorrect, then the error reduction is not as significant as we might have assumed.

In practice, bagging provides a good improvement to the accuracy of results when
compared to simple individual algorithms, particularly if a simple algorithm is sufficiently
accurate but unstable. Improving the accuracy of the forecast occurs by reducing the spread
of the error-prone forecasts of individual algorithms. The advantage of the bagging
algorithm is its ease of implementation, as well as the possibility of paralleling the
calculations for training each elementary algorithm on different computational nodes.

Using a gradient boosting method for creating
ensembles
The main idea of boosting is that the elementary algorithms are not built independently.
We build every sequential algorithm so that it corrects the mistakes of the previous ones
and therefore improves the quality of the whole ensemble. The first successful version of
boosting was AdaBoost (Adaptive Boosting). It is now rarely used since gradient boosting
has supplanted it.

Suppose that we have a set of pairs, where each pair consists of attribute x and target
variable y, . On this set, we restore the dependence of the form . We
restore it by the approximation . To select the best approximation solution, we use a
specific loss function of the form , which we should optimize as follows:

Ensemble Learning Chapter 9

[287]

We also can rewrite the expression in terms of mathematical expectations, since the amount
of data available for learning is limited, as follows:

Our approximation is inaccurate. However, the idea behind boosting is that such an
approximation can be improved by adding to the model with the result of another model
that corrects its errors, as illustrated here:

The following equation shows the ideal error correction model:

We can rewrite this formula in the following form, which is more suitable for the corrective
model:

Based on the preceding assumptions listed, the goal of boosting is to approximate to
make its results correspond as closely as possible to the residuals . Such an

operation is performed sequentially—that is, improves the results of the

previous function.

A further generalization of this approach allows us to consider the residuals as a negative

gradient of the loss function, specifically of the form . In other words, gradient
boosting is a method of GD with the loss function and its gradient replacement.

Now, knowing the expression of the loss function gradient, we can calculate its values on
our data. Therefore, we can train models so that our predictions are better correlated with
this gradient (with a minus sign). Therefore, we will solve the regression problem, trying to
correct the predictions for these residuals. For classification, regression, and ranking, we
always minimize the squared difference between the residuals and our predictions.

Ensemble Learning Chapter 9

[288]

In the gradient boosting method, an approximation of the function of the following form is
used:

This is the sum of functions of the class; they are collectively called weak models
(algorithms). Such an approximation is carried out sequentially, starting from the initial
approximation, which is a certain constant, as follows:

Unfortunately, the choice of the optimal function at each step for an arbitrary loss
function is extremely difficult, so a more straightforward approach is used. The idea is to
use the GD method, by using differentiable functions, and a differentiable loss
function, as illustrated here:

The boosting algorithm is then formed as follows:

Initialize the model with constant values, like this:1.

Ensemble Learning Chapter 9

[289]

Repeat the specified number of iterations and do the following:2.

Calculate the pseudo-residuals, as follows:

Here, n is the number of training samples, m is the iteration number, and L is
the loss function.

Train the elementary algorithm (regression model) on pseudo-
residuals with data of the form .
Calculate the coefficient by solving a one-dimensional optimization
problem of the form, as follows:

Update the model, as follows:

The inputs to this algorithm are as follows:

The dataset
The number of M iterations
The L(y, f) loss function with an analytically written gradient (such a form of
gradient allows us to reduce the number of numerical calculations)
The choice of the family of functions of the h (x) elementary algorithms, with the
procedure of their training and hyperparameters

The constant for the initial approximation, as well as the optimal coefficient, can be found
by a binary search, or by another line search algorithm relative to the initial loss function
(rather than the gradient).

Ensemble Learning Chapter 9

[290]

Examples of loss functions for regression are as follows:

 : An L2 loss, also called Gaussian loss. This formula is the
classic conditional mean and the most common and simple option. If there are no
additional information or model sustainability requirements, it should be used.
 : An L1 loss, also called Laplacian loss. This formula, at first
glance, is not very differentiable and determines the conditional median. The
median, as we know, is more resistant to outliers. Therefore, in some problems,
this loss function is preferable since it does not penalize large deviations as much
as a quadratic function.

 : An Lq loss, also called Quantile loss. If
we don't want a conditional median but do want a conditional 75 % quantile, we
would use this option with . This function is asymmetric and penalizes
more observations that turn out to be on the side of the quantile we need.

Examples of loss functions for classification are as follows:

: This is logistic loss, also known as Bernoulli loss.
An interesting property with this loss function is that we penalize even correctly
predicted class labels. By optimizing this loss function, we can continue to
distance classes and improve the classifier even if all observations are correctly
predicted. This function is the most standard and frequently used loss function in
a binary classification task.

: This is AdaBoost loss. It so happens that the classic
AdaBoost algorithm that uses this loss function (different loss functions can also
be used in the AdaBoost algorithm) is equivalent to gradient boosting.
Conceptually, this loss function is very similar to logistic loss, but it has a
stronger exponential penalty for classification errors and is used less frequently.

The idea of bagging is that it can be used with a gradient boosting approach too, which is
known as stochastic gradient boosting. In this way, a new algorithm is trained on a sub-
sample of the training set. This approach can help us to improve the quality of the ensemble
and reduces the time it takes to build elementary algorithms (whereby each is trained on a
reduced number of training samples).

Ensemble Learning Chapter 9

[291]

Although boosting itself is an ensemble, other ensemble schemes can be applied to it—for
example, by averaging several boosting methods. Even if we average boosts with the same
parameters, they will differ due to the stochastic nature of the implementation. This
randomness comes from the choice of random sub-datasets at each step or selecting
different features when we are building decision trees (if they are chosen as elementary
algorithms).

Currently, the base gradient boosting machine (GBM) has many extensions for different
statistical tasks. These are as follows:

GLMBoost and GAMBoost as an enhancement of the existing generalized
additive model (GAM)
CoxBoost for survival curves
RankBoost and LambdaMART for ranking

Secondly, there are many implementations of the same GBM under different names and
different platforms, such as these:

Stochastic GBM
Gradient Boosted Decision Trees (GBDT)
Gradient Boosted Regression Trees (GBRT)
Multiple Additive Regression Trees (MART)
Generalized Boosting Machines (GBM)

Furthermore, boosting can be applied and used over a long period of time in the ranking
tasks undertaken by search engines. The task is written based on a loss function, which is
penalized for errors in the order of search results; therefore, it became convenient to insert
it into a GBM.

Using a stacking approach for creating
ensembles
The purpose of stacking is to use different algorithms trained on the same data as
elementary models. A meta-classifier is then trained on the results of the elementary
algorithms or source data, also supplemented by the results of the elementary algorithms
themselves. Sometimes a meta-classifier uses the estimates of distribution parameters that it
receives (for example, estimates of the probabilities of each class for classification) for its
training, rather than the results of elementary algorithms.

Ensemble Learning Chapter 9

[292]

The most straightforward stacking scheme is blending. For this scheme, we divide the
training set into two parts. The first part is used to teach a set of elementary algorithms.
Their results can be considered new features (meta-features). We then use them as
complementary features with the second part of the dataset and train the new meta-
algorithm. The problem of such a blending scheme is that neither the elementary
algorithms nor the meta-algorithm use the entire set of data for training. To improve the
quality of blending, you can average the results of several blends trained at different
partitions in the data.

A second way to implement stacking is to use the entire training set. In some sources, this is
known as generalization. The entire set is divided into parts (folds), then the algorithm
sequentially goes through the folds, and teaches elementary algorithms on all the folds
except the one randomly chosen fold. The remaining fold is used for the inference on the
elementary algorithms. The output values of elementary algorithms are interpreted as the
new meta-attributes (or new features) calculated from the folds. In this approach, it is also
desirable to implement several different partitions into folds, and then average the
corresponding meta-attributes. For a meta-algorithm, it makes sense to apply regularization
or add some normal noise to the meta-attributes. The coefficient with which this addition
occurs is analogous to the regularization coefficient. We can summarize that the basic idea
behind the described approach is using a set of base algorithms; then, using another meta-
algorithm, we combine their predictions, with the aim of reducing the generalization error.

Unlike boosting and traditional bagging, you can use algorithms of a different nature (for
example, a ridge regression in combination with a random forest) in stacking. However, it
is essential to remember that for different algorithms, different feature spaces are needed.
For example, if categorical features are used as target variables, then the random forest
algorithm can be used as-is, but for the regression algorithms, you must first run one-hot
encoding.

Since meta-features are the results of already trained algorithms, they strongly correlate.
This fact is a priori one of the disadvantages of this approach; the elementary algorithms are
often under-optimized during training to combat correlation. Sometimes, to combat this
drawback, the training of elementary algorithms is used not on the target feature, but on
the differences between a feature and the target.

Using the random forest method for creating
ensembles
Firstly, we need to introduce the decision tree algorithm, which is the basis for the random
forest ensemble algorithm.

Ensemble Learning Chapter 9

[293]

Decision tree algorithm overview
A decision tree is a supervised machine learning algorithm, based on how a human solves
the task of forecasting or classification. Generally, this is a k-dimensional tree with decision
rules at the nodes and a prediction of the objective function at the leaf nodes. The decision
rule is a function that allows you to determine which of the child nodes should be used as a
parent for the considered object. There can be different types of objects in the decision tree
leaf—namely, the class label assigned to the object (in the classification tasks), the
probability of the class (in the classification tasks), and the value of the objective function
(in the regression task).

In practice, binary decision trees are used more often than trees with an arbitrary number of
child nodes.

The algorithm for constructing a decision tree in its general form is formed as follows:

Firstly, check the criterion for stopping the algorithm. If this criterion is executed,1.
select the prediction issued for the node. Otherwise, we have to split the training
set into several non-intersecting smaller sets.
In the general case, a decision rule is defined at the t node, which takes2.
into account a certain range of values. This range is divided into Rt disjoint sets of
objects: , where Rt is the number of descendants of the node, and
each is a set of objects that fall into the descendant.
Divide the set in the node according to the selected rule, and repeat the algorithm3.
recursively for each node.

Most often, the decision rule is simply is the feature—that is, . For partitioning,
we can use the following rules:

 for chosen boundary values

 , where is a
vector's scalar product. In fact, it is a corner value check

, where the
distance is defined in some metric space (for example,)

, where is a
predicate

Ensemble Learning Chapter 9

[294]

In general, you can use any decision rules, but those that are easiest to interpret are better
since they are easier to configure. There is no particular point in taking something more
complicated than predicates since you can create a tree with 100% accuracy on the training
set, with the help of the predicates.

Usually, a set of decision rules are chosen to build a tree. To find the optimal one among
them for each particular node, we need to introduce a criterion for measuring optimality.
The measure is introduced for this, which is used to measure how objects are scattered
(regression), or how the classes are mixed (classification) in a specific node. This measure
is called the impurity function. It is required for finding a maximum of according
to all features and parameters from a set of decision rules, in order to select a decision rule.
With this choice, we can generate the optimal partition for the set of objects in the current
node.

Information gain is how much information we can get for the selected split, and is
calculated as follows:

In the preceding equation, the following applies:

R is the number of sub-nodes the current node is broken into
t is the current node

 are the descendant nodes that are obtained with the selected partition
 is the number of objects in the training sample that fall into the child i

 is the number of objects trapped in the current node
 are the objects trapped in the ti

th vertex

We can use the MSE or the mean absolute error (MAE) as the impurity function for
regression tasks. For classification tasks, we can use the following functions:

Gini criterion as the probability of
misclassification, specifically if we predict classes with probabilities of their
occurrence in a given node

Entropy as a measure of the uncertainty of a random
variable

Ensemble Learning Chapter 9

[295]

Classification error as the error rate in the classification of
the most potent class

In the functions described previously, is an a priori probability of encountering an object
of class i in a node t—that is, the number of objects in the training sample with labels of

class i falling into t divided by the total number of objects in t ().

The following rules can be applied as stopping criteria for building a decision tree:

Limiting the maximum depth of the tree
Limiting the minimum number of objects in the sheet
Limiting the maximum number of leaves in a tree
Stopping if all objects at the node belong to the same class
Requiring that information gain is improved by at least 8 percent during splitting

There is an error-free tree for any training set, which leads to the problem of overfitting.
Finding the right stopping criterion to solve this problem is challenging. One solution is
pruning—after the whole tree is constructed, we can cut some nodes. Such an operation
can be performed using a test or validation set. Pruning can reduce the complexity of the
final classifier, and improve predictive accuracy by reducing overfitting.

The pruning algorithm is formed as follows:

We build a tree for the training set.1.
Then, we pass a validation set through the constructed tree, and consider any2.
internal node t and its left and right sub-nodes , .
If no one object from the validation sample has reached t, then we can say that3.
this node (and all its subtrees) is insignificant, and make t the leaf (set the
predicate's value for this node equal to the set of the majority class using the
training set).
If objects from the validation set have reached t, then we have to consider the4.
following three values:

The number of classification errors from a subtree of t
The number of classification errors from the subtree
The number of classification errors from the subtree

Ensemble Learning Chapter 9

[296]

If the value for the first case is zero, then we make node t as a leaf node with the
corresponding prediction for the class. Otherwise, we choose the minimum of these values.
Depending on which of them is minimal, we do the following, respectively:

 If the first is minimal, do nothing
 If the second is minimal, replace the tree from node t with a subtree from node

 If the third is minimal, replace the tree from node t with a subtree from node

Such a procedure regularizes the algorithm to beat overfitting and increase the ability to
generalize. In the case of a k-dimensional tree, different approaches can be used to select the
forecast in the leaf. We can take the most common class among the objects of the training
that fall in this leaf for classification. Alternatively, we can calculate the average of the
objective functions of these objects for regression.

We apply a decision rule to a new object starting from the tree root to predict or classify
new data. Thus, it is determined which subtree the object should go into. We recursively
repeat this process until we reach some leaf node, and, finally, we return the value of the
leaf node we found as the result of classification or regression.

Random forest method overview
Decision trees are a suitable family of elementary algorithms for bagging since they are
quite complicated and can ultimately achieve zero errors on any training set. We can use a
method that uses random subspaces (such as bagging) to reduce the correlation between
trees and avoid overfitting. The elementary algorithms are trained on different subsets of
the feature space, which are also randomly selected. An ensemble of decision tree models
using the random subspace method can be constructed using the following algorithm.

Where the number of objects for training is N and the number of features is , proceed as
follows:

Select as the number of individual trees in the ensemble.1.
For each individual tree, select as the number of features for . Typically,2.
only one value is used for all trees.
For each tree, create an training subset using bootstrap.3.

Ensemble Learning Chapter 9

[297]

Now, build decision trees from samples, as follows:

Select random features from the source, then the optimal division of the1.
training set will limit its search to them.
According to a given criterion, we choose the best attribute and make a split in2.
the tree according to it.
The tree is built until no more than objects remain in each leaf, or until we3.
reach a certain height of the tree, or until the training set is exhausted.

Now, to apply the ensemble model to a new object, it is necessary to combine the results of
individual models by majority voting or by combining a posteriori probabilities. An example
of a final classifier is as follows:

Consider the following fundamental parameters of the algorithm and their properties:

The number of trees: The more trees, the better the quality, but the training time
and the algorithm's workload also increase proportionally. Often, with an
increasing number of trees, the quality on the training set rises (it can even go up
to 100% accuracy), but the quality of the test set is asymptote (so, you can
estimate the minimum required number of trees).
The number of features for the splitting selection: With an increasing number
of features, the forest's construction time increases too, and the trees become
more uniform than before. Often, in classification problems, the number of
attributes is chosen equal to and for regression problems.
Maximum tree depth: The smaller the depth, the faster the algorithm is built and
will work. As the depth increases, the quality during training increases
dramatically. The quality may also increase on the test set. It is recommended to
use the maximum depth (except when there are too many training objects, and
we obtain very deep trees, the construction of which takes considerable time).
When using shallow trees, changing the parameters associated with limiting the
number of objects in the leaf and for splitting does not lead to a significant effect
(the leaves are already large). Using shallow trees is recommended in tasks with
a large number of noisy objects (outliers).

Ensemble Learning Chapter 9

[298]

The impurity function: This is a criterion for choosing a feature (decision rule)
for branching. It is usually MSE/MAE for regression problems. For classification
problems, it is the Gini criterion, the entropy, or the classification error. The
balance and depth of trees may vary depending on the specific impurity function
we choose.

We can consider a random forest as bagging decision trees, and during these trees' training,
we use features from a random subset of features for each partition. This approach is a
universal algorithm since random forests exist for solving problems of classification,
regression, clustering, anomaly search, and feature selection, among other tasks.

In the following section, we will see how to use different C++ libraries for developing
machine learning model ensembles.

Examples of using C++ libraries for creating
ensembles
The following sections will show how to use ensembles within the Shogun and Shark-ML
libraries. There are out-of-the-box implementations of random forest and gradient boosting
algorithms in these libraries; we will show how to use their application programming
interface (API) to work with these algorithms. Also, we will implement a stacking
ensemble technique from scratch, using primitives from the Shark-ML library.

Ensembles with Shogun
There are gradient boosting and random forest algorithm implementations in the Shogun
library, and the following sections will show the specific API for using them in practice.

Using gradient boosting with Shogun
There is an implementation of the gradient boosting algorithm in the Shogun library but it
is restricted, in that it only supports regression tasks. The algorithm is implemented in the
CStochasticGBMachine class. The main parameters to configure objects of this class are
the base ensemble algorithm model and the loss function, while other parameters include
the number of iterations, the learning rate, and the fraction of training vectors to be chosen
randomly at each iteration.

Ensemble Learning Chapter 9

[299]

We will create an example using gradient boosting for cosine function approximation,
assuming that we already have a training and testing dataset available (the exact
implementation of a data generator can be found in the source code for this example). For
this example, we will use an ensemble of decision trees. The implementation of the decision
tree algorithm in the Shogun library can be found in the CCARTree class. A classification
and regression tree (CART) is a binary decision tree that is constructed by splitting a node
into two child nodes repeatedly, beginning with the root node that contains the whole
dataset.

The first step is the creation and configuration of a CCARTree type object. The constructor
of this object takes the vector of the feature types (nominal or continuous) and the problem
type. After the object is constructed, we can configure the tree depth, which is the crucial
parameter for the algorithm's performance.

Then, we have to create a loss function object. For the current task, the object of
a CSquaredLoss type is a suitable choice.

With the model and the loss function object, we can then instantiate an object of the
CStochasticGBMachine class. For the training, we have to use the set_labels
and train methods with appropriate parameters: the object of the CRegressionLabels
type and the object of the CDenseFeatures type respectively. For evaluation, the
apply_regression method can be used, as illustrated in the following code block:

void GBMClassification(Some<CDenseFeatures<DataType>> features,
 Some<CRegressionLabels> labels,
 Some<CDenseFeatures<DataType>> test_features,
 Some<CRegressionLabels> test_labels) {
 // mark feature type as continuous
 SGVector<bool> feature_type(1);
 feature_type.set_const(false);

 auto tree = some<CCARTree>(feature_type, PT_REGRESSION);
 tree->set_max_depth(3);
 auto loss = some<CSquaredLoss>();

 auto sgbm = some<CStochasticGBMachine>(tree,
 loss,
 /*iterations*/ 100,
 /*learning rate*/ 0.1,
 /*sub-set fraction*/ 1.0);
 sgbm->set_labels(labels);
 sgbm->train(features);
 // evaluate model on test data
 auto new_labels = wrap(sgbm->apply_regression(test_features));
 auto eval_criterium = some<CMeanSquaredError>();

Ensemble Learning Chapter 9

[300]

 auto accuracy = eval_criterium->evaluate(new_labels, test_labels);
 ...
}

In the following diagram, we can see how gradient boosting approximates the cosine
function in a case where we used a maximum CART tree depth equal to 2. Note that the
generalization we achieved isn't particularly good:

In the following diagram, we can see that the generalization significantly grew because we
increased the CART tree depth to 3:

Ensemble Learning Chapter 9

[301]

Other parameters that we can tune for this type of algorithm are the number of iterations,
the learning rate, and the number of training samples used in one iteration.

Using random forest with Shogun
Another ensemble learning algorithm implemented in the Shogun library is the random
forest algorithm. We'll use it for the same function approximation task. It is implemented in
the CRandomForest class. To instantiate an object of this class, we have to pass two
parameters to the constructor: one is the number of trees (also, it equals the number of bags
the dataset should be divided to); the second is the number of attributes chosen randomly
during the node splitting when the algorithm builds a tree.

The next important configuration option is the rule on how the tree results should be
combined into the one final answer. The set_combination_rule method is used to
configure it. In the following example, we used an object of the CMajorityVote class,
which implements the majority vote scheme.

We also need to configure what type of problem we want to solve with the random forest,
and we can do this with the set_machine_problem_type method of the CRandomForest
class. Another required configuration is a type of feature we want to use within our
problem: the nominal or continuous features. This can be done with the
set_feature_types method. For the training, we will use the set_labels and the train
methods with appropriate parameters, as well as an object of the CRegressionLabels
type, and an object of the CDenseFeatures type. For evaluation, the apply_regression
method will be used, as illustrated in the following code block:

 void RFClassification(Some<CDenseFeatures<DataType>> features,
 Some<CRegressionLabels> labels,
 Some<CDenseFeatures<DataType>> test_features,
 Some<CRegressionLabels> test_labels) {
 int32_t num_rand_feats = 1;
 int32_t num_bags = 10;
 auto rand_forest =
 shogun::some<CRandomForest>(num_rand_feats, num_bags);
 auto vote = shogun::some<CMajorityVote>();
 rand_forest->set_combination_rule(vote);
 // mark feature type as continuous
 SGVector<bool> feature_type(1);
 feature_type.set_const(false);
 rand_forest->set_feature_types(feature_type);
 rand_forest->set_labels(labels);
 rand_forest->set_machine_problem_type(PT_REGRESSION);
 rand_forest->train(features);
 // evaluate model on test data

Ensemble Learning Chapter 9

[302]

 auto new_labels = wrap(rand_forest->apply_regression(test_features));
 auto eval_criterium = some<CMeanSquaredError>();
 auto accuracy = eval_criterium->evaluate(new_labels, test_labels);
 ...
 }

The following diagram shows the result of applying the random forest algorithm from the
Shogun library:

Note that this method is not very applicable to the regression task on this dataset. We can
see the gradient boosting used in the previous section produced more interpretable and less
error-prone output on this dataset.

Ensembles with Shark-ML
There is only one ensemble learning algorithm in the Shark-ML library, which is the
random forest, and it can be trained only for solving classification tasks. So, for this set of
samples, we will use the Breast Cancer Wisconsin (Diagnostic) dataset located at https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). It is taken
from Dua, D. and Graff, C. (2019) UCI Machine Learning Repository, Irvine, CA: University of
California, School of Information and Computer Science: http://archive.ics.uci.edu/ml.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Ensemble Learning Chapter 9

[303]

There are 569 instances in this dataset, and each instance has 32 attributes: the ID, the
diagnosis, and 30 real-value input features. The diagnosis can have two values: M =
malignant, and B = benign. Other attributes have 10 real-value features computed for each
cell nucleus, as follows:

Radius (mean distances from the center to the perimeter)
Texture (standard deviation of grayscale values)
Perimeter
Area
Smoothness (local variation in radius lengths)
Compactness
Concavity (severity of concave portions of the contour)
Concave points (number of concave portions of the contour)
Symmetry
Fractal dimension (coastline approximation—1)

This dataset can be used for a binary classification task.

Using random forest with Shark-ML
The random forest algorithm in the Shark-ML library is located in the RFClassifier class,
and the corresponding trainer is located in the RFTrainer class. We use the original
dataset values without preprocessing for the random forest algorithm implementation.
First, we configure the trainer for this type of classifier. These are the next methods for
configuration:

setNTrees: Set the number of trees.
setMinSplit: Set the minimum number of samples that are split.
setMaxDepth: Set the maximum depth of the tree.
setNodeSize: Set the maximum node size when the node is considered pure.
minImpurity: Set the minimum impurity level below which a node is
considered pure.

Ensemble Learning Chapter 9

[304]

After we configure the trainer object, we can use its train method for the training process.
This method takes two parameters: the object of the RFClassifier class, which should be
trained, and the ClassificationDataset object, which represents the dataset.

When the training is complete, we can use the classifier object as a functional object to
evaluate it on other data. For example, if we have the test dataset of the type
ClassificationDataset, we can obtain a classification in the following
way: Data<unsigned int> predictions = rf(test.inputs());, where rf is the
object of the RFClassifier class, as illustrated in the following code block:

void RFClassification(const ClassificationDataset& train,
 const ClassificationDataset& test) {
 RFTrainer<unsigned int> trainer;
 trainer.setNTrees(100);
 trainer.setMinSplit(10);
 trainer.setMaxDepth(10);
 trainer.setNodeSize(5);
 trainer.minImpurity(1.e-10);
 RFClassifier<unsigned int> rf;
 trainer.train(rf, train);
 // compute errors
 ZeroOneLoss<unsigned int> loss;
 Data<unsigned int> predictions = rf(test.inputs());
 double accuracy = 1. - loss.eval(test.labels(), predictions);
 std::cout << "Random Forest accuracy = " << accuracy << std::endl;
}

The output of this sample on the dataset is Random Forest accuracy = 0.971014.

Using a stacking ensemble with Shark-ML
To show the implementation of more ensemble learning techniques, we can develop the
stacking approach manually. This is not hard with the Shark-ML library, or indeed any
other library.

First, we need to define weak (or elementary) algorithms that we are going to use for
stacking. To unify access to the weak algorithms, we defined the base class, as follows:

struct WeakModel {
virtual ~WeakModel() {}
 virtual void Train(const ClassificationDataset& data_set) = 0;
 virtual LinearClassifier<RealVector>& GetClassifier() = 0;
};

Ensemble Learning Chapter 9

[305]

We used it for creating three weak algorithms' models—the logistic regression, the linear
discriminant analysis (LDA), and the linear SVM models, as illustrated in the following
code block:

struct LogisticRegressionModel : public WeakModel {
 LinearClassifier<RealVector> classifier;
 LogisticRegression<RealVector> trainer;
 void Train(const ClassificationDataset& data_set) override {
 trainer.train(classifier, data_set);
 }
 LinearClassifier<RealVector>& GetClassifier() override { return
 classifier; }
};

struct LDAModel : public WeakModel {
 LinearClassifier<RealVector> classifier;
 LDA trainer;
 void Train(const ClassificationDataset& data_set) override {
 trainer.train(classifier, data_set);
 }
 LinearClassifier<RealVector>& GetClassifier() override { return
 classifier; }
};

struct LinearSVMModel : public WeakModel {
 LinearClassifier<RealVector> classifier;
 LinearCSvmTrainer<RealVector> trainer{SVM_C, false};
 void Train(const ClassificationDataset& data_set) override {
 trainer.train(classifier, data_set);
 }
 LinearClassifier<RealVector>& GetClassifier() override { return
 classifier; }
};

These classes hide the usage of different types of trainer classes, but expose the standard
interface for the LinearClassifier<RealVector> type through the GetClassifier()
method. Furthermore, they implement the general Train method, which takes the object of
the ClassificationDataset class.

Ensemble Learning Chapter 9

[306]

One of the crucial moments for the stacking approach is combining (stacking) results of
weak algorithms to one set, which is used for training or evaluating the meta-algorithm.
There is the MakeMetaSet method in our implementation, which does this type of job. It
takes the vector of predictions from weak algorithms, and the corresponding labels from
the original dataset, and combines them into a new object of the ClassificationDataset
class, as illustrated in the following code block:

 ClassificationDataset MakeMetaSet(
 const std::vector<Data<unsigned int>>& inputs,
 const Data<unsigned int>& labels) {
 auto num_elements = labels.numberOfElements();
 std::vector<RealVector> vinputs(num_elements);
 std::vector<unsigned int> vlabels(num_elements);
 std::vector<RealVector::value_type> vals(inputs.size());
 for (size_t i = 0; i < num_elements; ++i) {
 for (size_t j = 0; j < inputs.size(); ++j) {
 vals[j] = inputs[j].element(i);
 }
 vinputs[i] = RealVector(vals.begin(), vals.end());
 vlabels[i] = labels.element(i);
 }
 return createLabeledDataFromRange(vinputs, vlabels);
 }

This method creates two vectors of inputs and labels and uses the Shark-ML function
createLabeledDataFromRange to create a new dataset object. Notice that new inputs are
vectors of objects of the RealVector type, and these objects have a new dimension equal to
3 because there are three algorithms we used to predict meta-features. Take a look at the
vals object used to combine the outputs (here, it is the inputs variable) from them. These
algorithms also take the RealVector objects as input. In the original dataset, they have 30
features; however, in our implementation, they have only five after the PCA dimensionality
reduction.

Because of the nature of the selected algorithms, we need to normalize our data. Let's
assume we have two datasets for training and testing, as follows:

 void StackingEnsemble(const ClassificationDataset& train,
 const ClassificationDataset& test) {
 ...
 }

Ensemble Learning Chapter 9

[307]

To normalize the training dataset, we need to copy the original dataset because the
Normalizer algorithm works in place and modifies the objects with which it works, as
illustrated in the following code block:

 ClassificationDataset train_data_set = train;
 train_data_set.makeIndependent();

When we have a copy of the dataset, we can normalize it with the instance of the classifier
object trained with the NormalizeComponentsUnitVariance class object. As with all
algorithms in the Shark-ML library, we have to train the normalizer first, and only then can
we apply it to the transformInputs function. This function transforms only input features
because we don't need to normalize binary labels, and can be seen in the following code
block:

 bool removeMean = true;
 Normalizer<RealVector> normalizer;
 NormalizeComponentsUnitVariance<RealVector>
 normalizing_trainer(removeMean);
 normalizing_trainer.train(normalizer, train_data_set.inputs());
 train_data_set = transformInputs(train_data_set, normalizer);

To speed up and generalize the models we used, we also reduced the dimensionality of the
training features with the PCA algorithm. Note that the PCA class doesn't use the train
method, but rather has the encoder method for obtaining the object of the LinearModel
class, which is then used for dimensionality reduction, as illustrated in the following code
block:

 PCA pca(train_data_set.inputs());
 LinearModel<> pca_encoder;
 pca.encoder(pca_encoder, 5);
 train_data_set = transformInputs(train_data_set, pca_encoder);

Now, after preprocessing our training dataset, we can define and train the weak models
that we are going to use for evaluation, as follows:

 // weak models
 std::vector<std::shared_ptr<WeakModel>> weak_models;
 weak_models.push_back(std::make_shared<LogisticRegressionModel>());
 weak_models.push_back(std::make_shared<LDAModel>());
 weak_models.push_back(std::make_shared<LinearSVMModel>());

 // train weak models for predictions
 for (auto weak_model : weak_models) {
 weak_model->Train(train_data_set);
 }

Ensemble Learning Chapter 9

[308]

For training, the meta-algorithm needs to get the meta-features, and, according to the
stacking approach, we will split our training dataset into several folds—10, in our case. We
then will train several weak models separately on each of the folds. The validation aspect of
the fold will be used for weak model evaluation, and its results will be added to a meta-
training dataset and used for training the meta-algorithm.

There is the createCVSameSizeBalanced function in the Shark-ML library, which can be
used for fold creation. It creates equal-size folds, where each consists of two parts: the
training part and the validation part. We will iterate over created folds to train weak
models and create meta-features. Note in the following code block that we will create new
models on each iteration of the loop:

 size_t num_partitions = 10;
 ClassificationDataset meta_data_train;
 auto folds = createCVSameSizeBalanced(train_data_set, num_partitions);
 for (std::size_t i = 0; i != folds.size(); ++i) {
 // access the fold
 ClassificationDataset training = folds.training(i);
 ClassificationDataset validation = folds.validation(i);
 // train local weak models - new ones on each of folds
 std::vector<std::shared_ptr<WeakModel>> local_weak_models;
 local_weak_models.push_back(
 std::make_shared<LogisticRegressionModel>());
 local_weak_models.push_back(std::make_shared<LDAModel>());
 local_weak_models.push_back(std::make_shared<LinearSVMModel>());
 std::vector<Data<unsigned int>> meta_predictions;
 for (auto weak_model : local_weak_models) {
 weak_model->Train(training);
 auto predictions =
 weak_model->GetClassifier()(validation.inputs());
 meta_predictions.push_back(predictions);
 }
 // combine meta features
 meta_data_train.append(MakeMetaSet(meta_predictions,
 validation.labels()));
 }

The meta_data_train object contains the meta-features and is used to train the meta-
model, which is the regular linear SVM model in our case, as follows:

 LinearClassifier<RealVector> meta_model;
 LinearCSvmTrainer<RealVector> trainer(SVM_C, true);
 trainer.train(meta_model, meta_data_train);

Ensemble Learning Chapter 9

[309]

Having trained the ensemble, we can try it on the test dataset. Since we used data
preprocessing, we should also transform our test data in the same way that we transformed
our training data. This can be easily done with the normalizer and the pca_encoder
objects, which are already trained and hold the required transformation options inside.
Usually, such objects (as well as the model) should be stored on secondary storage. The
code can be seen in the following snippet:

 ClassificationDataset test_data_set = test;
 test_data_set.makeIndependent();
 test_data_set = transformInputs(test_data_set, normalizer);
 test_data_set = transformInputs(test_data_set, pca_encoder);

The ensemble evaluation starts by predicting meta-features, using the weak models we
trained before. We will make the meta_test dataset object in the same way as we made
the training meta-dataset. We will store predictions from every weak model in the
meta_predictions vector and will use our helper function to combine them in the object
of the ClassificationDataset type, as follows:

 std::vector<Data<unsigned int>> meta_predictions;
 for (auto weak_model : weak_models) {
 auto predictions =
 weak_model->GetClassifier()(test_data_set.inputs());
 meta_predictions.push_back(predictions);
 }
 ClassificationDataset meta_test =
 MakeMetaSet(meta_predictions, test_data_set.labels());

After we have created the meta-features, we can pass them as input to the meta_model
object to generate the real predictions. We can also calculate the accuracy, like this:

 Data<unsigned int> predictions = meta_model(meta_test.inputs());
 ZeroOneLoss<unsigned int> loss;
 double accuracy = 1. - loss.eval(meta_test.labels(), predictions);
 std::cout << "Stacking ensemble accuracy = " << accuracy << std::endl;
 }

The output of this code is Stacking ensemble accuracy = 0.985507. You can see that
this ensemble performs better than the random forest implementation, even with default
settings. In the case of some additional tuning, it could give even better results.

Ensemble Learning Chapter 9

[310]

Summary
In this chapter, we examined various methods for constructing ensembles of machine
learning algorithms. The main purposes of creating ensembles are these:

Reducing the error of the elementary algorithms
Expanding the set of possible hypotheses
Increasing a probability of reaching the global optimum during optimizing

We saw that there are three main approaches for building ensembles: training elementary
algorithms on various datasets and averaging the errors (bagging); consistently improving
the results of the previous, weaker algorithms (boosting); and learning the meta-algorithm
from the results of elementary algorithms (stacking). Note that the methods of building
ensembles that we've covered, except stacking, require that the elementary algorithms
belong to the same class, and this is one of the main requirements for ensembles. It is also
believed that boosting gives more accurate results than bagging, but, at the same time, is
more prone to overfitting. The main disadvantage of stacking is that it begins to
significantly improve the results of elementary algorithms only with a relatively large
number of training samples.

In the next chapter, we will discuss the fundamentals of artificial neural networks (ANNs).
We'll look at the historical aspect of their creation, we will go through the basic
mathematical concepts used in ANNs, we will implement a multilayer perceptron (MLP)
network and a simple convolutional neural network (CNN), and we will discuss what
deep learning is and why it is so trendy.

Further reading
Ensemble methods: Bagging & Boosting: https://medium.com/@sainikhilesh/
difference-between-bagging-and-boosting-f996253acd22

An article explaining gradient boosting: https://explained.ai/gradient-
boosting/

Original article by Jerome Friedman called Greedy Function Approximation: A
Gradient Boosting Machine: https://statweb.stanford.edu/~jhf/ftp/trebst.
pdf

Ensemble Learning to Improve Machine Learning Results: https://blog.
statsbot.co/ensemble-learning-d1dcd548e936

https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://medium.com/@sainikhilesh/difference-between-bagging-and-boosting-f996253acd22
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://explained.ai/gradient-boosting/
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936

Ensemble Learning Chapter 9

[311]

Introduction to decision trees: https://medium.com/greyatom/decision-trees-
a-simple-way-to-visualize-a-decision-dc506a403aeb

Understanding Random Forest: https://towardsdatascience.com/
understanding-random-forest-58381e0602d2

https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

3
Section 3: Advanced Examples

In this section, we'll describe what neural networks are and how they can be applied to
solving image classification tasks. We'll also describe what recurrent neural networks are
and how they assist in solving neural processing tasks such as sentiment analysis.

This section comprises the following chapters:

Chapter 10, Neural Networks for Image Classification
Chapter 11, Sentiment Analysis with Recurrent Neural Networks

10
Neural Networks for Image

Classification
In recent years, we have seen a huge interest in neural networks, which are successfully
used in various areas—business, medicine, technology, geology, physics, and so on. Neural
networks have come into practice wherever it is necessary to solve problems of forecasting,
classification, or control. This approach is attractive from an intuitive point of view because
it is based on a simplified biological model of the human nervous system. It arose from
research in the field of artificial intelligence, namely, from attempts to reproduce the ability
of biological nervous systems to learn and correct mistakes by modeling the low-level
structure of the brain. Neural networks are compelling modeling methods that allow us to
reproduce extremely complex dependencies because they are non-linear. Neural networks
also cope better with the curse of dimensionality than other methods that don't allow
modeling dependencies for a large number of variables.

In this chapter, we'll look at the basic concepts of artificial neural networks and show you
how to implement neural networks with different C++ libraries. We'll also go through the
implementation of the multilayer perceptron and simple convolutional networks and find
out what deep learning is and what its applications are.

The following topics will be covered in this chapter:

An overview of neural networks
Delving into convolutional networks
What is deep learning?
Examples of using C++ libraries to create neural networks
Understanding image classification using the LeNet architecture

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter10

Neural Networks for Image Classification Chapter 10

[314]

Technical requirements
You will need the following technical requirements to complete this chapter:

Dlib library
Shogun library
Shark-ML library
PyTorch library
Modern C++ compiler with C++17 support
CMake build system version >= 3.8

An overview of neural networks
In this section, we will discuss what artificial neural networks are and their building blocks.
We will learn how artificial neurons work and how they relate to their biological analogs.
We will also discuss how to train neural networks with the backpropagation method, as
well as how to deal with the overfitting problem.

A neural network is a sequence of neurons interconnected by synapses. The structure of the
neural network came into the world of programming directly from biology. Thanks to this
structure, the computer has the ability to analyze and even remember information. In other
words, neural networks are based on the human brain, which contains millions of neurons
that transmit information in the form of electrical impulses.

Artificial neural networks are inspired by biology because they are composed of elements
with similar functionalities to those of biological neurons. These elements can be organized
in a way that corresponds to the anatomy of the brain, and they demonstrate a large
number of properties that are inherent in the brain. For example, they can learn from
experience, generalize previous precedents to new cases, and identify significant features
from input data that contain redundant information.

Now, let's understand the process of a single neuron.

Neural Networks for Image Classification Chapter 10

[315]

Neurons
The biological neuron consists of a body and processes that connect it to the outside world.
The processes along which a neuron receives excitation are called dendrites. The process
through which a neuron transmits excitation is called an axon. Each neuron has only one
axon. Dendrites and axons have a rather complex branching structure. The junction of the
axon and a dendrite is called a synapse. The main functionality of a neuron is to transfer
excitation from dendrites to an axon. But signals that come from different dendrites can
affect the signal in the axon. A neuron gives off a signal if the total excitation exceeds a
certain limit value, which varies within certain limits. If the signal is not sent to the axon,
the neuron does not respond to excitation. The intensity of the signal that the neuron
receives (and therefore the activation possibility) strongly depends on synapse activity. A
synapse is a contact for transmitting this information. Each synapse has a length, and
special chemicals transmit a signal along it. This basic circuit has many simplifications and
exceptions, but most neural networks model themselves on these simple properties.

The artificial neuron receives a specific set of signals as input, each of which is the output of
another neuron. Each input is multiplied by the corresponding weight, which is the
equivalent to its synaptic power. Then, all the products are summed up and the result of
this summation is used to determine the level of neuron activation. The following diagram
shows a model that demonstrates this idea:

Neural Networks for Image Classification Chapter 10

[316]

Here, a set of input signals, denoted by , go to an artificial neuron. These input
signals correspond to the signals that arrive at the synapses of a biological neuron. Each
signal is multiplied by the corresponding weight, , and passed to the
summing block. Each weight corresponds to the strength of one biological synaptic
connection. The summing block, which corresponds to the body of the biological neuron,
algebraically combines the weighted inputs.

The signal, which is called bias, displays the function of the limit value, known as the
shift. This signal allows us to shift the origin of the activation function, which subsequently
leads to an increase in the neuron's learning speed. The bias signal is added to each neuron.
It learns like all the other weights, except it connects to the signal, +1, instead of to the
output of the previous neuron. The received signal is processed by the activation
function, f, and gives a neural signal, y, as output. The activation function is a way to
normalize the input data. It narrows the range of sum so that the values of f (sum) belong
to a specific interval. That is, if we have a large input number, passing it through the
activation function gets us output in the required range. There are many activation
functions, and we'll go through them later in this chapter. To learn more about neural
networks, we'll have a look at a few more of their components.

The perceptron and neural networks
The first appearance of artificial neural networks can be traced to the article A logical
calculus of the ideas immanent in nervous activity, which was published in 1943 by Warren
McCallock and Walter Pitts. They proposed an early model of an artificial neuron. Donald
Hebb, in his 1949 book The Organization of Behavior, described the basic principles of neuron
training. These ideas were developed several years later by the American neurophysiologist
Frank Rosenblatt. Rosenblatt invented the perceptron in 1957 as a mathematical model of
the human brain's information perception. The concept was first implemented on a Mark-1
electronic machine in 1960.

Rosenblatt posited and proved the Perceptron Convergence Theorem (with the help of
Blok, Joseph, Kesten, and other researchers who worked with him). It showed that an
elementary perceptron, trained through error correction, regardless of the initial state of the
weight coefficients and the sequence stimuli, always leads to a solution in a finite amount
of time. Rosenblatt also presented evidence of some related theorems, which shows what
conditions should correspond to the architecture of artificial neural networks and how
they're trained. Rosenblatt also showed that the architecture of the perceptron is sufficient
to obtain a solution to any conceivable classification task.

Neural Networks for Image Classification Chapter 10

[317]

This means that the perceptron is a universal system. Rosenblatt himself identified two
fundamental limitations of three-layer perceptrons (consisting of one S-layer, one A-layer,
and R-layer): they lack the ability to generalize their characteristics in the presence of new
stimuli or new situations, and the fact that they can't deal with complex situations, thus
dividing them into simpler tasks.

Against the backdrop of the growing popularity of neural networks in 1969, a book by
Marvin Minsky and Seymour Papert was published that showed the fundamental
limitations of perceptrons. They showed that perceptrons are fundamentally incapable of
performing many important functions. Moreover, at that time, the theory of parallel
computing was poorly developed, and the perceptron was entirely consistent with the
principles of this theory. In general, Minsky showed the advantage of sequential computing
over parallel computing in certain classes of problems related to invariant representation.
He also demonstrated that perceptrons do not have a functional advantage over analytical
methods (for example, statistical methods) when solving problems related to forecasting.
Some tasks that, in principle, can be solved by a perceptron require a very long time or a
large amount of memory to solve them. These discoveries led to reorienting artificial
intelligence researchers to the area of symbolic computing, which is the opposite of neural
networks. Also, due to the complexity of mathematically studying perceptrons and there
being a lack of generally accepted terminology, various inaccuracies and misconceptions
arose.

Subsequently, interest in neural networks resumed. In 1986, David I. Rumelhart, J. E.
Hinton, and Ronald J. Williams rediscovered and developed the error backpropagation
method, which made it possible to solve the problem of training multilayer networks
effectively. This training method was developed back in 1975 by Verbos, but at that time, it
did not receive enough attention. In the early 1980s, various scientists came together to
study the possibilities of parallel computing and showed interest in theories of cognition
based on neural networks. As a result, Hopfield developed a solid theoretical foundation
for the use of artificial neural systems and used the so-called Hopfield network as an
example. With the network's help, he proved that artificial neural systems could
successfully solve a wide range of problems. Another factor that influenced the revival of
interest in ANNs was the lack of significant success in the field of symbolic computing.

Currently, terms such as single-layer perceptron (SLP) (or just perceptron) and multilayer
perceptron (MLP) are used. Usually, under the layers in the perceptron is a sequence of
neurons, located at the same level and not connected. The following diagram shows this
model:

Neural Networks for Image Classification Chapter 10

[318]

Neural Networks for Image Classification Chapter 10

[319]

Typically, we can distinguish between the following types of neural network layers:

Input: This is just the source data or signals arriving as the input of the system
(model). For example, these can be individual components of a specific vector
from the training set, .
Hidden: This is a layer of neurons located between the input and output layers.
There can be more than one hidden layer.
Output: This is the last layer of neurons that aggregates the model's work, and its
outputs are used as the result of the model's work.

The term single-layer perceptron is often understood as a model that consists of an input
layer and an artificial neuron aggregating this input data. This term is sometimes used in
conjunction with the term Rosenblatt's perceptron, but this is not entirely correct since
Rosenblatt used a randomized procedure to set up connections between input data and
neurons to transfer data to a different dimension, which made it possible to the solve
problems that arose when classifying linearly non-separable data. In Rosenblatt's work, a
perceptron consists of S and A neuron types, and an R adder. S neurons are the input
layers, A neurons are the hidden layers, and the R neuron generates the model's result. The
terminology's ambiguity arose because the weights were used only for the R neuron, while
constant weights were used between the S and A neuron types. However, note that
connections between these types of neurons were established according to a particular
randomized procedure:

Rosenblatt perceptron

Neural Networks for Image Classification Chapter 10

[320]

The term MLP refers to a model that consists of an input layer, a certain number of hidden
neurons layers, and an output layer. This can be seen in the following diagram:

It should also be noted that the architecture of the perceptron (or neural network) includes
the direction that signal propagation takes place in. In the preceding examples, all
communications are directed strictly from the input neurons to the output ones – this is
called a feedforward network. Other network architectures may also include feedback
between neurons.

The second point that we need to pay attention to in the architecture of the perceptron is
the number of connections between neurons. In the preceding diagram, we can see that
each neuron in one layer connects to all the neurons in the next layer – this is called a fully
connected layer. Such a connection is not a requirement, but we can see an example of a
layer with different types of connections in the Rosenblatt perceptron scheme.

Now, let's learn how artificial neural networks can be trained.

Neural Networks for Image Classification Chapter 10

[321]

Training with the backpropagation method
Let's consider the most common method that's used to train a feedforward neural network:
the error backpropagation method. It is related to supervised methods. Therefore, it requires
target values in the training examples.

The idea of the algorithm is based on the use of the output error of a neural network. At
each iteration of the algorithm, there are two network passes – forward and backward. On a
forward pass, an input vector is propagated from the network inputs to its outputs and
forms a specific output vector corresponding to the current (actual) state of the weights.
Then, the neural network error is calculated. On the backward pass, this error propagates
from the network output to its inputs, and the neuron weights are corrected.

The function that's used to calculate the network error is called the loss function. An
example of such a function is the square of the difference between the actual and target
values:

Here, k is the number of output neurons in the network, y' is the target value, and y is the
actual output value. The algorithm is iterative and uses the principle of step-by-step training;
the weights of the neurons of the network are adjusted after one training example is
submitted to its input. On the backward pass, this error propagates from the network
output to its inputs, and the following rule corrects the neuron's weights:

Here, is the weight of the connection of the neuron and is the learning rate
parameter that allows us to control the value of the correction step, . To accurately
adjust to a minimum of errors, this is selected experimentally in the learning process (it
varies in the range from 0 to 1). is the number of the hierarchy of the algorithm (that is,
the step number). Let's say that the output sum of the ith neuron is as follows:

Neural Networks for Image Classification Chapter 10

[322]

From this, we can show the following:

Here, we can see that the differential, , of the activation function of the neurons of the
network, f (s), must exist and not be equal to zero at any point; that is, the activation
function must be differentiable on the entire numerical axis. Therefore, to apply the
backpropagation method, sigmoidal activation functions, such as logistic or hyperbolic
tangents, are often used.

In practice, training is continued not until the network is precisely tuned to the minimum of
the error function, but until a sufficiently accurate approximation is achieved. This process
allows us to reduce the number of learning iterations and prevent the network from
overfitting.

Currently, many modifications of the backpropagation algorithm have been developed.
Let's look at some of them.

Backpropagation method modes
There are three main modes of the backpropagation method:

Stochastic
Batch
Mini-batch

Let's see what these modes are and how they differ from each other.

Stochastic mode
In stochastic mode, the method introduces corrections to the weight coefficients
immediately after calculating the network output on one training sample.

The stochastic method is slower than the batch method. Given it does not carry out an
accurate gradient descent, instead introducing some noise using an undeveloped gradient, it
can get out of local minima and produce better results. It is also easier to apply when
working with large amounts of training data.

Neural Networks for Image Classification Chapter 10

[323]

Batch mode
For the batch mode of gradient descent, the loss function is calculated immediately for all
available training samples, and then corrections of the weight coefficients of the neuron are
introduced by the error backpropagation method.

The batch method is faster and more stable than stochastic mode, but it tends to stop and
get stuck at local minima. Also, when it needs to train large amounts of data, it requires
substantial computational resources.

Mini-batch mode
In practice, mini-batches are often used as a compromise. The weights are adjusted after
processing several training samples (mini-batches). This is done less often than with
stochastic descent, but more often than with batch mode.

Now that we've looked at the main backpropagation training modes, let's discuss the
problems of the backpropagation method.

Backpropagation method problems
Despite the mini-batch method not being universal, it is widespread at the moment because
it provides a compromise between computational scalability and learning effectiveness. It
also has individual flaws. Most of its problems come from the indefinitely long learning
process. In complex tasks, it may take days or even weeks to train the network. Also, while
training the network, the values of the weights can become enormous due to correction.
This problem can lead to the fact that all or most of the neurons begin to function at
enormous values, in the region where the derivative of the loss function is very small. Since
the error that's sent back during the learning process is proportional to this derivative, the
learning process can practically freeze.

The gradient descent method can get stuck in a local minimum without hitting a global
minimum. The error backpropagation method uses a kind of gradient descent; that is, it
descends along the error surface, continuously adjusting the weights until they reach a
minimum. The surface of the error of a complex network is rugged and consists of hills,
valleys, folds, and ravines in a high-dimensional space. A network can fall into a local
minimum when there is a much deeper minimum nearby. At the local minimum point, all
directions lead up, and the network is unable to get out of it. The main difficulty in training
neural networks comes down to the methods that are used to exit the local minima: each
time we leave a local minimum, the next local minimum is searched by the same method,
thereby backpropagating the error until it is no longer possible to find a way out of it.

Neural Networks for Image Classification Chapter 10

[324]

A careful analysis of the proof of convergence shows that weights corrections are assumed
to be infinitesimal. This assumption is not feasible in practice since it leads to an infinite
learning time. The step size should be taken as the final size. If the step size is fixed and
very small, then the convergence will be too slow, while if it is fixed and too large, then
paralysis or permanent instability can occur. Today, many optimization methods have been
developed that use a variable correction step size. They adapt the step size depending on
the learning process (examples of such algorithms include Adam, Adagrad, RMSProp,
Adadelta, and Nesterov Accelerated Gradient).

Notice that there is the possibility of the network overfitting. With too many neurons, the
ability of the network to generalize information can be lost. The network can learn an entire
set of samples provided for training, but any other images, even very similar ones, may be
classified incorrectly. To prevent this problem, we need to use regularization and pay
attention to this when designing our network architecture.

The backpropagation method – an example
To understand how the backpropagation method works, let's look at an example.

We'll introduce the following indexing for all expression elements: is the index of the
layer, is the index of the neuron in the layer, and is the index of the current element or
connection (for example, weight). We use these indexes as follows:

This expression should be read as the element of the neuron in the layer.

Let's say we have a network that consists of three layers, each of which contains two
neurons:

Neural Networks for Image Classification Chapter 10

[325]

As the loss function, we choose the square of the difference between the actual and target
values:

Here, is the target value of the network output, is the actual result of the output layer of
the network, and is the number of neurons in the output layer.

This formula calculates the output sum of the neuron, , in the layer, :

Here, is the number of inputs of a specific neuron and is the bias value for a specific
neuron.

For example, for the first neuron from the second layer, it is equal to the following:

Neural Networks for Image Classification Chapter 10

[326]

Don't forget that no weights for the first layer exist because this layer only represents the
input values.

The activation function that determines the output of a neuron should be a sigmoid, as
follows:

Its properties, as well as other activation functions, will be discussed later in this chapter.
Accordingly, the output of the i th neuron in the l th layer () is equal to the following:

Now, we implement stochastic gradient descent; that is, we correct the weights after each
training example and move in a multidimensional space of weights. To get to the minimum
of the error, we need to move in the direction opposite to the gradient. We have to add

error correction to each weight, , based on the corresponding output. The following
formula shows how we calculate the error correction value, , with respect to the
output:

Now that we have the formula for the error correction value, we can write a formula for the
weight update:

Here,- is a learning rate value.

The partial derivative of the error with respect to the weights, , is calculated using the

chain rule, which is applied twice. Note that only affects the error only in the sum, :

Neural Networks for Image Classification Chapter 10

[327]

We start with the output layer and derive an expression that's used to calculate the

correction for the weight, . To do this, we must sequentially calculate the components.
Consider how the error is calculated for our network:

Here, we can see that does not depend on the weight of . Its partial derivative with
respect to this variable is equal to :

Then, the general expression changes to follow the next formula:

The first part of the expression is calculated as follows:

The sigmoid derivative is , respectively. For the second part of the
expression, we get the following:

Neural Networks for Image Classification Chapter 10

[328]

The third part is the partial derivative of the sum, which is calculated as follows:

Now, we can combine everything into one formula:

We can also derive a general formula in order to calculate the error correction for all the
weights of the output layer:

Here, is the index of the output layer of the network.

Now, we can consider how the corresponding calculations are carried out for the inner
(hidden) layers of the network. Let's take, for example, the weight, . Here, the approach
is the same, but with one significant difference – the output of the neuron of the hidden
layer is passed to the input of all (or several) the neurons of the output layer, and this must
be taken into account:

Neural Networks for Image Classification Chapter 10

[329]

Here, we can see that and have already been calculated in the previous step and
that we can use their values to perform calculations:

By combining the obtained results, we receive the following output:

Similarly, we can calculate the second component of the sum using the values that were

calculated in the previous steps – and :

The remaining parts of the expression for weight correction, , are obtained as follows,
similar to how the expressions were obtained for the weights of the output layer:

By combining the obtained results, we obtain a general formula that we can use to calculate
the magnitude of the adjustment of the weights of the hidden layers:

Neural Networks for Image Classification Chapter 10

[330]

Here, is the index of the hidden layer and is the number of neurons in
the layer, .

Now, we have all the necessary formulas to describe the main steps of the error
backpropagation algorithm:

Initialize all weights, , with small random values (the initialization process1.
will be discussed later).
Repeat this several times, sequentially, for all the training samples, or a mini-2.
batch of samples:

Pass a training sample (or a mini-batch of samples) to the network input and1.
calculate and remember all the outputs of the neurons. Those calculate all
the sums and values of our activation functions.
Calculate the errors for all the neurons of the output layer:2.

For each neuron on all l layers, starting from the penultimate one, calculate3.
the error:

Here, Lnext is the number of neurons in the l + 1 layer.

Update the network weights:4.

Here, is the learning rate value.

Neural Networks for Image Classification Chapter 10

[331]

There are many versions of the backpropagation algorithm that improve the stability and
convergence rate of the algorithm. One of the very first proposed improvements was the
use of momentum. At each step, the value is memorized and at the next step, we use a
linear combination of the current gradient value and the previous one:

 is the hyperparameter that's used for additional algorithm tuning. This algorithm is more
common now than the original version because it allows us to achieve better results during
training.

The next important element that's used to train the neural network is the loss function.

Loss functions
With the loss function, neural network training is reduced to the process of optimally
selecting the coefficients of the matrix of weights in order to minimize the error. This
function should correspond to the task, for example, categorical cross-entropy for the
classification problem or the square of the difference for regression. Differentiability is also
an essential property of the loss function if the backpropagation method is used to train the
network. Let's look at some of the popular loss functions that are used in neural networks:

The mean squared error (MSE) loss function is widely used for regression and
classification tasks. Classifiers can predict continuous scores, which are
intermediate results that are only converted into class labels (usually by a
threshold) as the very last step of the classification process. MSE can be
calculated using these continuous scores rather than the class labels. The
advantage of this is that we avoid losing information due to dichotomization.
The standard form of the MSE loss function is defined as follows:

Neural Networks for Image Classification Chapter 10

[332]

The mean squared logarithmic error (MSLE) loss function is a variant of MSE
and is defined as follows:

By taking the log of the predictions and target values, the variance that we are
measuring has changed. It is often used when we do not want to penalize
considerable differences in the predicted and target values when both the
predicted and actual values are big numbers. Also, MSLE penalizes
underestimates more than overestimates.

The L2 loss function is the square of the L2 norm of the difference between the
actual value and target value. It is defined as follows:

The mean absolute error (MAE) loss function is used to measure how close
forecasts or predictions are to the eventual outcomes:

MAE requires complicated tools such as linear programming to compute the
gradient. MAE is more robust to outliers than MSE since it does not make use of
the square.

The L1 loss function is the sum of absolute errors of the difference between the
actual value and target value. Similar to the relationship between MSE and L2, L1
is mathematically similar to MAE except it does not have division by n. It is
defined as follows:

Neural Networks for Image Classification Chapter 10

[333]

The cross-entropy loss function is commonly used for binary classification tasks
where labels are assumed to take values of 0 or 1. It is defined as follows:

Cross-entropy measures the divergence between two probability distributions. If
the cross-entropy is large, this means that the difference between the two
distributions is significant, while if the cross-entropy is small, this means that the
two distributions are similar to each other. The cross-entropy loss function has the
advantage of faster convergence, and it is more likely to reach global optimization
than the quadratic loss function.

The negative log-likelihood loss function is used in neural networks for
classification tasks. It is used when the model outputs a probability for each class
rather than the class label. It is defined as follows:

The cosine proximity loss function computes the cosine proximity between the
predicted value and the target value. It is defined as follows:

This function is the same as the cosine similarity, which is a measure of similarity
between two non-zero vectors. This is expressed as the cosine of the angle
between them. Unit vectors are maximally similar if they are parallel and
maximally dissimilar if they are orthogonal.

The hinge loss function is used for training classifiers. The hinge loss is also
known as the max-margin objective and is used for maximum-margin
classification. It uses the raw output of the classifier's decision function, not the
predicted class label. It is defined as follows:

Neural Networks for Image Classification Chapter 10

[334]

There are many other loss functions. Complex network architectures often use several loss
functions to train different parts of a network. For example, the Mask RCNN architecture,
which is used for predicting object classes and boundaries on images, uses different loss
functions: one for regression and another for classifiers. In the next section, we will discuss
the neuron's activation functions.

Activation functions
What does an artificial neuron do? Simply put, it calculates the weighted sum of inputs,
adds the bias, and decides whether to exclude this value or use it further. The artificial
neuron doesn't know of a threshold that can be used to figure out whether the output value
switches neurons to the activated state. For this purpose, we add an activation function. It
checks the value that's produced by the neuron for whether external connections should
recognize that this neuron as activated or whether it can be ignored. It determines the
output value of a neuron, depending on the result of a weighted sum of inputs and a
threshold value.

Let's consider some examples of activation functions and their properties.

The stepwise activation function
The stepwise activation function works like this – if the sum value is higher than a
particular threshold value, we consider the neuron activated. Otherwise, we say that the
neuron is inactive.

A graph of this function can be seen in the following diagram:

Neural Networks for Image Classification Chapter 10

[335]

The function returns 1 (the neuron has been activated) when the argument is > 0 (the zero
value is a threshold), and the function returns 0 (the neuron hasn't been activated)
otherwise. This approach is easy, but it has flaws. Imagine that we are creating a binary
classifier – a model that should say yes or no (activated or not). A stepwise function can do
this for us—it prints 1 or 0. Now, imagine the case when more neurons are required to
classify many classes: class1, class2, class3, or even more. What happens if more than one
neuron is activated? All the neurons from the activation function derive 1.

In this case, questions arise about what class should ultimately be obtained for a given
object. We only want one neuron to be activated, and the activation functions of other
neurons should be zero (except in this case, we can be sure that the network correctly
defines the class). Such a network is more challenging to train and achieve convergence. If
the activation function is not binary, then the possible values are activated at 50 %, activated
at 20 %, and so on. If several neurons are activated, we can find the neuron with the highest
value of the activation function. Since there are intermediate values at the output of the
neuron, the learning process runs smoother and faster. In the stepwise activation function,
the likelihood of several fully activated neurons appearing during training decreases
(although this depends on what we are training and on what data). Also, the stepwise
activation function is not differentiable at point 0 and its derivative is equal to 0 at all other
points. This leads to difficulties when we are using gradient descent methods for training.

The linear activation function
The linear activation function, y = c x, is a straight line and is proportional to the input (that
is, the weighted sum on this neuron). Such a choice of activation function allows us to get a
range of values, not just a binary answer. We can connect several neurons and if more than
one neuron is activated, the decision is made based on the choice of, for example, the
maximum value.

Neural Networks for Image Classification Chapter 10

[336]

The following diagram shows what the linear activation function looks like:

The derivative of y = c x with respect to x is c. This conclusion means that the gradient has
nothing to do with the argument of the function. The gradient is a constant vector, while
the descent is made according to a constant gradient. If an erroneous prediction is made,
then the backpropagation error's update changes are also constant and do not depend on
the change that's made regarding the input.

There is another problem: related layers. A linear function activates each layer. The value
from this function goes to the next layer as input while the second layer considers the
weighted sum at its inputs and, in turn, includes neurons, depending on another linear
activation function. It doesn't matter how many layers we have. If they are all linear, then
the final activation function in the last layer is just a linear function of the inputs on the first
layer. This means that two layers (or N layers) can be replaced with one layer. Due to this,
we lose the ability to make sets of layers. The entire neural network is still similar to the one
layer with a linear activation function because the linear combination of linear functions is
another linear function.

Neural Networks for Image Classification Chapter 10

[337]

The sigmoid activation function

The sigmoid activation function, , is a smooth function, similar to a stepwise
function:

A sigmoid is a non-linear function, and a combination of sigmoids also produces a non-
linear function. This allows us to combine neuron layers. A sigmoid activation function is
not binary, which makes an activation with a set of values from the range [0,1], in contrast
to a stepwise function. A smooth gradient also characterizes a sigmoid. In the range of
values of from -2 to 2, the values, , change very quickly. This gradient property means
that any small change in the value of in this area entails a significant change in the value
of . This behavior of the function indicates that tends to cling to one of the edges of the
curve.

Neural Networks for Image Classification Chapter 10

[338]

The sigmoid looks like a suitable function for classification tasks. It tries to bring the values
to one of the sides of the curve (for example, to the upper edge at and the lower edge
at). This behavior allows us to find clear boundaries in the prediction.

Another advantage of a sigmoid over a linear function is as follows: In the first case, we
have a fixed range of function values, [0, 1], while a linear function varies within .
This is advantageous because it does not lead to errors in numerical calculations when
dealing with large values on the activation function.

Today, the sigmoid is one of the most widespread activation functions in neural networks.
But it also has flaws that we have to take into account. When the sigmoid function
approaches its maximum or minimum, the output value of tends to weakly reflect
changes in . This means that the gradient in such areas takes small values, and the small
values cause the gradient to vanish. The vanishing gradient problem is a situation where a
gradient value becomes too small or disappears and the neural network refuses to learn
further or learns very slowly.

The hyperbolic tangent
The hyperbolic tangent is another commonly used activation function. It can be represented
graphically as follows:

Neural Networks for Image Classification Chapter 10

[339]

The hyperbolic tangent is very similar to the sigmoid. This is the correct sigmoid function,

. Therefore, such a function has the same characteristics as the
sigmoid we looked at earlier. Its nature is non-linear, it is well suited for a combination of
layers, and the range of values of the function is . Therefore, it makes no sense to worry
about the values of the activation function leading to computational problems. However, it
is worth noting that the gradient of the tangential function has higher values than that of
the sigmoid (the derivative is steeper than it is for the sigmoid). Whether we choose a
sigmoid or a tangent function depends on the requirements of the gradient's amplitude. As
well as the sigmoid, the hyperbolic tangent has the inherent vanishing gradient problem.

The rectified linear unit (ReLU), , returns if is positive, and otherwise:

At first glance, it seems that ReLU has all the same problems as a linear function since
ReLU is linear in the first quadrant. But in fact, ReLU is non-linear, and a combination of
ReLU is also non-linear. A combination of ReLU can approximate any function. This
property means that we can use layers and they won't degenerate into a linear combination.
The range of permissible values of ReLU is , which means that its values can be quite
high, thus leading to computational problems. However, this same property removes the
problem of a vanishing gradient. It is recommended to use regularization and normalize
the input data to solve the problem with large function values (for example, to the range of
values [0,1]).

Let's look at such a property of a neural network as the activation sparseness. Imagine a
large neural network with many neurons. The use of a sigmoid or hyperbolic tangent
entails the activation of all neurons. This action means that almost all activations must be
processed to calculate the network output. In other words, activation is dense and costly.

Neural Networks for Image Classification Chapter 10

[340]

Ideally, we want some neurons not to be activated, and this would make activations sparse
and efficient. ReLU allows us to do this. Imagine a network with randomly initialized
weights (or normalized) in which approximately 50% of activations are 0 because of the
ReLU property, returning 0 for negative values of . In such a network, fewer neurons are
included (sparse activation), and the network itself becomes lightweight.

Since part of the ReLU is a horizontal line (for negative values of), the gradient on this
part is 0. This property leads to the fact that weights cannot be adjusted during training.
This phenomenon is called the Dying ReLU problem. Because of this problem, some
neurons are turned off and do not respond, making a significant part of the neural network
passive. However, there are variations of ReLU that help solve this problem. For example, it
makes sense to replace the horizontal part of the function (the region where) with the
linear one using the expression . There are other ways to avoid a zero gradient, but
the main idea is to make the gradient non-zero and gradually restore it during training.

Also, ReLU is significantly less demanding on computational resources than hyperbolic
tangent or sigmoid because it performs simpler mathematical operations than the
aforementioned functions.

The critical properties of ReLU are its small computational complexity, nonlinearity, and
unsusceptibility to the vanishing gradient problem. This makes it one of the most
frequently used activation functions for creating deep neural networks.

Now that we've looked at a number of activation functions, we can highlight their main
properties.

Activation function properties
The following is a list of activation function properties that are worth considering when
deciding which activation function to choose:

Non-linearity: If the activation function is non-linear, it can be proved that even
a two-level neural network can be a universal approximator of the function.
Continuous differentiability: This property is desirable for providing gradient
descent optimization methods.
Value range: If the set of values for the activation function is limited, gradient-
based learning methods are more stable and less prone to calculation errors since
there are no large values. If the range of values is infinite, training is usually
more effective, but care must be taken to avoid exploding the gradient (its
extremal values).

Neural Networks for Image Classification Chapter 10

[341]

Monotonicity: If the activation function is monotonic, the error surface
associated with the single-level model is guaranteed to be convex. This allows us
to learn more effectively.
Smooth functions with monotone derivatives: It is shown that in some cases,
they provide a higher degree of generality.

Now that we've discussed the main components used to train neural networks, it's time to
learn how to deal with the overfitting problem, which regularly appears during the training
process.

Regularization in neural networks
Overfitting is one of the problems of machine learning models and neural networks in
particular. The problem is that the model only explains the samples from the training set,
thus adapting to the training samples instead of learning to classify samples that were not
involved in the training process (losing the ability to generalize). Usually, the primary
cause of overfitting is the model's complexity (in terms of the number of parameters it has).
The complexity can be too high for the training set available and, ultimately, for the
problem to be solved. The task of the regularizer is to reduce the model's complexity,
preserving the number of parameters. Let's consider the most common regularization
methods that are used in neural networks.

Different methods for regularization
The most widespread regularization methods are L2-regularization, dropout, and batch
normalization. Let's take a look:

L2-regularization (weight decay) is performed by penalizing the weights with
the highest values. Penalizing is performed by minimizing their -norm using
the parameter – a regularization coefficient that expresses the preference for
minimizing the norm when we need to minimize losses on the training set. That

is, for each weigh, , we add the term, , to the loss function,
 (the factor is used so that the gradient of this term with respect to

the parameter is equal to and not for the convenience of applying the
error backpropagation method). We must select correctly. If the coefficient is
too small, then the effect of regularization is negligible. If it is too large, the
model can reset all the weights.

Neural Networks for Image Classification Chapter 10

[342]

Dropout regularization consists of changing the structure of the network. Each
neuron can be excluded from a network structure with some probability, . The
exclusion of a neuron means that with any input data or parameters, it returns 0.
Excluded neurons do not contribute to the learning process at any stage of the
backpropagation algorithm. Therefore, the exclusion of at least one of the
neurons is equal to learning a new neural network. This "thinning" network is
used to train the remaining weights. A gradient step is taken, after which all
ejected neurons are returned to the neural network. Thus, at each step of training,
we set up one of the possible 2N network architectures. By architecture, we mean
the structure of connections between neurons, and by N, we're denoting the total
number of neurons. When we are evaluating a neural network, neurons are no
longer thrown out. Each neuron output is multiplied by (1 - p). This means that in
the neuron's output, we receive its response expectation for all 2N architectures.
Thus, a neural network trained using dropout regularization can be considered a
result of averaging responses from an ensemble of 2N networks.
Batch normalization makes sure that the effective learning process of neural
networks isn't impeded. It is possible that the input signal to be significantly
distorted by the mean and variance as the signal propagates through the inner
layers of a network, even if we initially normalized the signal at the network
input. This phenomenon is called the internal covariance shift and is fraught with
severe discrepancies between the gradients at different levels or layers.
Therefore, we have to use stronger regularizers, which slows down the pace of
learning.

Batch normalization offers a straightforward solution to this problem: normalize
the input data in such a way as to obtain zero mean and unit variance.
Normalization is performed before entering each layer. During the training
process, we normalize the batch samples, and during use, we normalize the
statistics obtained based on the entire training set since we cannot see the test data
in advance. We calculate the mean and variance for a specific batch,

, as follows:

Neural Networks for Image Classification Chapter 10

[343]

Using these statistical characteristics, we transform the activation function in such
a way that it has zero mean and unit variance throughout the whole batch:

Here, is a parameter that protects us from dividing by 0 in cases where the
standard deviation of the batch is very small or even equal to zero. Finally, to get
the final activation function, , we need to make sure that, during normalization,
we don't lose the ability to generalize. Since we applied scaling and shifting
operations to the original data, we can allow arbitrary scaling and shifting of
normalized values, thereby obtaining the final activation function:

Here, and are the parameters of batch normalization that the system can be
trained with (they can be optimized by the gradient descent method on the
training data). This generalization also means that batch normalization can be
useful when applying the input of a neural network directly.

This method, when applied to multilayer networks, almost always successfully
reaches its goal – it accelerates learning. Moreover, it's an excellent regularizer,
allowing us to choose the learning rate, the power of the -regularizer, and the
dropout. The regularization here is a consequence of the fact that the result of the
network for a specific sample is no longer deterministic (it depends on the whole
batch that this result was obtained from), which simplifies the generalization
process.

The next important topic we'll look at is neural network initialization. This affects the
convergence of the training process, training speed, and overall network performance.

Neural Networks for Image Classification Chapter 10

[344]

Neural network initialization
The principle of choosing the initial values of weights for the layers that make up the model
is very important. Setting all the weights to 0 is a severe obstacle to learning because none
of the weights can be active initially. Assigning weights to the random values from the
interval, [0, 1], is also usually not the best option. Actually, model performance and
learning process convergence can strongly rely on correct weights initialization; however,
the initial task and model complexity can also play an important role. Even if the task's
solution does not assume a strong dependency on the values of the initial weights, a well-
chosen method of initializing weights can significantly affect the model's ability to learn.
This is because it presets the model parameters while taking the loss function into account.
Let's look at two popular methods that are used to initialize weights.

Xavier initialization method
The Xavier initialization method is used to simplify the signal flow through the layer
during both the forward pass and the backward pass of the error for the linear activation
function. This method also works well for the sigmoid function, since the region where it is
unsaturated also has a linear character. When calculating weights, this method relies on
probability distribution (such as the uniform or the normal ones) with a variance of

, where and are the number of neurons in the previous and
subsequent layers, respectively.

He initialization method
The He initialization method is a variation of the Xavier method that's more suitable for
ReLU activation functions because it compensates for the fact that this function returns zero
for half of the definition domain. This method of weight calculation relies on a probability
distribution with the following variance:

There are also other methods of weight initialization. Which one you choose is usually
determined by the problem being solved, the network topology, the activation functions
being used, and the loss function. For example, for recursive networks, the orthogonal
initialization method can be used. We'll provide a concrete programming example of neural
network initialization in Chapter 12, Exporting and Importing Models.

Neural Networks for Image Classification Chapter 10

[345]

In the previous sections, we looked at the basic components of artificial neural networks,
which are common to almost all types of networks. In the next section, we will discuss the
features of convolutional neural networks that are often used for image processing.

Delving into convolutional networks
The MLP is the most powerful feedforward neural network. It consists of several layers,
where each neuron receives its copy of all the output from the previous layer of neurons.
This model is ideal for certain types of tasks, for example, training on a limited number of
more or less unstructured parameters.

Nevertheless, let's see what happens to the number of parameters (weights) in such a
model when raw data is used as input. For example, the CIFAR-10 dataset contains 32 x 32
x 3 color images, and if we consider each channel of each pixel as an independent input
parameter for MLP, each neuron in the first hidden layer adds about 3,000 new parameters
to the model! With the increase in image size, the situation quickly gets out of hand,
producing images that users can't use for real applications.

One popular solution is to lower the resolution of the images so that MLP becomes
applicable. Nevertheless, when we lower the resolution, we risk losing a large amount of
information. It would be great if it were possible to process the information before applying
a decrease in quality so that we don't cause an explosive increase in the number of model
parameters. There is a very effective way to solve this problem, which is based on the
convolution operation.

Convolution operator
This approach was first used for neural networks that worked with images, but it has been
successfully used to solve problems from other subject areas. Let's consider using this
method for image classification.

Let's assume that the image pixels that are close to each other interact more closely when
forming a feature of interest for us (the feature of an object in the image) than pixels located
at a considerable distance. Also, if a small trait is considered very important in the process
of image classification, it does not matter in which part of the image this trait is found.

Neural Networks for Image Classification Chapter 10

[346]

Let's have a look at the concept of a convolution operator. We have a two-dimensional
image of I and a small K matrix that has a dimension of h x w (the so-called convolution
kernel) constructed in such a way that it graphically encodes a feature. We compute a
minimized image of I * K, superimposing the core to the image in all possible ways and
recording the sum of the elements of the original image and the kernel:

An exact definition assumes that the kernel matrix is transposed, but for machine learning
tasks, it doesn't matter whether this operation was performed or not. The convolution
operator is the basis of the convolutional layer in a CNN. The layer consists of a certain
number of kernels, (with additive displacement components, , for each kernel), and
calculates the convolution of the output image of the previous layer using each of the
kernels, each time adding a displacement component. In the end, the activation function, ,
can be applied to the entire output image. Usually, the input stream for a convolutional
layer consists of d channels; for example, red/green/blue for the input layer, in which case
the kernels are also expanded so that they also consist of d channels. The following formula
is obtained for one channel of the output image of the convolutional layer, where K is the
kernel and b is the stride (shift) component:

The following diagram schematically depicts the preceding formula:

Neural Networks for Image Classification Chapter 10

[347]

If the additive (stride) component is not equal to 1, then this can be schematically depicted
as follows:

Please note that since all we are doing here is adding and scaling the input pixels, the
kernels can be obtained from the existing training sample using the gradient descent
method, similar to calculating weights in an MLP. An MLP could perfectly cope with the
functions of the convolutional layer, but it requires a much longer training time, as well as a
more significant amount of training data.

Notice that the convolution operator is not limited to two-dimensional data: most deep
learning frameworks provide layers for one-dimensional or N-dimensional convolutions
directly out of the box. It is also worth noting that although the convolutional layer reduces
the number of parameters compared to a fully connected layer, it uses more
hyperparameters—parameters that are selected before training.

In particular, the following hyperparameters are selected:

Depth: How many kernels and bias coefficients will be involved in one layer.
The height and width of each kernel.
Step (stride): How much the kernel is shifted at each step when calculating the
next pixel of the resulting image. Usually, the step value that's taken is equal to 1,
and the larger the value is, the smaller the size of the output image that's
produced.
Padding: Note that convoluting any kernel of a dimension greater than 1 x 1
reduces the size of the output image. Since it is generally desirable to keep the
size of the original image, the pattern is supplemented with zeros along the
edges.

Neural Networks for Image Classification Chapter 10

[348]

One pass of the convolutional layer affects the image by reducing the length and width of a
particular channel but increasing its value (depth).

Another way to reduce the image dimension and save its general properties is to
downsample the image. Network layers that perform such operations are called pooling
layers.

Pooling operation
A pooling layer receives small, separate fragments of the image and combines each
fragment into one value. There are several possible methods of aggregation. The most
straightforward one is to take the maximum from a set of pixels. This method is shown
schematically in the following diagram:

Let's consider how maximum pooling works. In the preceding diagram, we have a matrix
of numbers that's 6 x 6 in size. The pooling window's size equals 3, so we can divide this
matrix into the four smaller submatrices of size 3 x 3. Then, we can choose the maximum
number from each submatrix and make a smaller matrix of size 2 x 2 from these numbers.

The most important characteristic of a convolutional or pooling layer is its receptive field
value, which allows us to understand how much information is used for processing. Let's
discuss it in detail.

Neural Networks for Image Classification Chapter 10

[349]

Receptive field
An essential component of the convolutional neural network architecture is a reduction in
the amount of data from the input to the output of the model while still increasing the
channel depth. As mentioned earlier, this is usually done by choosing a convolution step
(stride) or pooling layers. The receptive field determines how much of the original input
from the source is processed at the output. The expansion of the receptive field allows
convolutional layers to combine low-level features (lines, edges) to create higher-level
features (curves, textures):

The receptive field, , of layer k can be given by the following formula:

Here, is the receptive field of the layer, k - 1, is the filter size, and is the stride of
layer i. So, for the preceding example, the input layer has RF = 1, the hidden layer has RF
= 3, and the last layer has RF = 5.

Now that we're acquainted with the basic concepts of convolutional neural networks, let's
look at how we can combine them to create a concrete network architecture for image
classification.

Neural Networks for Image Classification Chapter 10

[350]

Convolution network architecture
The network is developed from a small number of low-level filters in the initial stages to a
vast number of filters, each of which finds a specific high-level attribute. The transition
from level to level provides a hierarchy of pattern recognition.

One of the first convolutional network architectures that was successfully applied to the
pattern recognition task was the LeNet-5, which was developed by Yann LeCun, Leon
Bottou, Yosuha Bengio, and Patrick Haffner. It was used to recognize handwritten and
printed numbers in the 1990s. The following diagram shows this architecture:

The network layers of this architecture are explained in the following table:

Number Layer Feature map (depth) Size Kernel size Stride Activation
Input Image 1 32 x 32 - - -
1 Convolution 6 28 x 28 5 x 5 1 tanh
2 Average pool 6 14 x 14 2 x 2 2 tanh
3 Convolution 16 10 x 10 5 x 5 1 tanh
4 Average pool 16 5 x 5 2 x 2 2 tanh
5 Convolution 120 1 x 1 5 x 5 1 tanh
6 FC 84 - - tanh
Output FC 10 - - softmax

Notice how the depth and size of the layer are changing toward the final layer. We can see
that the depth was increasing and that the size became smaller. This means that toward the
final layer, the number of features the network can learn increased, but their size became
smaller. Such behavior is very common among different convolutional network
architectures.

Neural Networks for Image Classification Chapter 10

[351]

What is deep learning?
Most often, the term deep learning is used to describe artificial neural networks that were
designed to work with large amounts of data and use complex algorithms to train the
model. Algorithms for deep learning can use both supervised and unsupervised algorithms
(reinforcement learning). The learning process is deep because, over time, the neural
network covers an increasing number of levels. The deeper the network is (that is, it has
more hidden layers, filters, and levels of feature abstraction it has), the higher the network's
performance. On large datasets, deep learning shows better accuracy than traditional
machine learning algorithms.

The real breakthrough that led to the current resurgence of interest in deep neural networks
occurred in 2012, after the publication of the article ImageNet classification with deep
convolutional neural networks, by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton in the
Communications of the ACM magazine. The authors have put together many different
learning acceleration techniques. These techniques include convolutional neural networks,
the intelligent use of GPUs, and some innovative math tricks: optimized linear neurons
(ReLU) and dropout, showing that in a few weeks they could train a complex neural
network to a level that would surpass the result of traditional approaches used in computer
vision.

Now, systems based on deep learning are applied in various fields and have successfully
replaced the traditional approaches to machine learning. Some examples of areas where
deep learning is used are as follows:

Speech recognition: All major commercial speech recognition systems (such as
Microsoft Cortana, Xbox, Skype Translator, Amazon Alexa, Google Now, Apple
Siri, Baidu, and iFlytek) are based on deep learning.
Computer vision: Today, deep learning image recognition systems are already
able to give more accurate results than the human eye, for example, when
analyzing medical research images (MRI, X-ray, and so on.).
Discovery of new drugs: For example, the AtomNet neural network was used to
predict new biomolecules and was put forward for the treatment of diseases such
as the Ebola virus and multiple sclerosis.
Recommender systems: Today, deep learning is used to study user preferences.
Bioinformatics: It is also used to study the prediction of genetic ontologies.

Neural Networks for Image Classification Chapter 10

[352]

Examples of using C++ libraries to create
neural networks
Many machine learning libraries have an API for creating and working with neural
networks. All the libraries we used in the previous chapters—Shogun, Dlib, and Shark-
ML—are supported by neural networks. But there are also specialized frameworks for
neural networks; for example, one popular one is the PyTorch framework. The difference
between a specialized library and the common purpose libraries is that the specialized one
supports more configurable options and supports different network types, layers, and loss
functions. Also, specialized libraries usually have more modern instruments, and these
instruments are introduced to their APIs more quickly.

In this section, we'll create a simple MLP for a regression task with the Shogun, Dlib,
and Shark-ML libraries. We'll also use the PyTorch C++ API to create a more advanced
network—a convolutional deep neural network with the LeNet5 architecture, which we
discussed earlier in the Convolution network architecture section. We'll use this network for
the image classification task.

Simple network example for the regression task
Let's learn how to use the Shogun, Dlib, and Shark-ML libraries to create a simple MLP for
a regression task. The task is the same for all series samples—MLP should learn cosine
functions at limited intervals. In this book's code samples, we can find the full program for
data generation and MLP training. Here, we'll discuss the essential parts of the programs
that are used for the neural network's API view. Note that the activation functions we'll be
using for these samples are the Tanh and ReLU functions. We've chosen them in order to
achieve better convergence for this particular task.

Dlib
The Dlib library has an API for working with neural networks. It can also be built with
Nvidia CUDA support for performance optimization. Using the CUDA or the OpenCL
technologies for GPUs is important if we are planning to work with a large amount of data
and deep neural networks.

The approach used in the Dlib library for neural networks is the same as for other machine
learning algorithms in this library. We should instantiate and configure an object of the
required algorithm class and then use a particular trainer to train it on a dataset.

Neural Networks for Image Classification Chapter 10

[353]

There is the dnn_trainer class for training neural networks in the Dlib library. Objects of
this class should be initialized with an object of the concrete network and the object of the
optimization algorithm. The most popular optimization algorithm is the stochastic gradient
descent algorithm with momentum, which we discussed in the Backpropagation method
modes section. This algorithm is implemented in the sgd class. Objects of the sgd class
should be configured with the weight decay regularization and momentum parameter
values. The dnn_trainer class has the following essential configuration
methods: set_learning_rate, set_mini_batch_size, and set_max_num_epochs.
These set the learning rate parameter value, the mini-batch size, and the maximum number
of training epochs, respectively. Also, this trainer class supports dynamic learning rate
change so that we can, for example, make a lower learning rate for later epochs. The
learning rate shrink parameter can be configured with the
set_learning_rate_shrink_factor method. But for the following example, we'll use
the constant learning rate because, for this particular data, it gives better training results.

The next essential item for instantiating the trainer object is the neural network type object.
The Dlib library uses a declarative style to define the network architecture, and for this
purpose, it uses C++ templates. So, to define the neural network architecture, we should
start with the network's input. In our case, this is of the matrix<double> type. We need to
pass this as the template argument to the next layer type; in our case, this is the fully-
connected layer of the fc type. The fully-connected layer type also takes the number of
neurons as the template argument. To define the whole network, we should create the
nested type definitions, until we reach the last layer and the loss function. In our case, this
is the loss_mean_squared type, which implements the mean squared loss function, which
is usually used for regression tasks.

The following code snippet shows the network definition with the Dlib library API:

using NetworkType = loss_mean_squared<fc<1,
 htan<fc<8,
 htan<fc<16,
 htan<fc<32,
 input<matrix<double>>>>>>>>>>;

This definition can be read in the following order:

We started with the input layer:1.

input<matrix<double>

Neural Networks for Image Classification Chapter 10

[354]

Then, we added the first hidden layer with 32 neurons:2.

fc<32, input<matrix<double>>

After, we added the hyperbolic tangent activation function to the first hidden3.
layer:

htan<fc<32, input<matrix<double>>>

Next, we added the second hidden layer with 16 neurons and an activation4.
function:

htan<fc<16, htan<fc<32, input<matrix<double>>>>>>

Then, we added the third hidden layer with 8 neurons and an activation5.
function:

htan<fc<8, htan<fc<16, htan<fc<32, input<matrix<double>>>>>>>>

Then, we added the last output layer with 1 neuron and without an activation6.
function:

fc<1, htan<fc<8, htan<fc<16, htan<fc<32,
input<matrix<double>>>>>>>>>

Finally, we finished with the loss function: 7.

loss_mean_squared<...>

The following snippet shows the complete source code example with a network definition:

size_t n = 10000;
...
std::vector<matrix<double>> x(n);
std::vector<float> y(n);
...
using NetworkType = loss_mean_squared<
fc<1, htan<fc<8, htan<fc<16, htan<fc<32, input<matrix<double>>>>>>>>>>;
NetworkType network;
float weight_decay = 0.0001f;
float momentum = 0.5f;
sgd solver(weight_decay, momentum);
dnn_trainer<NetworkType> trainer(network, solver);
trainer.set_learning_rate(0.01);
trainer.set_learning_rate_shrink_factor(1); // disable learning rate
changes
trainer.set_mini_batch_size(64);
trainer.set_max_num_epochs(500);

Neural Networks for Image Classification Chapter 10

[355]

trainer.be_verbose();
trainer.train(x, y);
network.clean();

auto predictions = network(new_x);

Now that we've configured the trainer object, we can use the train method to start the
actual training process. This method takes two C++ vectors as input parameters. The first
one should contain training objects of the matrix<double> type and the second one
should contain the target regression values that are float types. We can also call the
be_verbose method to see the output log of the training process. After the network has
been trained, we call the clean method to allow the network object to clear the memory
from the intermediate training values and therefore reduce memory usage.

Shogun
To create the neural network with the Shogun library, we have to start by defining the
architecture of the network. We use the CNeuralLayers class in the Shogun library to do
so, which is used for aggregating the network layers. It has different methods for creating
layers:

input: Creates the input layer with a specified number of dimensions
logistic: Creates a fully connected hidden layer with the logistic (sigmoid)
activation function
linear: Creates a fully connected hidden layer with the linear activation
function
rectified_linear: Creates a fully connected hidden layer with the ReLU
activation function
leaky_rectified_linear: Creates a fully connected hidden layer with the
Leaky ReLU activation function
softmax: Creates a fully connected hidden layer with the softmax activation
function

Each of these methods returns a new object of the CNeuralLayers class, which contains all
the previous layers with an added new one. So, to add a new layer, we can write the
following code:

// create the initial object
auto layers = some<CNeuralLayers>();
// add the input layer
layers = wrap(layers->input(dimensions));

Neural Networks for Image Classification Chapter 10

[356]

// add the hidden layer
layers = wrap(layers->logistic(32));

Each time we add a new layer, we rewrite the pointer to the CNeuralLayers type object.
We have to call the done method of the CNeuralLayers class after all the layers have been
added. Then, it returns an array of configured layers, which can be used to create
the CNeuralNetwork type object. The CNeuralNetwork class implements functionality for
network initialization and training. After we've created the CNeuralNetwork object, we
have to connect all the layers by calling the quick_connect method. Then, we can
initialize the weights of all the layers by calling the initialize_neural_network
method. This method can take an optional parameter, sigma, which is the standard
deviation of the Gaussian that's used to initialize the parameters randomly.

After we've configured the neural network, we should configure the optimization
algorithm. This configuration can also be done with the CNeuralNetwork object. First, we
should specify the optimization method. This class supports the gradient descent and
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms. The BFGS is a second-order
(based on second derivatives) iterative method for solving unconstrained, nonlinear
optimization problems.

For this sample, we chose the gradient descent method by calling set_optimization
method with the NNOM_GRADIENT_DESCENT enumeration value argument. Other settings
are standard for the gradient descent method's configuration. The
set_gd_mini_batch_size method sets the size of a mini-batch. The
set_l2_coefficient method sets the value of the regularization weight decay
parameter. The set_gd_learning_rate method sets the learning rate parameter. The
set_gd_momentum method sets the momentum, , parameter value. With the
set_max_num_epochs method, we can set the maximum number of training epochs, and
with the set_epsilon method, we can define the convergence criteria value for a loss
function.

The loss function can't be explicitly configured in the Shogun library. It is automatically
selected based on the type of labels specified with the set_labels method. In this
example, we used the CRegressionLabels type for the labels because we are solving the
regression task. Network training can be done with the {train} method, which takes an
object of the CDenseFeatures type. This contains a set of all the training samples.

Neural Networks for Image Classification Chapter 10

[357]

The source code for this example is as follows:

ize_t n = 10000;
...
SGMatrix<float64_t> x_values(1, static_cast<index_t>(n));
SGVector<float64_t> y_values(static_cast<index_t>(n));
...

auto x = some<CDenseFeatures<float64_t>>(x_values);
auto y = some<CRegressionLabels>(y_values);

auto dimensions = x->get_num_features();
auto layers = some<CNeuralLayers>();
layers = wrap(layers->input(dimensions));
layers = wrap(layers->rectified_linear(32));
layers = wrap(layers->rectified_linear(16));
layers = wrap(layers->rectified_linear(8));
layers = wrap(layers->linear(1));
auto all_layers = layers->done();

auto network = some<CNeuralNetwork>(all_layers);
network->quick_connect();
network->initialize_neural_network();

network->set_optimization_method(NNOM_GRADIENT_DESCENT);
network->set_gd_mini_batch_size(64);
network->set_l2_coefficient(0.0001); // regularization
network->set_max_num_epochs(500);
network->set_epsilon(0.0); // convergence criteria
network->set_gd_learning_rate(0.01);
network->set_gd_momentum(0.5);

network->set_labels(y);
network->train(x);

To see the training's progress, we can set the higher logging level for the Shogun library
with the following call:

shogun::sg_io->set_log_evel(shogun::MSG_DEBUG);

This function allows us to see a lot of additional information about the overall training
process, which can help us debug and find problems in the network we train.

Neural Networks for Image Classification Chapter 10

[358]

Shark-ML
The Shark-ML library also has the functionality to define, train, and evaluate neural
networks. This process can be divided into five parts: architecture definition, loss function
definition, network initialization, optimizer configuration, and training.

Architecture definition
First, we should define all the layers and connect them in the network. The layer can be
defined as an object of the LinearModel class, parameterized with a specific activation
function type. In our case, the type of the layer is as follows:

using DenseLayer = LinearModel<RealVector, TanhNeuron>;

To instantiate objects of this type, we have to pass three arguments to the constructor: the
number of inputs, the number of neurons (outputs), and the Boolean value that enables a
bias if it is equal to true. The >> operator can be used to connect all the layers in the
network:

auto network = layer1 >> layer2 >> layer3 >> output;

Loss function definition
After we've defined the network structure, we need to define the loss function for the
optimization algorithm. The ErrorFunction class is used for this purpose. Its constructor
takes four parameters:

An object representing the training dataset
A pointer to the object that represents the network's structure
A pointer to the object that implements the loss function—SquaredLoss, in our
case
A Boolean flag telling us to use mini-batches or not

The ErrorFunction type object can be configured with a regularizer. For example, we can
instantiate the object of the TwoNormRegularizer class and call the setRegularizer
method in the ErrorFunction type object with two parameters: the weight decay factor
value and the pointer to the regularizer object. To finish the configuration of
the ErrorFunction type object, we need to call the init method.

Neural Networks for Image Classification Chapter 10

[359]

Network initialization
The network can be randomly initialized with the initRandomNormal function, which
takes two parameters: the pointer to the network object and the variance of normal
distribution used for initialization.

Optimizer configuration
The next step is configuring an optimizer. We can use a gradient descent optimizer for our
task. There is a class called SteepestDescent in the Shark-ML library for this purpose. It
can be configured with the setLearningRate and setMomentum methods. After its
instantiation and configuration, the init method should be called with an object of the
ErrorFunction type as its parameter.

Network training
To begin training, we need to configure a dataset object first. The mini-batch size can be
automatically configured when we define the dataset object. In this example, this happens
when we create the RegressionDataset type object.

To perform one training step, we should use the step method of the optimizer object, but
we should be aware that this method does only one pass of mini-batch training. So, to
perform several epochs using the whole dataset, we have to manually calculate the number
of steps.

When training is done, we have to copy the trained parameters from the optimizer object to
the network object. This can be done with the setParameterVector method of the
network object. We can use the solution() method to get parameters from the optimizer.

Now that we've described all the required components, let's look at the complete
programming sample.

The complete programming sample
The following snippets show the complete sample source code for this example:

size_t n = 10000;
...
std::vector<RealVector> x_data(n);
std::vector<RealVector> y_data(n);
...

Neural Networks for Image Classification Chapter 10

[360]

Data<RealVector> x = createDataFromRange(x_data);
Data<RealVector> y = createDataFromRange(y_data);
RegressionDataset train_data(x, y);

First, we defined the training dataset's train_data object, which was constructed from
raw data arrays, that is, x_data and y_data:

using DenseLayer = LinearModel<RealVector, TanhNeuron>;

DenseLayer layer1(1, 32, true);
DenseLayer layer2(32, 16, true);
DenseLayer layer3(16, 8, true);

LinearModel<RealVector> output(8, 1, true);
auto network = layer1 >> layer2 >> layer3 >> output;

Then, we defined our neural network object, network, which consists of three fully
connected layers:

SquaredLoss<> loss;
ErrorFunction<> error(train_data, &network, &loss, true);
TwoNormRegularizer<> regularizer(error.numberOfVariables());
double weight_decay = 0.0001;
error.setRegularizer(weight_decay, ®ularizer);
error.init();

The next step was defining the loss function for the optimizer. Notice that we added a
regularizer to the error object, which generalizes our loss function:

initRandomNormal(network, 0.001);

Then, the weights of our network were randomly initialized:

SteepestDescent<> optimizer;
optimizer.setMomentum(0.5);
optimizer.setLearningRate(0.01);
optimizer.init(error);

Then, at the training preparation step, we created the optimizer object. We also configured
the momentum and learning rate parameters. We initialized this with the error object,
which provides access to the loss function:

size_t epochs = 1000;
size_t iterations = train_data.numberOfBatches();
for (size_t epoch = 0; epoch != epochs; ++epoch) {
 double avg_loss = 0.0;
 for (size_t i = 0; i != iterations; ++i) {
 optimizer.step(error);

Neural Networks for Image Classification Chapter 10

[361]

 if (i % 100 == 0) {
 avg_loss += optimizer.solution().value;
 }
 }
 avg_loss /= iterations;
 std::cout << "Epoch " << epoch << " | Avg. Loss " << avg_loss <<
 std::endl;
}

Having configured the train_data, network, and optimizer objects, we wrote the
training cycle, which trains the network for 1,000 epochs:

network.setParameterVector(optimizer.solution().point);

After the training process was complete, we used the learned parameters (network weights)
that were stored in the optimizer object to initialize the actual network parameters with
the setParameterVector method.

In the next section, we will implement a more complex neural network to solve an image
classification task using the PyTorch library.

Understanding image classification using
the LeNet architecture
In this section, we'll implement a convolutional neural network for image classification. We
are going to use the famous dataset of handwritten digits called the Modified National
Institute of Standards and Technology (MNIST), which can be found at http://yann.
lecun.com/exdb/mnist/. The dataset is a standard that was proposed by the US National
Institute of Standards and Technology to calibrate and compare image recognition methods
using machine learning, primarily based on neural networks.

The creators of the dataset used a set of samples from the US Census Bureau, with some
samples written by students of American universities added later. All the samples are
normalized, anti-aliased grayscale images of 28 x 28 pixels. The MNIST database contains
60,000 images for training and 10,000 images for testing. There are four files:

train-images-idx3-ubyte: Training set images
train-labels-idx1-ubyte: Training set labels
t10k-images-idx3-ubyte: Test set images
t10k-labels-idx1-ubyte: Test set labels

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Neural Networks for Image Classification Chapter 10

[362]

The files that contain labels are in the following format:

Offset Type Value Description
0 32-bit integer 0x00000801(2049) Magic number (MSB first)
4 32-bit integer 60,000 or 10,000 Number of items
8 Unsigned char ?? Label
9 Unsigned char ?? Label
...

The label's values are from 0 to 9. The files that contain images are in the following format:

Offset Type Value Description
0 32-bit integer 0x00000803(2051) Magic number (MSB first)
0 32-bit integer 60,000 or 10,000 Number of images
0 32-bit integer 28 Number of rows
0 32-bit integer 28 Number of columns
0 Unsigned byte ?? Pixel
0 Unsigned byte ?? Pixel
...

Pixels are stored in a row-wise manner, with values in the range of [0, 255]. 0 means
background (white), while 255 means foreground (black).

In this example, we are using the PyTorch deep learning framework. This framework is
primarily used with the Python language. However, its core part is written in C++, and it
has a well-documented and actively developed C++ client API called LibPyTorch. This
framework is based on the linear algebra library called ATen, which heavily uses the
Nvidia CUDA technology for performance improvement. The Python and C++ APIs are
pretty much the same but have different language notations, so we can use the official
Python documentation to learn how to use the framework. This documentation also
contains a section stating the differences between C++ and Python APIs and specific articles
about the usage of the C++ API.

The PyTorch framework is widely used for research in deep learning. As we discussed
previously, the framework provides functionality for managing big datasets. It can
automatically parallelize loading the data from a disk, manage pre-loaded buffers for the
data to reduce memory usage, and limit expensive performance disk operations. It provides
the torch::data::Dataset base class for the implementation of the user custom dataset.
We only need to override two methods here: get and size. These methods are not virtual
because we have to use the C++ template's polymorphism to inherit from this class.

Neural Networks for Image Classification Chapter 10

[363]

Reading the training dataset
Consider the MNISTDataset class, which provides access to the MNIST dataset. The
constructor of this class takes two parameters: one is the name of the file contains images,
while the other is the name of the file that contains the labels. It loads whole files into its
memory, which is not a best practice, but for this dataset, this approach works well because
the dataset is small. For bigger datasets, we have to implement another scheme of reading
data from the disk because usually, for real tasks, we are unable to load all the data into the
computer's memory.

We use the OpenCV library to deal with images, so we store all the loaded images in the C++
vector of the cv::Mat type. Labels are stored in a vector of the unsigned char type. We
write two additional helper functions to read images and labels from the disk: ReadImages
and ReadLabels. The following snippet shows the header file for this class:

#include <torch/torch.h>
#include <opencv2/opencv.hpp>
#include <string>

class MNISTDataset : public torch::data::Dataset<MNISTDataset> {
public:
 MNISTDataset(const std::string& images_file_name,
 const std::string& labels_file_name);
 // torch::data::Dataset implementation
 torch::data::Example<> get(size_t index) override;
 torch::optional<size_t> size() const override;
private:
 void ReadLabels(const std::string& labels_file_name);
 void ReadImages(const std::string& images_file_name);
 uint32_t rows_ = 0;
 uint32_t columns_ = 0;
 std::vector<unsigned char> labels_;
 std::vector<cv::Mat> images_;
};

The following snippet shows the implementation of the public interface of the class:

MNISTDataset::MNISTDataset(const std::string& images_file_name,
 const std::string& labels_file_name) {
 ReadLabels(labels_file_name);
 ReadImages(images_file_name);
}

Neural Networks for Image Classification Chapter 10

[364]

We can see that the constructor passed the filenames to the corresponding loader functions.
The size method returns the number of items that were loaded from the disk into the
labels container:

torch::optional<size_t> MNISTDataset::size() const {
 return labels_.size();
}

The following snippet shows the get method's implementation:

torch::data::Example<> MNISTDataset::get(size_t index) {
 return {CvImageToTensor(images_[index]),
 torch::tensor(static_cast<int64_t>(labels_[index]),
 torch::TensorOptions()
 .dtype(torch::kLong)
 .device(torch::DeviceType::CUDA))};
}

The get method returns an object of the torch::data::Example<> class. In general, this
type holds two values: the training sample represented with the torch::Tensor type and
the target value, which is also represented with the torch::Tensor type. This method
retrieves an image from the corresponding container using a given subscript, converts the
image into the torch::Tensor type with the CvImageToTensor function, and uses the
label value converted into the torch::Tensor type as a target value.

There is a set of torch::tensor functions that are used to convert a C++ variable into the
torch::Tensor type. They automatically deduce the variable type and create a tensor
with corresponding values. In our case, we explicitly convert the label into the int64_t
type because the loss function we'll be using later assumes that the target values have
a torch::Long type. Also, notice that we passed torch::TensorOptions as a second
argument to the torch::tensor function. We specified the torch type of the tensor values
and told the system to place this tensor to the GPU memory by setting the device option
on torch::DeviceType::CUDA and by using the torch::TensorOptions object. When
we manually create the PyTorch tensors, we have to explicitly configure where to place
them – in the CPU or GPU. Tensors that are placed in different types of memory can't be
used together.

To convert the OpenCV image into a tensor, write the following function:

torch::Tensor CvImageToTensor(const cv::Mat& image) {
 assert(image.channels() == 1);
 std::vector<int64_t> dims{static_cast<int64_t>(1),
 static_cast<int64_t>(image.rows),
 static_cast<int64_t>(image.cols)};
 torch::Tensor tensor_image = torch::from_blob(

Neural Networks for Image Classification Chapter 10

[365]

 image.data,
 torch::IntArrayRef(dims),
 torch::TensorOptions().dtype(torch::kFloat).requires_grad(false))
 .clone(); // clone is required to copy data from temporary object
 return tensor_image.to(torch::DeviceType::CUDA);
}

The most important part of this function is the call to the torch::from_blob function.
This function constructs the tensor from values located in memory that are referenced by
the pointer that's passed as a first argument. A second argument should be a C++ vector
with tensor dimensions values; in our case, we specified a three-dimensional tensor with
one channel and two image dimensions. The third argument is the
torch::TensorOptions object. We specified that the data should be of the floating-point
type and that it doesn't require a gradient calculation.

PyTorch uses the auto-gradient approach for model training, and it means that it doesn't
construct a static network graph with pre-calculated gradient dependencies. Instead, it uses
a dynamic network graph, which means that gradient flow paths for modules are
connected and calculated dynamically during the backward pass of the training process.
Such an architecture allows us to dynamically change the network's topology and
characteristics while running the program. All the libraries we covered previously use a
static network graph.

The third interesting PyTorch function that's used here is the torch::Tensor::to
function, which allows us to move tensors from CPU memory to GPU memory and back.

Now, let's learn how to read dataset files.

Reading dataset files
We read the labels file with the ReadLabels function:

void MNISTDataset::ReadLabels(const std::string& labels_file_name) {
 std::ifstream labels_file(labels_file_name,
 std::ios::binary | std::ios::binary);
 labels_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
 if (labels_file) {
 uint32_t magic_num = 0;
 uint32_t num_items = 0;
 if (read_header(&magic_num, labels_file) &&
 read_header(&num_items, labels_file)) {
 labels_.resize(static_cast<size_t>(num_items));
 labels_file.read(reinterpret_cast<char*>(labels_.data()),
num_items);

Neural Networks for Image Classification Chapter 10

[366]

 }
 }
}

This function opens the file in binary mode and reads the header records, the magic
number, and the number of items in the file. It also reads all the items directly to the C++
vector. The most important part is to correctly read the header records. To do this, we can
use the read_header function:

 template <class T>
 bool read_header(T* out, std::istream& stream) {
 auto size = static_cast<std::streamsize>(sizeof(T));
 T value;
 if (!stream.read(reinterpret_cast<char*>(&value), size)) {
 return false;
 } else {
 // flip endianness
 *out = (value << 24) | ((value << 8) & 0x00FF0000) |
 ((value >> 8) & 0X0000FF00) | (value >> 24);
 return true;
 }
 }

This function reads the value from the input stream—in our case, the file stream—and flips
the endianness. This function also assumes that header records are 32-bit integer values. In
a different scenario, we would have to think of other ways to flip the endianness.

Reading the image file
Reading the images file is also pretty straightforward; we read the header records and
sequentially read the images. From the header records, we get the total number of images
in the file and the image size. Then, we define the OpenCV matrix object that has a
corresponding size and type – the one channel image with the underlying byte CV_8UC1
type. We read images from disk in a loop directly to the OpenCV matrix object by passing a
pointer, which is returned by the data object variable, to the stream read function. The size
of the data we need to read is determined by calling the cv::Mat::size() function,
followed by the call to the area function. Then, we use the convertTo OpenCV function to
convert an image from unsigned byte type into 32-bit floating-point type. This is
important so that we have enough precision while performing math operations in the
network layers. We also normalize all the data so that it's in the range [0, 1] by dividing it
by 255.

Neural Networks for Image Classification Chapter 10

[367]

We resize all the images so that they're 32 x 32 in size because the LeNet5 network
architecture requires us to hold the original dimensions of the convolution filters:

void MNISTDataset::ReadImages(const std::string& images_file_name) {
 std::ifstream images_file(images_file_name,
 std::ios::binary | std::ios::binary);
 labels_file.exceptions(std::ifstream::failbit | std::ifstream::badbit);
 if (labels_file) {
 uint32_t magic_num = 0;
 uint32_t num_items = 0;
 rows_ = 0;
 columns_ = 0;
 if (read_header(&magic_num, labels_file) &&
 read_header(&num_items, labels_file) &&
 read_header(&rows_, labels_file) &&
 read_header(&columns_, labels_file)) {
 assert(num_items == labels_.size());
 images_.resize(num_items);
 cv::Mat img(static_cast<int>(rows_),
 static_cast<int>(columns_), CV_8UC1);
 for (uint32_t i = 0; i < num_items; ++i) {
 images_file.read(reinterpret_cast<char*>(img.data),
 static_cast<std::streamsize>(img.size().area()));
 img.convertTo(images_[i], CV_32F);
 images_[i] /= 255; // normalize
 cv::resize(images_[i], images_[i],
 cv::Size(32, 32)); // Resize to 32x32 size
 }
 }
 }
}

Now that we've loaded the training data, we have to define our neural network.

Neural network definition
In this example, we chose the LeNet5 architecture, which was developed by Yann LeCun,
Leon Bottou, Yosuha Bengio, and Patrick Haffner (http://yann.lecun.com/exdb/lenet/).
The architecture's details were discussed earlier in the Convolution network
architecture section. Here, we'll show you how to implement it with the PyTorch
framework.

http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/

Neural Networks for Image Classification Chapter 10

[368]

All the structural parts of the neural networks in the PyTorch framework should be derived
from the torch::nn::Module class. The following snippet shows the header file of the
LeNet5 class:

#include <torch/torch.h>

class LeNet5Impl : public torch::nn::Module {
 public:
 LeNet5Impl();
 torch::Tensor forward(torch::Tensor x);
 private:
 torch::nn::Sequential conv_;
 torch::nn::Sequential full_;
};

TORCH_MODULE(LeNet5);

Notice that we defined the intermediate implementation class, which is called LeNet5Impl.
This is because PyTorch uses a memory management model based on smart pointers, and
all the modules should be wrapped in a special type. There is a special class
called torch::nn::ModuleHolder, which is a wrapper around std::shared_ptr, but
also defines some additional methods for managing modules. So, if we want to follow all
PyTorch conventions and use our module (network) with all PyTorch's functions without
any problems, our module class definition should be as follows:

class Name : public torch::nn::ModuleHolder<Impl> {}

Impl is the implementation of our module, which is derived from the
torch::nn::Module class. There is a special macro that can do this definition for us
automatically; it is called TORCH_MODULE. We need to specify the name of our module in
order to use it.

The most crucial function in this definition is the forward function. This function, in our
case, takes the network's input and passes it through all the network layers until an output
value is returned from this function. If we don't implement a whole network but rather
some custom layers or some structural parts of a network, this function should assume we
take the values from the previous layers or other parts of the network as input. Also, if we
are implementing a custom module that isn't from the PyTorch standard modules, we
should define the backward function, which should calculate gradients for our custom
operations.

Neural Networks for Image Classification Chapter 10

[369]

The next essential thing in our module definition is the usage of the
torch::nn::Sequential class. This class is used to group sequential layers in the
network and automate the process of forwarding values between them. We broke our
network into two parts, one containing convolutional layers and another containing the
final fully-connected layers.

The PyTorch framework contains many functions for creating layers. For example, the
torch::nn::Conv2d function created the two-dimensional convolution layer. Another
way to create a layer in PyTorch is to use the torch::nn::Functional function to wrap
some simple function into the layer, which can then be connected with all the outputs of the
previous layer. Notice that activation functions are not part of the neurons in PyTorch and
should be connected as a separate layer. The following code snippet shows the definition of
our network components:

static std::vector<int64_t> k_size = {2, 2};
static std::vector<int64_t> p_size = {0, 0};

LeNet5Impl::LeNet5Impl() {
 conv_ = torch::nn::Sequential(
 torch::nn::Conv2d(torch::nn::Conv2dOptions(1, 6, 5)),
 torch::nn::Functional(torch::tanh),
 torch::nn::Functional(torch::avg_pool2d,
 /*kernel_size*/ torch::IntArrayRef(k_size),
 /*stride*/ torch::IntArrayRef(k_size),
 /*padding*/ torch::IntArrayRef(p_size),
 /*ceil_mode*/ false,
 /*count_include_pad*/ false),
 torch::nn::Conv2d(torch::nn::Conv2dOptions(6, 16, 5)),
 torch::nn::Functional(torch::tanh),
 torch::nn::Functional(torch::avg_pool2d,
 /*kernel_size*/ torch::IntArrayRef(k_size),
 /*stride*/ torch::IntArrayRef(k_size),
 /*padding*/ torch::IntArrayRef(p_size),
 /*ceil_mode*/ false,
 /*count_include_pad*/ false),
 torch::nn::Conv2d(torch::nn::Conv2dOptions(16, 120, 5)),
 torch::nn::Functional(torch::tanh));
 register_module("conv", conv_);
 full_ = torch::nn::Sequential(
 torch::nn::Linear(torch::nn::LinearOptions(120, 84)),
 torch::nn::Functional(torch::tanh),
 torch::nn::Linear(torch::nn::LinearOptions(84, 10)));
 register_module("full", full_);
}

Neural Networks for Image Classification Chapter 10

[370]

Here, we initialized two torch::nn::Sequential modules. They take a variable number
of other modules as arguments for constructors. Notice that for the initialization of the
torch::nn::Conv2d module, we have to pass the instance of the
torch::nn::Conv2dOptions class, which can be initialized with the number of input
channels, the number of output channels, and the kernel size. We used torch::tanh as an
activation function; notice that it is wrapped in the torch::nn::Functional class
instance. The average pooling function is also wrapped in the torch::nn::Functional
class instance because it is not a layer in the PyTorch C++ API; it's a function. Also, the
pooling function takes several arguments, so we bound their fixed values. When a function
in PyTorch requires the values of the dimensions, it assumes that we provide an instance of
the torch::IntArrayRef type. An object of this type behaves as a wrapper for an array
with dimension values. We should be careful here because such an array should exist at the
same time as the wrapper lifetime; notice that torch::nn::Functional
stores torch::IntArrayRef objects internally. That is why we defined k_size and
p_size as static global variables.

Also, pay attention to the register_module function. It associates the string name with
the module and registers it in the internals of the parent module. If the module is registered
in such a way, we can use a string-based parameter search later (often used when we need
to manually manage weights updates during training) and automatic module serialization.

The torch::nn::Linear module defines the fully connected layer and should be
initialized with an instance of the torch::nn::LinearOptions type, which defines the
number of inputs and the number of outputs, that is, a count of the layer's neurons. Notice
that the last layer returns 10 values, not one label, despite us only having a single target
label. This is the standard approach in classification tasks.

The following code shows the forward function's implementation, which performs model
inference:

torch::Tensor LeNet5Impl::forward(at::Tensor x) {
 auto output = conv_->forward(x);
 output = output.view({x.size(0), -1});
 output = full_->forward(output);
 output = torch::log_softmax(output, -1);
 return output;
}

Neural Networks for Image Classification Chapter 10

[371]

This function is implemented as follows:

We passed the input tensor (image) to the forward function of the sequential1.
convolutional group.
Then, we flattened its output with the view tensor method because fully2.
connected layers assume that the input is flat. The view method takes the new
dimensions for the tensor and returns a tensor view without exactly copying the
data; -1 means that we don't care about the dimension's value and that it can be
flattened.
Then, the flattened output from the convolutional group is passed to the fully3.
connected group.
Finally, we applied the softmax function to the final output. We're unable to4.
wrap torch::log_softmax in the torch::nn::Functional class instance
because of multiple overrides.

The softmax function converts a vector, , of dimension into a vector, , of the same
dimension, where each coordinate, , of the resulting vector is represented by a real
number in the range and the sum of the coordinates is 1.

The coordinates are calculated as follows:

The softmax function is used in machine learning for classification problems when the
number of possible classes is more than two (for two classes, a logistic function is used).
The coordinates, , of the resulting vector can be interpreted as the probabilities that the
object belongs to the class, . We chose this function because its results can be directly used
for the cross-entropy loss function, which measures the difference between two probability
distributions. The target distribution can be directly calculated from the target label value
– we create the 10 value's vector of zeros and put one in the place indexed by the label
value. Now, we have all the required components to train the neural network.

Neural Networks for Image Classification Chapter 10

[372]

Network training
First, we should create PyTorch data loader objects for the train and test datasets. The data
loader object is responsible for sampling objects from the dataset and making mini-batches
from them. This object can be configured as follows:

First, we initialize the MNISTDataset type objects representing our datasets.1.
Then, we use the torch::data::make_data_loader function to create a data2.
loader object. This function takes the torch::data::DataLoaderOptions type
object with configuration settings for the data loader. We set the mini-batch size
equal to 256 items and set 8 parallel data loading threads. We should also
configure the sampler type, but in this case, we'll leave the default one – the
random sampler.

The following snippet shows how to initialize the train and test data loaders:

auto train_images = root_path / "train-images-idx3-ubyte";
auto train_labels = root_path / "train-labels-idx1-ubyte";
auto test_images = root_path / "t10k-images-idx3-ubyte";
auto test_labels = root_path / "t10k-labels-idx1-ubyte";

// initialize train dataset
// --
MNISTDataset train_dataset(train_images.native(),
 train_labels.native());

auto train_loader = torch::data::make_data_loader(
 train_dataset.map(torch::data::transforms::Stack<>()),
 torch::data::DataLoaderOptions().batch_size(256).workers(8));

// initialize test dataset
// --
MNISTDataset test_dataset(test_images.native(),
 test_labels.native());

auto test_loader = torch::data::make_data_loader(
 test_dataset.map(torch::data::transforms::Stack<>()),
 torch::data::DataLoaderOptions().batch_size(1024).workers(8));

Notice that we didn't pass our dataset objects directly to the
torch::data::make_data_loader function, but we applied the stacking transformation
mapping to it. This transformation allows us to sample mini-batches in the form of
the torch::Tensor object. If we skip this transformation, the mini-batches will be sampled
as the C++ vector of tensors. Usually, this isn't very useful because we can't apply linear
algebra operations to the whole batch in a vectorized manner.

Neural Networks for Image Classification Chapter 10

[373]

The next step to initialize the neural network object of the LeNet5 type, which we defined
previously. We'll move it to the GPU to improve training and evaluation performance:

LeNet5 model;
model->to(torch::DeviceType::CUDA);

When the model of our neural network has been initialized, we can initialize an optimizer.
We chose stochastic gradient descent with momentum optimization for this. It is
implemented in the torch::optim::SGD class. The object of this class should be initialized
with model (network) parameters and the torch::optim::SGDOptions type object. All
torch::nn::Module type objects have the parameters() method, which returns the
std::vector<Tensor> object containing all the parameters (weights) of the network.
There is also the named_parameters method, which returns the dictionary of named
parameters. Parameter names are created with the names we used in the
register_module function call. This method is handy if we want to filter parameters and
exclude some of them from the training process.

The torch::optim::SGDOptions object can be configured with the values of the learning
rate, the weight decay regularization factor, and the momentum value factor:

double learning_rate = 0.01;
double weight_decay = 0.0001; // regularization parameter
torch::optim::SGD optimizer(model->parameters(),
 torch::optim::SGDOptions(learning_rate)
 .weight_decay(weight_decay)
 .momentum(0.5));

Now that we have our initialized data loaders, the network object, and the optimizer
object, we are ready to start the training cycle. The following snippet shows the training
cycle's implementation:

int epochs = 100;
for (int epoch = 0; epoch < epochs; ++epoch) {
 model->train(); // switch to the training mode
 // Iterate the data loader to get batches from the dataset
 int batch_index = 0;
 for (auto& batch : (*train_loader)) {
 // Clear gradients
 optimizer.zero_grad();
 // Execute the model on the input data
 torch::Tensor prediction = model->forward(batch.data);
 // Compute a loss value to estimate error of our model
 // target should have size of [batch_size]
 torch::Tensor loss =
 torch::nll_loss(prediction, batch.target.squeeze(1));
 // Compute gradients of the loss and parameters of our model

Neural Networks for Image Classification Chapter 10

[374]

 loss.backward();
 // Update the parameters based on the calculated gradients.
 optimizer.step();
 // Output the loss every 10 batches.
 if (++batch_index % 10 == 0) {
 std::cout << "Epoch: " << epoch << " | Batch: " << batch_index
 << " | Loss: " << loss.item<float>() << std::endl;
 }
}

We've made a loop that repeats the training cycle for 100 epochs. At the beginning of the
training cycle, we switched our network object to training mode with model->train().
For one epoch, we iterate over all the mini-batches provided by the data loader object:

for (auto& batch : (*train_loader)){
...
}

For every mini-batch, we did the next training steps, cleared the previous gradient values
by calling the zero_grad method for the optimizer object, made a forward step over the
network object, model->forward(batch.data), and computed the loss value with the
nll_loss function. This function computes the negative log-likelihood loss. It takes two
parameters: the vector containing the probability that a training sample belongs to a class
identified by position in the vector and the numeric class label (number). Then, we called
the backward method of the loss tensor. It recursively computes the gradients for the
overall network. Finally, we called the step method for the optimizer object, which
updated all the parameters (weights) and their corresponding gradient values. The step
method only updated the parameters that were used for initialization.

It's common practice to use test or validation data to check the training process after each
epoch. We can do this in the following way:

model->eval(); // switch to the training mode
unsigned long total_correct = 0;
float avg_loss = 0.0;
for (auto& batch : (*test_loader)) {
 // Execute the model on the input data
 torch::Tensor prediction = model->forward(batch.data);
 // Compute a loss value to estimate error of our model
 torch::Tensor loss =
 torch::nll_loss(prediction, batch.target.squeeze(1));
 avg_loss += loss.sum().item<float>();
 auto pred = std::get<1>(prediction.detach_().max(1));
 total_correct += static_cast<unsigned long>(
 pred.eq(batch.target.view_as(pred)).sum().item<long>());
}

Neural Networks for Image Classification Chapter 10

[375]

avg_loss /= test_dataset.size().value();
double accuracy = (static_cast<double>(total_correct) /
test_dataset.size().value());
std::cout << "Test Avg. Loss: " << avg_loss << " | Accuracy: " << accuracy
<< std::endl;

First, we switched the model to evaluation mode by calling the eval method. Then we
iterated over all the batches from the test data loader. For each of these batches, we
performed a forward pass over the network, calculating the loss value in the same way that
we did for our training process. To estimate the total loss (error) value for the model, we
averaged the loss values for all the batches. To get the total loss for the batch, we used
loss.sum().item<float>(). Here, we summarized the losses for each training sample in
the batch and moved it to the CPU floating-point variable with the item<float>()
method.

Next, we calculate the accuracy value. This is the ratio between correct answers and
misclassified ones. Let's go through this calculation with the following approach. First, we
determine the predicted class labels by using the max method of the tensor object:

auto pred = std::get<1>(prediction.detach_().max(1));

The max method returns a tuple, where the values are the maximum value of each row of
the input tensor in the given dimension and the location indices of each maximum value
the method found. Then, we compare the predicted labels with the target ones and
calculate the number of correct answers:

total_correct += static_cast<unsigned
long>(pred.eq(batch.target.view_as(pred)).sum().item<long>());

We used the eq tensor's method for our comparison. This method returns a boolean vector
whose size is equal to the input vector, with values equal to 1 where the vector element
components are equal and with values equal to 0 where they're not. To perform the
comparison operation, we made a view for the target labels tensor with the same
dimensions as the predictions tensor. The view_as method is used for this comparison.
Then, we calculated the sum of 1s and moved the value to the CPU variable with the
item<long>() method.

Neural Networks for Image Classification Chapter 10

[376]

By doing this, we can see that the specialized framework has more options we can
configure and is more flexible for neural network development. It has more layer types and
supports dynamic network graphs. It also has a powerful specialized linear algebra library
that can be used to create new layers, as well as new loss and activation functions. It has
powerful abstractions that enable us to work with big training data. One more important
thing to note is that it has a C++ API very similar to the Python API, so we can easily port
Python programs to C++ and vice versa.

Summary
In this chapter, we looked at what artificial neural networks are, looked at their history, and
examined the reasons for their appearance, rise, and fall and why they have become one of
the most actively developed machine learning approaches today. We looked at the
difference between biological and artificial neurons before learning the basics of the
perceptron concept, which was created by Frank Rosenblatt. Then, we discussed the
internal features of artificial neurons and networks, such as activation functions and their
characteristics, network topology, and convolution layer concepts. We also learned how to
train artificial neural networks with the error backpropagation method. We saw how to
choose the right loss function for different types of tasks. Then, we discussed the
regularization methods that are used to combat overfitting during training.

Finally, we implemented a simple MLP for a regression task with the Shogun, Dlib, and
Shark-ML C++ machine learning libraries. Then, we implemented a more advanced
convolution network for an image classification task with PyTorch, a specialized neural
network framework. This showed us the benefits of specialized frameworks over general-
purpose libraries.

In the next chapter, we will discuss recurrent neural networks (RNNs), which are one of
the most well-known and practical approaches for working with time-series data and
natural language processing. The key differences from other types of neural networks are
that the communication between RNN elements forms a directed sequence for processing
sequential data and that the recurrent networks can use internal memory to process
sequences of arbitrary lengths.

Neural Networks for Image Classification Chapter 10

[377]

Further reading
Loss Functions for Deep Neural Networks in Classification: https://arxiv.org/pdf/
1702.05659.pdf.
Neural Networks and Deep Learning, by Michael Nielsen: http://
neuralnetworksanddeeplearning.com/.
Principles of Neurodynamics, Rosenblatt, Frank (1962), Washington, DC: Spartan
Books.
Perceptrons, Minsky M. L. and Papert S. A. 1969. Cambridge, MA: MIT Press.
Neural Networks and Learning Machines, Simon O. Haykin 2008
Deep Learning, Ian Goodfellow, Yoshua Bengio, Aaron Courville 2016
The PyTorch GitHub page: https://github.com/pytorch/.
The PyTorch documentation site: https://pytorch.org/docs/.
The LibPyTorch (C++) documentation site: https://pytorch.org/cppdocs/.

https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
https://arxiv.org/pdf/1702.05659.pdf
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://github.com/pytorch/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/docs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/

11
Sentiment Analysis with

Recurrent Neural Networks
Currently, the recurrent neural network (RNN) is one of the most well-known and
practical approaches used to construct deep neural networks. They are designed to process
time-series data. Typically, data of this nature is found in the following tasks:

Natural language text processing, such as text analysis and automatic translation
Automatic speech recognition
Video processing, for predicting the next frame based on previous frames, and
for recognizing emotions
Image processing, for generating image descriptions
Time series analysis, for predicting fluctuations in exchange rates or company
stock prices

In recurrent networks, communications between elements form a directed sequence.
Thanks to this, it becomes possible to process a time series of events or sequential spatial
chains. Unlike multilayer perceptrons, recurrent networks can use their internal memory to
process sequences of arbitrary lengths. At the time of writing, many different architectural
solutions for recurrent networks (from simple to complex) have been proposed. Currently,
the most widespread recurrent network architectures are long short-term memory (LSTM)
and gated recurrent unit (GRU).

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[379]

In this chapter, we will consider the main architectural features of recurrent networks and
learn how recurrent networks are used to process natural language; describe algorithms for
converting elements of a natural language into mathematical abstractions; and write a
program to evaluate the emotional characteristics of the language to perform sentiment
analysis on movie reviews.

Specifically, the following topics will be covered in this chapter:

An overview of the RNN concept
Training RNNs using the concept of backpropagation through time
Exploring RNN architectures
Understanding natural language processing with RNNs
Sentiment analysis example with RNNs

Technical requirements
The following are the technical requirements for this chapter:

PyTorch library
Modern C++ compiler with C++17 support
CMake build system version >= 3.8

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/
pytorch

An overview of the RNN concept
The goal of an RNN is consistent data usage under the assumption that there is some
dependency between consecutive data elements. In traditional neural networks, it is
understood that all inputs and outputs are independent. But for many tasks, this
independence is not suitable. If you want to predict the next word in a sentence, for
example, knowing the sequence of words preceding it is the most reliable way to do so.
RNNs are recurrent because they perform the same task for each element of the sequence,
and the output is dependent on previous calculations.

In other words, RNNs are networks that have feedback loops and memory. RNNs use
memory to take into account prior information and calculations results. The idea of a
recurrent network can be represented as follows:

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter11/pytorch

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[380]

In the preceding diagram, a fragment of the neural network, (a layer of neurons with a
sigmoidal activation function), takes the input value, , and returns the value, . The
presence of feedback allows us to transfer information from one timestep of the network to
another timestep. A recurrent network can be considered several copies of the same
network, each of which transfers information to a subsequent copy. Here's what happens
when we expand the feedback:

This can be represented in further detail as follows:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[381]

Here, we can see the input data vectors, . Each vector at each step has a
hidden state vector, . We call this pairing a module. The hidden state in each
RNN module is a function of the input vector and the hidden state vector from the previous
step, as follows:

If we look at the superscript, we can see that there is a weight matrix, , which we
multiply by the input value, and there is a recurrent weight matrix, , which is
multiplied by a hidden state vector from the previous step. These recurrent weight matrices
are the same at every step. This concept is a key component of an RNN. If you think about
this carefully, this approach is significantly different from, say, traditional two-layer neural
networks. In this case, we usually select a separate matrix, W, for each layer: W1 and W2.
Here, the recurrent matrix of weights is the same for the entire network. denotes a neural
network layer with a sigmoid as an activation function.

Furthermore, another weight matrix, , is used to obtain the output values, y, of each
module, which are multiplied by h:

One of the attractive ideas of RNNs is that they potentially know how to connect previous
information with the task at hand. For example, in the task of video flow analysis,
knowledge of the previous frame of the video can help in understanding the current frame
(knowing previous object positions can help us predict their new positions). The ability of
RNNs to use prior information is not absolute and usually depends on some circumstances,
which we will discuss in the following sections.

Sometimes, to complete the current task, we need only recent information. Consider, for
example, a language model trying to predict the next word based on the previous words. If
we want to predict the last word in the phrase, clouds are floating in the sky, we don't need a
broader context; in this case, the last word is almost certainly sky. In this case, we could say
that the distance between the relevant information and the subject of prediction is small,
which means that RNNs can learn how to use information from the past.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[382]

But sometimes, we need more context. Suppose we want to predict the last word in the
phrase, I speak French. Further back in the same text is the phrase, I grew up in France. The
context, therefore, suggests that the last word should likely be the name of the country's
language. However, this may have been much further back in the text – possibly on a
different paragraph or page – and as that gap between the crucial context and the point of
its application grows, RNNs lose their ability to bind information accurately.

In theory, RNNs should not have problems with long-term processing dependencies. A
person can carefully select network parameters to solve artificial problems of this type.
Unfortunately, in practice, training the RNN with these parameters seems impossible due
to the vanishing gradient problem. This problem was investigated in detail by Sepp
Hochreiter (1991) and Yoshua Bengio et al. (1994). They found that the lower the gradient
that's used in the backpropagation algorithms, the more difficult it is for the network to
update its weights and the longer the training time will be. There are different reasons why
we can get low gradient values during the training process, but one of the main reasons is
the network size. For RNNs, it is the most crucial parameter because it depends on the size
of the input sequence we use. The longer the sequence that we use is, the bigger the
network we get is. Fortunately, there are methods we can use to deal with this problem in
RNNs, all of which we will discuss later in this chapter.

Training RNNs using the concept of
backpropagation through time
At the time of writing, for training neural networks nearly everywhere, the error
backpropagation algorithm is used. The result of performing inference on the training set of
examples (in our case, the set of subsequences) is checked against the expected result
(labeled data). The difference between the actual and expected values is called an error.
This error is propagated to the network weights in the opposite direction. Thus, the
network adapts to labeled data, and the result of this adaptation works well for the data
that the network did not meet in the initial training examples (generalization hypothesis).

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[383]

In the case of a recurrent network, we have several options regarding which network
outputs we can consider the error. This section describes the two main approaches: the first
considers the output value of the last cell, while the second considers the outputs of all the
cells from the last layer. Let's have a look at these approaches one by one:

In the first approach, we can calculate the error by comparing the output of the
last cell of the subsequence with the target value for the current training sample.
This approach works well for the classification task. For example, if we need to
determine the sentiment of a tweet (in other words, we need to classify the
polarity of a tweet; is the expressed opinion negative, positive, or neutral?). To do
this, we select tweets and place them into three categories: negative, positive, and
neutral. The output of the cell should be three numbers: the weights of the
categories. The tweet could also be marked with three different numbers: the
probabilities of the tweet belonging to the corresponding category. After
calculating the error on a subset of the data, we could backpropagate it through
the output and cell states.
In the second approach, we can read the error immediately at the output of the
cell's calculation for each element of the subsequence. This approach is well
suited for the task of predicting the next element of a sequence from what came
previously. Such an approach can be used, for example, in the problem of
determining anomalies in time series data, in the task of predicting the next
character in a text, or for natural language translation tasks. Error
backpropagation is also possible through outputs and cell states, but in this case,
we need to calculate as many errors as we have outputs. This means that we
should also have target values for each sequence element we want to predict.

Unlike a regular fully connected neural network, a recurrent network is deep in the sense
that the error propagates not only in the backward direction from the network outputs to
its weights but also through the connections between timestep states. Therefore, the length
of the input subsequence determines the network's depth. There is a variant of the method
of error backpropagating called backpropagation through time (BPTT), which propagates
the error through the state of the recurrent network.

The idea behind BPTT is quite simple – we unfold a recurrent network for a certain number
of timesteps, which converts it into a usual deep neural network, which is then trained by
the usual backpropagation method. Notice that this method assumes that we're using the
same parameters for all timesteps. Furthermore, weight gradients are summarized with
each other when the error propagates in a backward direction through the states (steps).
They are duplicated during the initial configuration of the network times, as though
adding layers to a regular feedforward network. The number of steps needed to unfold the
RNN corresponds to the length of the input sequence. If the input sequence is very long,
then the computational cost of training the network increases.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[384]

The following diagram shows the basic principle of the BPTT approach:

A modified version of the algorithm, called truncated backpropagation through time
(TBPTT), is used to reduce computational complexity. Its essence lies in the fact that we
limit the number of forward propagation steps, and on the backward pass, we update the
weights for a limited set of conditions. This version of the algorithm has two additional
hyperparameters: k1, which is the number of forward pass timesteps between updates, and
k2, which is the number of timesteps that apply BPTT. The number of times should be large
enough to capture the internal structure of the problem the network learned. The error is
accumulated only for k2 states.

These training methods for RNNs are highly susceptible to the effect of bursting or
vanishing gradients. Accordingly, as a result of backpropagation, the error can become very
large, or conversely, fade away. These problems are associated with the great depth of the
network, as well as the accumulation of errors. The specialized cells of RNNs were invented
to avoid such drawbacks during training. The first such cell was the LSTM, and now there
is a wide range of alternatives; one of the most popular among them is GRU. The following
sections will describe different types of RNN architectures in detail.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[385]

Exploring RNN architectures
In this section, we will have a look at various kinds of RNN architectures. We will also
understand how they differ from each other based on their nature and implementations.

LSTM
Long short-term memory (LSTM) is a special kind of RNN architecture that's capable of
learning long-term dependencies. It was introduced by Sepp Hochreiter and Jürgen
Schmidhuber in 1997 and was then improved on and presented in the works of many other
researchers. It perfectly solves many of the various problems we've discussed, and are now
widely used.

In LSTM, each cell has a memory cell and three gates (filters): an input gate, an output gate,
and a forgetting gate. The purpose of these gates is to protect information. The input gate
determines how much information from the previous layer should be stored in the cell. The
output gate determines how much information the following layers should receive. The
forget gate, no matter how strange it may seem, performs a useful function. For example, if
the network studies a book and moves to a new chapter, some words from the old chapter
can be safely forgotten:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[386]

The critical component of LSTM is the cell state – a horizontal line running along the top of
the circuit. The state of the cell resembles a conveyor belt. It goes directly through the whole
chain, participating in only a few linear transformations. Information can easily flow
through it, without being modified.

However, LSTM can remove information from the state of a cell. Structures called gates or
filters govern this process. Gates or filters let you skip information based on some
conditions. They consist of a sigmoidal neural network layer and pointwise multiplication
operation:

The sigmoidal layer returns numbers from zero to one, which indicates what proportion of
each block of information should be skipped further along the network. A zero value, in
this case, means skip everything, whereas one means keep everything.

There are three such gates in LSTM that allow you to save and control the state of a cell.
The first information flow stage in the LSTM determines what information can be discarded
from the state of the cell. This decision is made by the sigmoidal layer, called the forget gate
layer. It looks at the state of the cell and returns a number from 0 to 1 for each value. 1
means keep everything, while 0 means skip everything:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[387]

The next flow stage in the LSTM decides what new information should be stored in the cell
state. This phase consists of two parts. First, a sigmoidal layer called the input layer
gate determines which values should be updated. Then, the tanh layer builds a vector of
new candidate values, , which can be added to the state of the cell:

To replace the old state of the cell with the new state, we need to multiply the old state of
 by , forgetting what we decided to forget. Then, we add (the new candidate

values, multiplied by how much we want to update each status value):

The output values are based on our cell state, and gate functions (filters) should be applied
to them. First, we apply a sigmoidal layer named the output gate, which decides what
information from the state of the cell we should output. Then, the state values of the cell
pass through the tanh layer to get values from -1 to 1 as the output, which is multiplied by
the output values of the sigmoid layer. This allows you to output only the required
information:

There are many variations of LSTM based on this idea. Let's take a look at some of them
now.

GRUs
The GRU is a variation of the LSTM architecture. They have one less gate (filter), and the
connections are implemented differently. In this variant, the forget gate and the input gate
are combined into one update gate. Besides this, the cell state and the latent state are
combined. The resulting model is simpler than standard LSTM models, and as a result, it is
gaining more popularity:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[388]

The updated gate determines how much information should remain from the last state and
how much should be taken from the previous layer:

The reset gate works like the forget gate:

The tanh layer builds a vector of new candidate values, , that can be added to the state of
the cell. The values of the reset gate are applied to the values of the previous state:

A new state is obtained based on a combination of previous state values and new candidate
values. The update gate values control in what proportion state values should be used:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[389]

Bidirectional RNN
Bidirectional RNNs, LSTMs, and GRUs (BiRNN, BiLSTM, and BiGRU) are not so different
from their unidirectional variants. The difference is that these networks use not only data
from the past, but also from the future of the series. When we work with a sequence in a
recurrent network, we usually feed one element followed by the next and pass on the
previous state of the network as the input. The natural direction of this process takes place
from left to right.

In many cases, however, the sequence has already been given in its entirety from the very
beginning. Due to this, we can pass it to the neural network from both sides with two
neural networks, and then combine their result:

This architecture is called a bidirectional RNN. Its quality is even higher than ordinary
recurrent networks because there is a broader context for each element of the sequence.
There are now two contexts – one comes before, while one comes after. For many tasks, this
adds quality, especially for tasks related to processing natural language.

Multilayer RNN
Multilayer RNNs (also called deep RNNs) is another concept. The idea here is that we add
additional RNNs on top of the source network, where each added RNN is a different layer.
The output of the hidden state of the first (or lowest) RNN is the input for the RNN of the
next layer above it. The general prediction is usually calculated from the latent state of the
most recent (highest current output) layer:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[390]

The preceding diagram shows a multilayer unidirectional RNN, where the layer number is
indicated as superscript. Also, note that each layer needs its own initial hidden state, .

Now that we've learned about the various architectures of RNN, let's take a look at another
aspect of RNN in natural language processing.

Understanding natural language processing
with RNNs
Natural language processing (NLP) is a subfield of computer science that studies
algorithms for processing and analyzing human languages. There are a variety of
algorithms and approaches for teaching computers to solve a task that assumes using
human language data. Let's start with the basic principles used in this area. After all, the
computer does not know how to read, so the first issue with NLP is that you have to teach a
machine to work with natural language words. One idea that comes to mind is to encode
words with numbers in the order they exist in the dictionary. This idea is fairly simple
– numbers are endless, and you can number and renumber words with ease. But this idea
has a significant drawback; the words in the dictionary are in alphabetical order, and when
we add new words, we need to renumber a lot of words again. Such an approach
is computationally inefficient, but even this is not an important issue. The important thing
is that the spelling of the word has nothing to do with its meaning. The words
rooster, hen, and chick have very little in common with each other alphabetically, and are far
away from each other in the dictionary, even though they can determine the male, female,
and young of the same bird.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[391]

Therefore, we can distinguish two types of proximity measures for words: lexical and
semantic. In other words, the lexicographic (dictionary) order doesn't preserve the semantic
proximity of words. For example, the word allium can be followed by the word allocate in a
dictionary, but they don't have any common semantics. Another example of lexically
similar words is rain and pain, but they are also usually used in different contexts. As
shown in the chicken example, words that are very different lexically (rooster and hen) can
have a lot of semantic similarity (they refer to birds), even if they are very distant from each
in the dictionary. So, these proximity measures are independent.

To be able to represent semantic proximity, we can use embedding; that is, associating a
word with a vector and displaying its meaning in the space of meanings. Embedding is
where we map an arbitrary entity to a specific vector; for example, a node in a graph, an
object in a picture, or the definition of a word.

There are many approaches to creating embedding for words. Over the next few
subsections, we'll consider the two most widespread: Word2Vec and global vectors
(GloVe).

Word2Vec
In 2013, Tomash Mikolov proposed a new approach to word embedding, which he called
Word2Vec. His approach is based on another crucial hypothesis, which in science is usually
called the distributional hypothesis or locality hypothesis: words that are similar in meaning
occur in similar contexts (Rubenstein and Goodenough, 1965). Proximity measure, in this
case, is understood very broadly as the fact that only semantically similar words can be in
proximity. For example, the phrase clockwork alarm clock is acceptable in this model, but
clockwork orange is not. The words clockwork and orange can't be easily combined by
semantics. The model proposed by Mikolov is very simple (and therefore useful)—we
predict the probability of a word from its environment (context). Specifically, we learn
word vectors so that the probability assigned by the model to a word is close to the
probability of meeting this word in the environment (context) of the original text.

The training process is organized as follows:

The corpus is read, and the occurrence of each word in the corpus is calculated1.
(that is, the number of times each word occurs in the corpus).
An array of words is sorted by frequency, and rare words are deleted (they are2.
also called hapax).

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[392]

The subsentence is read from the corpus, and subsampling of the most frequent3.
words is done. A subsentence is a specific fundamental element of the corpus,
usually just a sentence, but it can be a paragraph or even an entire article.
Subsampling is the process of removing the most frequent words from the
analysis, which speeds up the learning process of the algorithm and contributes
to a significant increase in the quality of the resulting model.
We go through the subsentence with a window (the window size is set as a4.
parameter). This means that we take 2k + 1 words sequentially, with the word
that should be predicted in the center. The surrounding words are a context of
length, k, on each side.
The selected words are used to train a simple feedforward neural network,5.
usually with one hidden layer and with the hierarchical softmax and/or negative
sampling activation function for the output layer. For the hidden layer, a linear
activation function is used.
The target value for the prediction is the word in the center of the window that6.
needs to be predicted.
Words during the training process are usually presented using one-hot encoding.7.
After training the network on the entire training corpus, each word in our model8.
should be associated with a unique vector that we change in the process of
training our model.
The size of the vector that corresponds to the word is equal to the size of the9.
hidden layer of the learning network, while the values of the vector are the
values of the outputs of the hidden layer neurons. These values can be obtained
after we feed some training samples to the network input.

Although the model does not explicitly include any semantics – only the statistical
properties of the corpus of texts – it turns out that the trained Word2Vec model can capture
some semantic properties of words. Currently, there are various modifications of this
algorithm, such as the Doc2Vec algorithm, which learns paragraph and document
embeddings.

GloVe
Notice that the Word2Vec algorithm only takes the local context of words into account. It
doesn't use global statistics throughout the training corpus. For example, the words the and
cat will often be used together, but Word2Vec is unable to determine whether the
word the is a standard article or whether the words the and cat have a strong implicit
connection. This problem leads to the idea of using global statistics.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[393]

For example, latent semantic analysis (LSA) calculates the embeddings for words by
factorizing the term-document matrix using singular decomposition. However, even
though this method takes advantage of global information, the obtained vectors do not
show the same generalization properties as those obtained using Word2Vec. For example,
vectors obtained using Word2Vec have such a generalizing property that, by using
arithmetic operations, you can generate the following kind of result: king - man + woman =
queen.

There is also another popular algorithm called GloVe. GloVe aims to achieve two goals:

Create word vectors that capture meaning in the vector space
Take advantage of global statistics, not just use local information

Unlike Word2Vec, which is trained using a sentence's flow, GloVe is trained based on a co-
occurrence matrix and trains word vectors so that their difference predicts co-occurrence
ratios.

First, we need to build a co-occurrence matrix. It is possible to calculate the co-occurrence
matrix using a fixed-size window to make GloVe also take into account the local context.
For example, the sentence The cat sat on the mat, with a window size of 2, can be converted
into the following co-occurrence matrix:

the cat sat on mat
the 2 1 1 1
cat 1 1 1 0
sat 2 1 1 0
on 1 1 1 1

mat 1 0 1 1

Notice that the matrix is symmetrical because when the word cat appears in the context of
the word sat, the opposite happens too.

To connect the vectors with the statistics we calculated previously, we can formulate the
following principle: the coincidental relationship between two words, in terms of context,
are closely related to their meaning. For example, consider the words ice and steam. Ice and
steam differ in their state but are similar in that they are forms of water. Therefore, we can
expect that water-related words (such as moisture and wet) will be displayed equally in the
context of the words ice and steam. In contrast, words such as cold and solid are likely to
appear next to the word ice, but not the word steam.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[394]

Let's denote the co-occurrence matrix as X. In this case refers to the elements i and j, in
X, which is equal to the number of times the word j appears in the context of the word .

We can also define as the total number of words that appeared in the context of
the word i.

Next, we need to generate an expression to estimate co-occurrence ratios using word
vectors. To do this, we start with the following relationship:

Here, denotes the probability of the appearance of the word j in the context of the word
i, which can be expressed as follows:

F is an unknown function, which takes embeddings for the words i, k, and j. Note that there
are two kinds of embedding: input for context and output for the target word (expressed as

 and , respectively). These two kinds of embeddings are a minor detail, but nonetheless
important to remember.

Now, the question is, how do we generate the function, F? As you may recall, one of the goals
of GloVe was to create vectors with values that have a good generalizing ability, which can
be expressed using simple arithmetic operations (such as addition and subtraction). We
must choose F so that the vectors that we get when using this function match this property.

Since we want the use of arithmetic operations between vectors to be meaningful, we have
to make the input for the function, F, the result of an arithmetic operation between vectors.
The easiest way to do this is to apply F to the difference between the vectors we are
comparing, as follows:

To specify a linear relationship between and , we use the dot-product operation:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[395]

Now, to simplify the expression and evaluate the function, F, we use the following
approach.

First, we can take the logarithm of the probabilities ratio to convert the ratio into the
difference between the probabilities. Then, we can express the fact that some words are
more common than others by adding an offset term for each word.

Given these considerations, we obtain the following equation:

We can convert this equation into an equation for a single record from the co-occurrence
matrix:

By doing this, we transform the last term of the equation on the right-hand side into the
bias term. By adding the output bias for symmetry, we get the following formula:

This formula is the central GloVe equation. But there is one problem with this equation: it
equally evaluates all co-occurrences of words. However, in reality, not all co-occurrences
have the same quality of information. Co-occurrences that are rare tend to be noisy and
unreliable, so we want stronger weights to be attached to more frequent co-occurrences. On
the other hand, we do not want frequent co-occurrences to dominate the loss function
entirely, so we do not want the estimates to be solely dependent on frequency.

As a result of experimentation, Jeffrey Pennington, Richard Socher, and Christopher D.
Manning, the authors of the original article, GloVe: Global Vectors for Word Representation,
found that the following weight function works well:

Using this function, we can transform the loss function into the following form:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[396]

Now, the task of finding embedding vectors is reduced to minimizing this loss function.
This operation can be accomplished, for example, using the stochastic gradient descent
approach.

In the next section, we will develop a sentiment analysis model with the PyTorch library
using the RNN principles we learned about in the previous sections.

Sentiment analysis example with an RNN
In this section, we are going to build a machine learning model that can detect review
sentiment (detect whether a review is positive or negative) using PyTorch. As a training set,
we are going to use the Large Movie Review Dataset, which contains a set of 25,000 movie
reviews for training and 25,000 for testing, both of which are highly polarized.

First, we have to develop parser and data loader classes to move the dataset to memory in a
format suitable for use with PyTorch.

Let's start with the parser. The dataset we have is organized as follows: there are two
folders for the train and test sets, and each of these folders contains two child folders
named pos and neg, which is where the positive review files and negative review files are
placed. Each file in the dataset contains exactly one review, and its sentiment is determined
by the folder it's placed in. In the following code sample, we will define the interface for the
reader class:

 class ImdbReader {
 public:
 ImdbReader(const std::string& root_path);
 size_t GetPosSize() const;
 size_t GetNegSize() const;
 size_t GetMaxSize() const;
 using Review = std::vector<std::string>;
 const Review& GetPos(size_t index) const;
 const Review& GetNeg(size_t index) const;
 private:
 using Reviews = std::vector<Review>;
 void ReadDirectory(const std::string& path, Reviews& reviews);
 private:
 Reviews pos_samples_;
 Reviews neg_samples_;
 size_t max_size_{0};
 };

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[397]

We defined the Review type as a vector of strings. There are also two more
vectors, pos_samples_ and neg_samples_, which contain the reviews that were read
from the corresponding folders.

We will assume that the object of this class should be initialized with the path to the root
folder where one of the datasets is placed (the training set or testing set). We can initialize
this in the following way:

 int main(int argc, char** argv) {
 if (argc > 0) {
 auto root_path = fs::path(argv[1]);
 ...
 ImdbReader train_reader(root_path / "train");
 ImdbReader test_reader(root_path / "test");
 }
 ...
 }

The most important parts of this class are the constructor and the ReadDirectory
methods. The constructor is the main point wherein we fill the containers, pos_samples_
and neg_samples_, with actual reviews from the pos and neg folders:

 namespace fs = std::filesystem;
 ...
 ImdbReader::ImdbReader(const std::string& root_path) {
 auto root = fs::path(root_path);
 auto neg_path = root / "neg";
 auto pos_path = root / "pos";
 if (fs::exists(neg_path) && fs::exists(pos_path)) {
 auto neg = std::async(std::launch::async,
 [&]() { ReadDirectory(neg_path, neg_samples_); });
 auto pos = std::async(std::launch::async,
 [&]() { ReadDirectory(pos_path, pos_samples_); });
 neg.get();
 pos.get();
 } else {
 throw std::invalid_argument("ImdbReader incorrect path");
 }
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[398]

The ReadDirectory method implements the logic for iterating files in the given directory.
It also reads them, tokenizes lines, and fills the dataset container, which is then passed as a
function parameter. The following code shows the ReadDirectory method's
implementation:

void ImdbReader::ReadDirectory(const std::string& path, Reviews& reviews) {
 std::regex re("[^a-zA-Z0-9]");
 std::sregex_token_iterator end;
 for (auto& entry : fs::directory_iterator(path)) {
 if (entry.is_regular_file()) {
 std::ifstream file(entry.path());
 if (file) {
 std::string text;
 {
 std::stringstream buffer;
 buffer << file.rdbuf();
 text = buffer.str();
 }
 std::sregex_token_iterator token(text.begin(), text.end(),
 re, -1);
 Review words;
 for (; token != end; ++token) {
 if (token->length() > 1) { // don't use one letter
 // words
 words.push_back(*token);
 }
 }
 max_size_ = std::max(max_size_, words.size());
 reviews.push_back(std::move(words));
 }
 }
 }
 }

We used the standard library directory iterator class, fs::directory_iterator, to get
every file in the folder. The object of this class returns the object of the
fs::directory_entry class, and this object can be used to determine whether this is a
regular file with the is_regular_file method. We got the file path of this entry with the
path method.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[399]

We read the whole file to one string object using the rdbuf method of the std::ifstream
type object. Then, we tokenized (split the distinct words) this string with the use of a
regular expression. The std::sregex_token_iterator class in the C++ standard library
can be used precisely for this purpose. The object of this class was initialized with the
iterator range of the target text string we need to split, the regular expression object, and the
index of the sub-match that the object will search. We defined the re object (which matched
everything that was not the alpha-numeric character) with regular expressions. As a sub-
match index, we used -1 because 0 represents the entire match and -1 represents the
characters between matches. Iterating through the tokens, we selected words with a length
greater than one in order to reduce computational complexity and eliminate meaningless
characters. All the relevant tokens were placed in the Review container type, which
represents a single review. This review was also placed in the top-level container, which is
passed as a function argument. Notice that we used the std::move function to move
containers in order to eliminate a heavy copy operation.

After we've read the train and test datasets, we need to build a word vocabulary where
each string representing a word matches a unique index. We are going to use such a
vocabulary to convert string-based reviews into integer-based representations that can be
used with linear algebra abstractions. We can build such a vocabulary from the whole set of
words that appeared in the reviews, but this would produce a huge corpus; in practice,
many words are used very rarely, so they produce unnecessary noise. To avoid these
issues, we can only use a certain number of the most frequently used words. To select such
words, we need to calculate the frequencies of all the words in the reviews. We can do this
by using the hash map object:

 using WordsFrequencies = std::unordered_map<std::string, size_t>;

We can calculate frequencies by accumulating the number of times words appear in the
second member of the pair from the map. This is done by iterating through all of the words
in the reviews:

 void GetWordsFrequencies(const ImdbReader& reader,
 WordsFrequencies& frequencies) {
 for (size_t i = 0; i < reader.GetPosSize(); ++i) {
 const ImdbReader::Review& review = reader.GetPos(i);
 for (auto& word : review) {
 frequencies[word] += 1;
 }
 }
 for (size_t i = 0; i < reader.GetNegSize(); ++i) {
 const ImdbReader::Review& review = reader.GetNeg(i);
 for (auto& word : review) {
 frequencies[word] += 1;
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[400]

 }
 }

This function is used in the following way:

 WordsFrequencies words_frequencies;
 GetWordsFrequencies(train_reader, words_frequencies);
 GetWordsFrequencies(test_reader, words_frequencies);

After we have calculated the number of occurrences of each word in the datasets, we can
select a specific number of the most frequently used ones. Let's set the size of the
vocabulary to 25,000 words:

int64_t vocab_size = 25000;

To select the top 25,000 most frequent words, we have to sort all the words by their
frequency. To perform this operation, we need to use a container other than a hash map
(because it is an unordered container). Therefore, we will use the C++ vector class. It should
be parameterized with a pair type containing the frequency value and the iterator to the
original item. This iterator should point to the element in the hash map. Such an approach
will allow us to reduce copying operations. Then, we can use the standard sorting
algorithm with a custom comparison function. This concept is fully implemented in the
SelectTopFrequencies function:

 void SelectTopFrequencies(WordsFrequencies& vocab, int64_t new_size) {
 using FreqItem = std::pair<size_t, WordsFrequencies::iterator>;
 std::vector<FreqItem> freq_items;
 freq_items.reserve(vocab.size());
 auto i = vocab.begin();
 auto e = vocab.end();
 for (; i != e; ++i) {
 freq_items.push_back({i->second, i});
 }
 std::sort(
 freq_items.begin(), freq_items.end(),
 [](const FreqItem& a, const FreqItem& b)
 { return a.first < b.first; });
 std::reverse(freq_items.begin(), freq_items.end());
 freq_items.resize(static_cast<size_t>(new_size));
 WordsFrequencies new_vocab;
 for (auto& item : freq_items) {
 new_vocab.insert({item.second->first, item.first});
 }
 vocab = new_vocab;
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[401]

The standard library's sort function assumes that a passed comparison function returns
true if the first argument is less than the second. So, after sorting, we reversed the result in
order to move the most frequent words to the beginning of the container. Then, we simply
resized the freq_items container to the desired length. The last step in this function was
creating the new WordsFrequencies type object from the items representing the most
frequently used words. Also, we replaced the content of the original vocab object with the
new_vocab object content. The following code shows how to use this function:

 SelectTopFrequencies(words_frequencies, vocab_size);

Before we assign indices to the words, we have to decide how we are going to generate
embeddings for them. This is an important issue because the indices we assign will be used
to access the word embeddings. In this example, we used the pre-trained GloVe word
embeddings. We can find different variants on the original article's site: https://nlp.
stanford.edu/projects/glove/.

Word vectors learned from the Wikipedia 2014 materials and Gigaword 5 text corpora,
which contain 6 billion tokens and 100-dimensional vectors, was chosen for this example.
As in the previous case, we need to create a parser for the downloaded embeddings. The
downloaded embeddings file contains one key-value pair per line, where the key is the
word and the value is the 100-dimensional vector. All the items in the line are separated by
spaces, so the format look likes this: word x0 x1 x2 ... x99.

The following code defines the class interface for the GloVe embedding's parser:

 class GloveDict {
 public:
 GloveDict(const std::string& file_name, int64_t vec_size);
 torch::Tensor Get(const std::string& key) const;
 torch::Tensor GetUnknown() const;
 private:
 torch::Tensor unknown_;
 std::unordered_map<std::string, torch::Tensor> dict_;
 };

The GloveDict class constructor takes the filename and the size of the embedding vector.
There are two methods being used here. The Get method returns the torch::Tensor type
object for the embedding that corresponds to the input word. The second
method, GetUnknown, returns the tensor representing the embedding for the words that
don't exist in the embeddings list. In our case, this is the zero tensor.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[402]

The main work is done by the constructor of the class, where we read a file with GloVe
vectors, parse it, and initialize the dict_ map object with words in the keys role and embed
tensors as values:

 GloveDict::GloveDict(const std::string& file_name, int64_t vec_size) {
 std::ifstream file;
 file.exceptions(std::ifstream::badbit);
 file.open(file_name);
 if (file) {
 auto sizes = {static_cast<long>(vec_size)};
 std::string line;
 std::vector<float> vec(static_cast<size_t>(vec_size));
 unknown_ = torch::zeros(sizes, torch::dtype(torch::kFloat));
 std::string key;
 std::string token;
 while (std::getline(file, line)) {
 if (!line.empty()) {
 std::stringstream line_stream(line);
 size_t num = 0;
 while (std::getline(line_stream, token, ' ')) {
 if (num == 0) {
 key = token;
 } else {
 vec[num - 1] = std::stof(token);
 }
 ++num;
 }
 assert(num == (static_cast<size_t>(vec_size) + 1));
 torch::Tensor tvec = torch::from_blob(
 vec.data(), sizes,
 torch::TensorOptions().dtype(torch::kFloat));
 dict_[key] = tvec.clone();
 }
 }
 }
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[403]

In this method, we read a file line by line with the std::getline function from the
standard library. We defined one object of the std::vector<float> type to hold the
embedding vector values, and we initialized the unknown_ tensor for unknown words with
zeros using the torch::zeros function from the PyTorch library. To split the line in the
tokens, we also used the std::getline function. This is because it has a second parameter
that can be used to specify the delimiter. By default, the delimiter is a newline character,
but we specified the space character as the delimiter. We used the first token as a keyword.
Regarding the other tokens from each file line, we put them into the vector of floating-point
numbers. When we parsed a whole line, we constructed the torch::Tensor object with
the torch::from_blob method, which wraps existing data without copying it to the
tensor object with specified options. Finally, we put the key-value pair on the map; the key
is the word and the value is the tensor object. Notice that we used the clone method to
copy exact data to a new object stored in the map. The vec object is used to reuse memory
while parsing the vectors. The std::stof function from the standard library is used to
convert a string into a floating-point number.

Now, we have everything we need to create a vocabulary class that can associate a word
with a unique index, and the index with a vector embedding. The following snippet shows
its definition:

 class Vocabulary {
 public:
 Vocabulary(const WordsFrequencies& words_frequencies,
 const GloveDict& glove_dict);
 int64_t GetIndex(const std::string& word) const;
 int64_t GetPaddingIndex() const;
 torch::Tensor GetEmbeddings() const;
 int64_t GetEmbeddingsCount() const;
 private:
 std::unordered_map<std::string, size_t> words_to_index_map_;
 std::vector<torch::Tensor> embeddings_;
 size_t unk_index_;
 size_t pad_index_;
 };

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[404]

The object of the Vocabulary class should be initialized with the instances of the
WordsFrequencies and GloveDict classes; it implements the next vital methods.
GetIndex returns the index for the input word, while GetEmbeddings returns a tensor
containing all embeddings (in rows) in the same order as the word indices. The
GetPaddingIndex method returns the index of the embedding, which can be used for
padding (it is a zero tensor in reality). The GetEmbeddingsCount method returns the total
count of the embeddings.

Notice that this number can be different from the total number of the
words in our dictionary because some words can be missed in the GloVe
embeddings. Such missed words should be associated with the unknown
index and zero-valued embedding.

The following code shows how the constructor is implemented:

 Vocabulary::Vocabulary(const WordsFrequencies& words_frequencies,
 const GloveDict& glove_dict) {
 words_to_index_map_.reserve(words_frequencies.size());
 embeddings_.reserve(words_frequencies.size());
 unk_index_ = 0;
 pad_index_ = unk_index_ + 1;
 embeddings_.push_back(glove_dict.GetUnknown()); // unknown
 embeddings_.push_back(glove_dict.GetUnknown()); // padding
 size_t index = pad_index_ + 1;
 for (auto& wf : words_frequencies) {
 auto embedding = glove_dict.Get(wf.first);
 if (embedding.size(0) != 0) {
 embeddings_.push_back(embedding);
 words_to_index_map_.insert({wf.first, index});
 ++index;
 } else {
 words_to_index_map_.insert({wf.first, unk_index_});
 }
 }
 }

In this method, we populated the words_to_index_map_ and embeddings_ containers.
First, we inserted two zero-valued tensors into the embeddings_ container: one for the
GloVe unknown word and another for padding values:

 embeddings_.push_back(glove_dict.GetUnknown()); // unknown
 embeddings_.push_back(glove_dict.GetUnknown()); // padding

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[405]

We use padding values to create a batch of reviews for training because almost all review
texts have different lengths. Then, we iterated over the words_frequencies object, which
was passed as a parameter, and used the glove_dict object to search the embedding
vector for the word from the dictionary. If the word is found in the glove_dict object,
then we populate the embeddings_ object with the tensor and the words_to_index_map_
object with the word as a key and the index as a value. If a word is not found in the
glove_dict object, then we populate only the words_to_index_map_ object, with the
word as a key and unk_index_ as a value. Notice how the index value is initialized and
incremented; it starts with 2 because the 0 index is occupied for unknown embedding and
the 1 index is occupied for padding value embedding:

 unk_index_ = 0;
 pad_index_ = unk_index_ + 1;
 ...
 size_t index = pad_index_ + 1;

Notice that we only increased the index after we inserted a new embedding tensor into the
embeddings_ object. In the opposite case, when an embedding for the word was not found,
the word was associated with the unknown value index. The next important method in the
Vocabulary class in the GetEmbeddings method, which makes a single tensor from a
vector of embedding tensors. The following code shows its implementation:

 at::Tensor Vocabulary::GetEmbeddings() const {
 at::Tensor weights = torch::stack(embeddings_);
 return weights;
 }

Here, we used the torch::stack function, which concatenates tensors from the given
container along a new dimension (by default, this function adds a dimension with index 0).

Other Vocabulary class methods return corresponding values:

GetIndex: Returns the index of a given word in the vocabulary
GetPaddingIndex: Returns the index of padding values in the vocabulary
GetEmbeddings: Returns all embeddings as one tensor object
GetEmbeddingsCount: Returns the number of embeddings in the vocabulary

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[406]

Now, we have all the necessary classes for dataset class implementation. Such classes can
be used for the PyTorch data loader's initialization. However, before we develop it, we
should discuss how our model should process training batches. We already mentioned that
review texts are of different lengths, so it is impossible to combine several of them into one
rectangular tensor (remember that words are represented with numeric indices). To solve
this problem, we need to make them all the same length. This operation can be done by
determining the most extended text in the dataset with the GetMaxSize method of
ImdbReader and allocating the tensor with this size as one of the dimensions. The shorter
text is padded with zero values. We already defined the method to get the padding index in
the Vocabulary class.

However, such an approach also leads to numerous unnecessary calculations and adds
noise to our training data, which can make our model less precise. Fortunately, because this
is a common problem, there is a solution. The PyTorch library has an LSTM module
implementation, which can effectively work with padded batches by ignoring the padding
values. To use such functionality, we need to add information regarding the length of each
text (sequence) in the batch.

So, our dataset class should return a pair of training tensors: one representing the encoded
text and another containing its length. Also, we need to develop a custom function to
convert the vector of tensors in a batch into one single tensor. This function is required if we
want to make PyTorch compatible with custom training data.

Let's define the ImdbSample type for a custom training data sample. We will use this with
the torch::data::Dataset type:

 using ImdbData = std::pair<torch::Tensor, torch::Tensor>;
 using ImdbSample = torch::data::Example<ImdbData, torch::Tensor>;

ImdbData represents the training data and has two tensors for test sequence and length.
ImdbSample represents the whole sample with a target value. A tensor contains a 1 or 0 for
positive or negative sentiment, respectively.

The following code snippet shows the ImdbDataset class' declaration:

 class ImdbDataset : public torch::data::Dataset<ImdbDataset, ImdbSample> {
 public:
 ImdbDataset(ImdbReader* reader,
 Vocabulary* vocabulary,
 torch::DeviceType device);
 // torch::data::Dataset implementation
 ImdbSample get(size_t index) override;
 torch::optional<size_t> size() const override;
 private:

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[407]

 torch::DeviceType device_{torch::DeviceType::CPU};
 ImdbReader* reader_{nullptr};
 Vocabulary* vocabulary_{nullptr};
 };

We inherited our dataset class from the torch::data::Dataset class so that we can use it
for data loader initialization. The PyTorch data loader object is responsible for sampling
random training objects and making batches from them. The objects of our ImdbDataset
class should be initialized with the ImdbReader and Vocabulary class instances. We also
added the device parameter of torch::DeviceType into the constructor to tell the object
where to place the training object in CPU or GPU memory. In the constructor, we store the
pointers to input objects and the device type. We overrode two methods from
the torch::data::Dataset class: the get and size methods.

The following code shows how we implemented the size method:

 torch::optional<size_t> ImdbDataset::size() const {
 return reader_->GetPosSize() + reader_->GetNegSize();
 }

The size method returns the number of reviews in the ImdbReader object. The get
method has a more complicated implementation than the previous one, as shown in the
following code:

 ImdbSample ImdbDataset::get(size_t index) {
 torch::Tensor target;
 const ImdbReader::Review* review{nullptr};
 if (index < reader_->GetPosSize()) {
 review = &reader_->GetPos(index);
 target = torch::tensor(1.f,
 torch::dtype(torch::kFloat).device(
 device_).requires_grad(false));
 } else {
 review = &reader_->GetNeg(index - reader_->GetPosSize());
 target = torch::tensor(0.f,
 torch::dtype(torch::kFloat).device(
 device_).requires_grad(false));
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[408]

First, we got the review text and sentiment value from the given index (the function
argument value). In the size method, we returned the total number of positive and
negative reviews, so if the input index is greater than the number of positive reviews, then
this index points to a negative one. Then, we subtracted the number of positive reviews
from it.

After we got the correct index, we also got the corresponding text review and assigned its
address to the review pointer and initialized the target tensor. The torch::tensor
function was used to initialize the target tensor. This function takes an arbitrary numeric
value and tensor options such as a type and a device. Notice that we set
the requires_grad option to false because we don't need to calculate the gradient for this
variable. The following code shows the continuation of the get method's implementation:

 // encode text
 std::vector<int64_t> indices(reader_->GetMaxSize());
 size_t i = 0;
 for (auto& w : (*review)) {
 indices[i] = vocabulary_->GetIndex(w);
 ++i;
 }

Here, we encoded the review text from string words to their indices. We defined the
indices vector of integer values in order to store the encoding of the maximum possible
length. Then, we filled it in the cycle by applying the GetIndex method of the vocabulary
object to each of the words. Notice that we used the i variable to count the number of
words we encode. The use of this variable was required because other positions in the
sequence will be padded with a particular padding index.

The following code shows how we add the padding indices to the sequence:

 // pad text to same size
 for (; i < indices.size(); ++i) {
 indices[i] = vocabulary_->GetPaddingIndex();
 }

When we've initialized all the data we need for one training sample, we have to convert it
into a torch::Tensor object. For this purpose, we can use already known functions,
namely torch::from_blob and torch::tensor. The torch::from_blob function takes
the pointer for raw numeric data, the dimensions container, and tensor options. The
following code shows how we used these functions to create the final tensor object at the
end of the get method's implementation:

 auto data = torch::from_blob(indices.data(),
 {static_cast<int64_t>(reader_->GetMaxSize())},
 torch::dtype(torch::kLong).requires_grad(false));

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[409]

 auto data_len = torch::tensor(static_cast<int64_t>(review->size()),
 torch::dtype(torch::kLong).requires_grad(false));

 return {{data.clone().to(device_), data_len.clone()},
 target.squeeze()};
 }

Notice that the data object containing the text sequence was moved to the specific device
with the to method, but data_len was left in the default (CPU) device because this is a
requirement of the PyTorch LSTM implementation API. Also, look at the use of the
squeeze method – this method removes all tensor dimensions equal to 1, so in our case, we
used it to make a single value tensor (not a rectangular one).

The following code shows how to use the classes we defined previously to initialize data
loaders for the training and test datasets:

torch::DeviceType device = torch::cuda::is_available()
 ? torch::DeviceType::CUDA
 : torch::DeviceType::CPU;
 ...
 // create datasets
 ImdbDataset train_dataset(&train_reader, &vocab, device);
 ImdbDataset test_dataset(&test_reader, &vocab, device);

 // init data loaders
 size_t batch_size = 32;
 auto train_loader = torch::data::make_data_loader(train_dataset,
 torch::data::DataLoaderOptions().batch_size(batch_size).workers(4));

 auto test_loader = torch::data::make_data_loader(test_dataset,
 torch::data::DataLoaderOptions().batch_size(batch_size).workers(4));

Before we move on, we need to define one more helper function, which converts the batch
vector of tensors into one tensor. This conversion is needed to vectorize the calculation for
better utilization of hardware resources, in order to improve performance. Notice that
when we initialized the data loaders with the make_data_loader function, we didn't use
the mapping and transform methods for datasets objects as in the previous example. This
was done because, by default, PyTorch can't automatically transform arbitrary types (in our
case, the ImdbData pair type) into tensors. The following code shows the beginning of the
MakeBatchTensors function's implementation:

 std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>
 MakeBatchTensors(const std::vector<ImdbSample>& batch) {
 // prepare batch data
 std::vector<torch::Tensor> text_data;
 std::vector<torch::Tensor> text_lengths;

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[410]

 std::vector<torch::Tensor> label_data;
 for (auto& item : batch) {
 text_data.push_back(item.data.first);
 text_lengths.push_back(item.data.second);
 label_data.push_back(item.target);
 }

First, we split a single vector of the ImdbSample objects into three: text_data, which
contains all texts; text_lengths, which contains the corresponding lengths; and
label_data, which contains the target value. Then, we need to sort them in decreasing
order of text length. This order is a requirement of the pack_padded_sequence function,
which we will use in our model to transform padded sequences into packed ones to
improve performance. We can't simultaneously sort three containers in C++, so we have to
use a custom approach based on a defined permutation. The following code shows how we
applied this approach while continuing to implement the method:

 std::vector<std::size_t> permutation(text_lengths.size());
 std::iota(permutation.begin(), permutation.end(), 0);
 std::sort(permutation.begin(), permutation.end(),
 [&](std::size_t i, std::size_t j) {
 return text_lengths[i].item().toLong() <
 text_lengths[j].item().toLong();
 });
 std::reverse(permutation.begin(), permutation.end());

Here, we defined the permutation vector of indices with a number of items equal to the
batch size. Then, we filled it consistently with numbers starting from 0, and sorted it with
the standard std::sort algorithm function, but with a custom comparison functor, which
compares the lengths of sequences with correspondent indices. Notice that to get the raw
value from the torch::Tensor type object, the item() and toLong() methods were
used. Also, because we needed the decreasing order of items, we used the std::reverse
algorithm. The following code shows how we used the permutation object to sort three
containers in the same way:

 auto appy_permutation = [&permutation](
 const std::vector<torch::Tensor>& vec) {
 std::vector<torch::Tensor> sorted_vec(vec.size());
 std::transform(permutation.begin(), permutation.end(),
 sorted_vec.begin(),
 [&](std::size_t i) { return vec[i]; });
 return sorted_vec;
 };
 text_data = appy_permutation(text_data);
 text_lengths = appy_permutation(text_lengths);
 label_data = appy_permutation(label_data);

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[411]

To perform the sorting operation, we defined a lambda function that changes the order of
the container's items by the given vector of indices. This was the appy_permutation
lambda. This function created a new intermediate vector of the same size as the one we
want to reorder and filled it with the std::transform algorithm with a custom functor,
which returns the item from the original container but with the index taken from the
permutation object.

When all the batch vectors have been sorted in the required order, we can use the
torch::stack function to concatenate each of them into the single tensor with an
additional dimension. The following code snippet shows how we used this function to
create the final tensor objects. This is the final part of the MakeBatchTensors method's
implementation:

 torch::Tensor texts = torch::stack(text_data);
 torch::Tensor lengths = torch::stack(text_lengths);
 torch::Tensor labels = torch::stack(label_data);
 return {texts, lengths, labels};
 }

At this point, we have written all the code required to parse and prepare the training data.
Now, we can create classes for our RNN model. We are going to base our model on the
LSTM architecture. There is a module called torch::nn::LSTM in the PyTorch C++ API for
this purpose. The problem is that this module can't work with packed sequences. There is a
standalone function called torch::lstm that can do this, so we need to create our custom
module to combine the torch::nn::LSTM module and the torch::lstm function so that
we can work with packed sequences. Such an approach causes our RNN to only process the
non-padded elements of our sequence.

The following code shows the PackedLSTMImpl class' declaration and the PackedLSTM
module's definition:

 class PackedLSTMImpl : public torch::nn::Module {
 public:
 explicit PackedLSTMImpl(const torch::nn::LSTMOptions& options);
 std::vector<torch::Tensor> flat_weights() const;
 torch::nn::RNNOutput forward(const torch::Tensor& input,
 const torch::Tensor& lengths,
 torch::Tensor state = {});
 const torch::nn::LSTMOptions& options() const;
 private:
 torch::nn::LSTM rnn_ = nullptr;
 };

 TORCH_MODULE(PackedLSTM);

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[412]

The PackedLSTM module definition uses the PackedLSTMImpl class as the module
function's implementation. Also, notice that the PackedLSTM module definition differs
from the torch::nn::LSTM module in that the forward function takes the additional
parameter, lengths. The implementation of this module is based on the code of the
torch::nn::LSTM module from the PyTorch library. The flat_weights and forward
functions were mostly copied from the PyTorch library's source code. We overrode the
flat_weights function because it is hidden in the base class, and we can access it from the
torch::nn::LSTM module.

The following code shows the PackedLSTMImpl class constructor's implementation:

 PackedLSTMImpl::PackedLSTMImpl(const torch::nn::LSTMOptions& options) {
 rnn_ = torch::nn::LSTM(options);
 register_module("rnn", rnn_);
 }

In the constructor, we created and registered the torch::nn::LSTM module object. Notice
that we used an instance of the torch::nn::LSTM module to access the properly
initialized weights for the LSTM's implementation.

The following code shows the flat_weights method's implementation:

 std::vector<torch::Tensor> PackedLSTMImpl::flat_weights() const {
 std::vector<torch::Tensor> flat;
 const auto num_directions = rnn_->options.bidirectional_ ? 2 : 1;
 for (int64_t layer = 0; layer < rnn_->options.layers_; layer++) {
 for (auto direction = 0; direction < num_directions; direction++)
{
 const auto layer_idx =
 static_cast<size_t>((layer * num_directions) + direction);
 flat.push_back(rnn_->w_ih[layer_idx]);
 flat.push_back(rnn_->w_hh[layer_idx]);
 if (rnn_->options.with_bias_) {
 flat.push_back(rnn_->b_ih[layer_idx]);
 flat.push_back(rnn_->b_hh[layer_idx]);
 }
 }
 }
 return flat;
 }

In the flat_weights method, we organized all the weights into a flat vector in the order
, repeated for each layer, and next to each other. This is a copy of the same

method from the torch::nn::LSTM module.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[413]

The following code shows the forward method's implementation:

 torch::nn::RNNOutput PackedLSTMImpl::forward(const torch::Tensor& input,
 const at::Tensor& lengths,
 torch::Tensor state) {
 if (!state.defined()) {
 const auto max_batch_size = lengths[0].item().toLong();
 const auto num_directions = rnn_->options.bidirectional_ ? 2 : 1;
 state = torch::zeros({2, rnn_->options.layers_ * num_directions,
 max_batch_size, rnn_->options.hidden_size_},
 input.options());
 }
 torch::Tensor output, hidden_state, cell_state;
 std::tie(output, hidden_state, cell_state) = torch::lstm(
 input, lengths, {state[0], state[1]}, flat_weights(),
 rnn_->options.with_bias_, rnn_->options.layers_,
 rnn_->options.dropout_, rnn_->is_training(),
 rnn_->options.bidirectional_);
 return {output, torch::stack({hidden_state, cell_state})};
 }

The forward method is also a copy of the same method from the torch::nn::LSTM
module, but it used a different overload of the torch::lstm function. We can see that the
main logic in the forward method is to initialize the cell state if it is not defined and call the
torch::lstm function. Notice that all the methods in this class consider the
options.bidirectional_ flag in order to configure the dimensions of the weights and
state tensors. Also, notice that the module's state is a combined tensor from two tensors: the
hidden state and the cell state.

The following code shows how we can define our RNN model with the SentimentRNN
class:

 class SentimentRNNImpl : public torch::nn::Module {
 public:
 SentimentRNNImpl(int64_t vocab_size,
 int64_t embedding_dim,
 int64_t hidden_dim,
 int64_t output_dim,
 int64_t n_layers,
 bool bidirectional,
 double dropout,
 int64_t pad_idx);
 void SetPretrainedEmbeddings(const torch::Tensor& weights);
 torch::Tensor forward(const torch::Tensor& text,
 const at::Tensor& length);
 private:
 int64_t pad_idx_{-1};

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[414]

 torch::autograd::Variable embeddings_weights_;
 PackedLSTM rnn_ = nullptr;
 torch::nn::Linear fc_ = nullptr;
 torch::nn::Dropout dropout_ = nullptr;
 };

 TORCH_MODULE(SentimentRNN);

Our model can be configured so that it's multilayer and bidirectional. These properties can
significantly improve model performance for the sentiment analysis task.

Notice that we defined the embeddings_weights_ class member, which is of
the torch::autograd::Variable type. This was done because we used the
torch::embedding function to convert the input batch sequence's items into embeddings
automatically. We can use the torch::nn:Embeding module for this purpose, but the C++
API can't use pre-trained values. This is why we used the torch::embedding function
directly. We also used the torch::autograd::Variable type instead of a simple tensor
because we need to calculate the gradient for our module during the training process.

The following code shows the SentimentRNNImpl class constructor's implementation:

 SentimentRNNImpl::SentimentRNNImpl(int64_t vocab_size,
 int64_t embedding_dim,
 int64_t hidden_dim,
 int64_t output_dim,
 int64_t n_layers,
 bool bidirectional,
 double dropout,
 int64_t pad_idx)
 : pad_idx_(pad_idx) {
 embeddings_weights_ = register_parameter(
 "embeddings_weights", torch::empty({vocab_size, embedding_dim}));
 rnn_ = PackedLSTM(torch::nn::LSTMOptions(embedding_dim, hidden_dim)
 .layers(n_layers)
 .bidirectional(bidirectional)
 .dropout(dropout));
 register_module("rnn", rnn_);
 fc_ = torch::nn::Linear(torch::nn::LinearOptions(hidden_dim * 2,
 output_dim));
 register_module("fc", fc_);
 dropout_ = torch::nn::Dropout(torch::nn::DropoutOptions(dropout));
 register_module("dropout", dropout_);
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[415]

In the constructor of our module, we initialized the base blocks of our network. We used
the register_parameter method of the torch::nn::Module class to create the
embeddings_weights_ object, which is filled with the empty tensor. Registration makes
automatically calculating the gradient possible. Notice that the one dimension of the
embeddings_weights_ object is equal to the vocabulary length, while the other one is
equal to the length of the embedding vector (100, in our case). The rnn_ object is initialized
with the torch::nn::LSTMOptions type object. We defined the length of the embedding,
the number of hidden dimensions (number of hidden neurons in the LSTM module layers),
the number of RNN layers, the flag that tells us whether the RNN is bidirectional or not,
and specified the regularization parameter (the dropout factor value).

The fc_ object is our output layer with just a fully connected layer and a linear activation
function. It is configured to take the hidden_dim * 2 number of input items, which means
that we are going to pass the hidden states from the last two modules of our RNN into it.
The fc_ object returns only one value; we didn't use the sigmoid activation function for it
because, as stated in the PyTorch documentation, it makes sense to use a special loss
function called binary_cross_entropy_with_logits, which includes the sigmoid and
is more stable than using a plain sigmoid followed by binary cross-entropy loss. We also
initialized and registered the dropout_ object, which is used for additional regularization;
the torch::nn::DropoutOptions object only takes a dropout factor value as its setting.

The following code snippet shows the forward method's implementation:

 torch::Tensor SentimentRNNImpl::forward(const at::Tensor& text,
 const at::Tensor& length) {
 auto embedded =
 dropout_(torch::embedding(embeddings_weights_, text, pad_idx_));
 torch::Tensor packed_text, packed_length;
 std::tie(packed_text, packed_length) = torch::_pack_padded_sequence(
 embedded, length.squeeze(1), /*batch_first*/ false);

 auto rnn_out = rnn_->forward(packed_text, packed_length);

 auto hidden_state = rnn_out.state.narrow(0, 0, 1);
 hidden_state.squeeze_(0); // remove 0 dimension equals to 1 after
 // narrowing
 // take last hidden layers state
 auto last_index = rnn_->options().layers() - 2;
 hidden_state =
 at::cat({hidden_state.narrow(0, last_index, 1).squeeze(0),
 hidden_state.narrow(0, last_index + 1, 1).squeeze(0)},
 /*dim*/ 1);

 auto hidden = dropout_(hidden_state);

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[416]

 return fc_(hidden);
 }

The implementation of the forward method takes two tensors as input parameters. One is
the text sequences, which are [sequence length x batch size] in size, while the other
is text lengths, which are [batch size x 1] in size. First, we applied the
torch::embedding function to our text sequences. This function converts indexed
sequences into ones with embedding values (this is just a table lookup operation). It also
takes embeddings_weights_ as a parameter. embeddings_weights_ is the tensor that
contains our pre-trained embeddings. The pad_idx_ parameter tells us what index points
to the padding value embedding. The result of calling this function is [sequence length
x batch size x 100]. We also applied the dropout module to the embedded sequences
to perform regularization.

Then, we converted the padded embedded sequences into packed ones with the
torch::_pack_padded_sequence function. This function takes the padded sequences
with their lengths (which should be one-dimensional tensors) and returns a pair of new
tensors with different sizes, which also represent packed sequences and packed lengths,
correspondingly. We used packed sequences to improve the performance of the model.

After, we passed the packed sequences and their lengths into the PackedLSTM module's
forward function. This module processed the input sequences with the RNN and returned
an object of the torch::nn::RNNOutput type with two members: output and state. The
state member is in the following format: {hidden_state, cell_state}.

We used the values of the hidden state as input for the fully connected layer. To get the
hidden state values, we extracted them from the combined state, which was done with the
narrow method of a tensor object. This method returns the narrowed version of the original
tensor. The first argument is the dimension index that narrowing should be performed
along, while the next two arguments are the start position and the length. The returned
tensor and input tensor share the same underlying storage.

The hidden state has the following shape: {num layers * num directions x batch
size x hid dim}. The number of directions is 2 in the case of a bidirectional RNN. RNN
layers are ordered as follows: [forward_layer_0, backward_layer_0,
forward_layer_1, backward_layer 1, ..., forward_layer_n, backward_layer

n].

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[417]

The following code shows how to get the hidden states for the last (top) layers:

auto last_index = rnn_->options().layers() - 2;
 hidden_state =
 at::cat({hidden_state.narrow(0, last_index, 1).squeeze(0),
 hidden_state.narrow(0, last_index + 1, 1).squeeze(0)},
 /*dim*/ 1);

Here, we got the top two hidden layer states from the first dimension. Then, we
concatenated them with the torch::cat function before passing them to the linear layer
(after applying dropout). The torch::cat function combines tensors along an existing
dimension. Note that the tensors should be the same shape, contrary to the torch::stack
function (which adds a new dimension when it combines tensors). Performing these
narrowing operations left the original dimensions. Due to this, we used the squeeze
function to remove them.

The last step of the forward function was applying the dropout and passing the results to
the fully connected layer. The following snippet shows how this was done:

 auto hidden = dropout_(hidden_state);
 return fc_(hidden);

The following code shows how we can initialize the model:

 int64_t hidden_dim = 256;
 int64_t output_dim = 1;
 int64_t n_layers = 2;
 bool bidirectional = true;
 double dropout = 0.5;
 int64_t pad_idx = vocab.GetPaddingIndex();

 SentimentRNN model(vocab.GetEmbeddingsCount(),
 embedding_dim,
 hidden_dim,
 output_dim,
 n_layers,
 bidirectional,
 dropout,
 pad_idx);

We configured it to be multilayer and bidirectional with 256 hidden neurons. The next
important step in the model configuration process is initializing the pre-trained
embeddings. The following snippet shows how to use the SetPretrainedEmbeddings
method to do so:

 model->SetPretrainedEmbeddings(vocab.GetEmbeddings());

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[418]

The SetPretrainedEmbeddings method is implemented in the following way:

 void SentimentRNNImpl::SetPretrainedEmbeddings(const at::Tensor& weights)
{
 torch::NoGradGuard guard;
 embeddings_weights_.copy_(weights);
 }

With the instance of the torch::NoGradGuard type, we put the PyTorch library into
special mode, which allowed us to update the internal structure of the modules without
influencing the gradient calculations. We used the tensor's copy_ method to copy the data
one by one.

When the model has been initialized and configured, we can begin training. The necessary
part of the training process is an optimizer object. In this example, we will use the Adam
optimization algorithm. The name Adam is derived from the adaptive moment estimation.
This algorithm usually results in a better and faster convergence in comparison with pure
stochastic gradient descent. The following code shows how to define an instance of the
torch::optim::Adam class:

 double learning_rate = 0.01;
 torch::optim::Adam optimizer(model->parameters(),
 torch::optim::AdamOptions(learning_rate));

As with all optimizer objects in the PyTorch library, it should be initialized with the list of
parameters for optimization. We passed all the parameters (weights) from our
model, model->parameters().

Now, we can move the model to a computational device such as a GPU:

 model->to(device);

Then, we can start training the model. Training will be performed for 100 epochs over all
the samples in the training dataset. After each epoch, we will run the test model's
evaluation to check that there is no overfitting. The following code shows how to define
such a training process:

 int epochs = 100;
 for (int epoch = 0; epoch < epochs; ++epoch) {
 TrainModel(epoch, model, optimizer, *train_loader);
 TestModel(epoch, model, *test_loader);
 }

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[419]

The TrainModel function will be implemented in a standardized way for training neural
networks with PyTorch. Its declaration is shown in the following code:

 void TrainModel(int epoch,
 SentimentRNN& model,
 torch::optim::Optimizer& optimizer,
 torch::data::StatelessDataLoader<ImdbDataset,
 torch::data::samplers::RandomSampler>& train_loader);

Before we start training iterations, we have to switch the model into training mode. It is
essential to do this because some modules behave differently in evaluation mode versus
training mode. For example, the dropout is not applied in evaluation mode and only results
in an average correction. The following code shows how to enable training mode for the
model:

model->train(); // switch to the training mode

The following snippet shows the beginning of the TrainModel function's implementation:

double epoch_loss = 0;
double epoch_acc = 0;
int batch_index = 0;
for (auto& batch : train_loader) {
 ...
}

Here, we defined two variables to calculate the average loss value and accuracy per epoch.
The iteration that we performed over all the batches from the train_loader object was
used to train the model.

The following series of code snippets shows the implementation of a training cycle's
iteration:

First, we clear the previous gradients from the optimizer:1.

optimizer.zero_grad();

Then, we convert the batch data into distinct tensors:2.

torch::Tensor texts, lengths, labels;
 std::tie(texts, lengths, labels) = MakeBatchTensors(batch);

Now that we have the sample texts and lengths, we can perform the forward3.
pass of the model:

torch::Tensor prediction = model->forward(texts.t(), lengths);
prediction.squeeze_(1);

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[420]

Notice that we used the transposed text sequence tensor because the LSTM
module requires input data in the [seq_len, batch_size, features] format.
Here, seq_len is the number of items (words) in a sequence, batch_size is the
size of the current batch, and features is the number of elements in one item (it's
not an embedding dimension).

Now that we have the predictions from our model, we use the squeeze_4.
function to remove any unnecessary dimensions so that the model's compatible
with the loss function. Notice that the squeeze_ function has an underscore,
which means that the function is evaluated in place, without any additional
memory being allocated.
Then, we compute a loss value to estimate the error of our model:5.

torch::Tensor loss = torch::binary_cross_entropy_with_logits(
 prediction, labels, {}, {},
Reduction::Mean);

Here, we used the torch::binary_cross_entropy_with_logits function,
which measures the binary cross-entropy between the prediction logits and the
target labels. This function already includes a sigmoid calculation. This is why
our model returns the output from the linear full connection layer. We also
specified the reduction type in order to apply to the loss output. Losses from each
sample in the batch are summed and divided by the number of elements in the
batch.

Then, we compute the gradients for our model and update its parameters with6.
these gradients:

loss.backward();
optimizer.step();

One of the final steps of the training function is to accumulate the loss and the7.
accuracy values for averaging:

auto loss_value = static_cast<double>(loss.item<float>());
auto acc_value = static_cast<double>(BinaryAccuracy(prediction,
labels));

epoch_loss += loss_value;
epoch_acc += acc_value;

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[421]

Here, we used the custom BinaryAccuracy function for the accuracy calculation.
The following code shows its implementation:

 float BinaryAccuracy(const torch::Tensor& preds,
 const torch::Tensor& target) {
 auto rounded_preds = torch::round(torch::sigmoid(preds));
 auto correct = torch::eq(rounded_preds,
 target).to(torch::dtype(torch::kFloat));
 auto acc = correct.sum() / correct.size(0);
 return acc.item<float>();
 }

In this function, we applied torch::sigmoid to the predictions of our model. This
operation converts the logits values into values we can interpret as a label (1 or 0), but
because these values are floating points, we applied the torch::round function to them.
The torch::round function rounds the input values to the closest integer. Then, we
compared the predicted labels with the target values using the torch::eq function. This
operation gave us an initialized tensor, with 1 where labels matched and with 0 otherwise.
We calculated the ratio between the number of all labels in the batch and the number of
correct predictions as an accuracy value.

The following snippet shows the end of the training function's implementation:

std::cout << "Epoch: " << epoch
 << " | Loss: " << (epoch_loss / (batch_index - 1))
 << " | Acc: " << (epoch_acc / (batch_index - 1))
 << std::endl;

Here, we printed the average values for the loss and accuracy. Notice that we divided the
accumulated values by the number of batches.

The following code shows the TestModel function's implementation, which looks pretty
similar to the TrainModel function:

 void TestModel(int epoch, SentimentRNN& model,
 torch::data::StatelessDataLoader<ImdbDataset,
 torch::data::samplers::RandomSampler>& test_loader) {
 torch::NoGradGuard guard;
 double epoch_loss = 0;
 double epoch_acc = 0;
 model->eval(); // switch to the evaluation mode
 // Iterate the data loader to get batches from the dataset
 int batch_index = 0;
 for (auto& batch : test_loader) {
 // prepare batch data
 torch::Tensor texts, lengths, labels;

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[422]

 std::tie(texts, lengths, labels) = MakeBatchTensors(batch);
 // Forward pass the model on the input data
 torch::Tensor prediction = model->forward(texts.t(), lengths);
 prediction.squeeze_(1);
 // Compute a loss value to estimate error of our model
 torch::Tensor loss = torch::binary_cross_entropy_with_logits(
 prediction, labels, {},
 {}, Reduction::Mean);

 auto loss_value = static_cast<double>(loss.item<float>());
 auto acc_value = static_cast<double>(BinaryAccuracy(prediction,
 labels));
 epoch_loss += loss_value;
 epoch_acc += acc_value;
 ++batch_index;
 }
 std::cout << "Epoch: " << epoch
 << " | Test Loss: " << (epoch_loss / (batch_index - 1))
 << " | Test Acc: " << (epoch_acc / (batch_index - 1)) << std::endl;
 }

The main differences regarding this function are that we used the test_loader objects for
data, switched the model to the evaluation state with the model->eval() call, and we
didn't use any optimization operations.

This RNN architecture, with the settings we used, results in 85% accuracy in the sentiment
analysis of movie reviews.

Summary
In this chapter, we learned the basic principles of RNNs. This type of neural network is
commonly used in sequence analysis. The main differences between the feedforward neural
network types are the existence of a recurrent link; the fact it is shared across timestep's
weights; its ability to save some internal state in memory; and the fact it has a forward and
backward data flow (bidirectional networks).

We became familiar with different types of RNNs and saw that the simplest one has
problems with vanishing and exploding gradients, while the more advanced architectures
can successfully deal with these problems. We learned the basics of the LSTM architecture,
which is based on the hidden state, cell state, and three types of gates (filters), which control
what information to use from the previous timestep, what information to forget, and what
portion of information to pass to the next timestep.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[423]

Then, we looked at the GRU, which is simpler than LSTM and has only one hidden state
and two gates. We also looked at the bidirectional RNN architecture and saw how it can be
used to process input sequences backward. However, we saw that this type of architecture
makes the network twice as large sometimes. We also learned how to use multiple layers in
an RNN to process the hidden state from the bottom layers in upper levels, and that such
an approach can significantly improve network performance.

Next, we learned that we need a modified backpropagation algorithm called BPTT to train
RNNs. This algorithm assumes that the RNN is unfolded to the feedforward network with
a number of layers equal to the timesteps (sequence length). Also, BPTT shares the same
weights for all layers, and the gradient is accumulated before the weights are updated.
Then, we talked about the computational complexity of this algorithm and that the TBPTT
algorithm's modification is more suitable in practice. The TBPTT algorithm uses a limited
number of timesteps for unfolding and a backward pass.

Another theme we discussed was connected to natural language processing. This theme is
word embedding. An embedding, in general, is a numerical vector associated with other
type items (such as words), but the algebraic properties of this vector should reflect some
innate nature of the original item. Embeddings are used to convert non-numeric concepts
into numeric ones so that we can work with them. We looked at the Word2Vec algorithm
for creating word embeddings based on local statistics, as well as the GloVe algorithm,
which is based mostly on global statistics.

Finally, in the last part of this chapter, we developed an application so that we could
perform a sentiment analysis of movie reviews. We implemented a bidirectional
multilayered LSTM network with the PyTorch framework. We also made helper classes so
that we could read the training and test datasets and pre-trained GloVe embeddings. Then,
we implemented the full training and testing cycle and applied the optimization technique
with packed sequences, which improved the model's computational complexity and made
it ignore the noise (zero noise) from padded sequences.

In the next chapter, we will discuss how to save and load model parameters. We will also
look at the different APIs that exist in ML libraries for this purpose. Saving and loading
model parameters can be quite an important part of the training process because it allows
us to stop and restore training at an arbitrary moment. Also, saved model parameters can
be used for evaluation purposes after the model has been trained.

Sentiment Analysis with Recurrent Neural Networks Chapter 11

[424]

Further reading
PyTorch documentation: https://pytorch.org/cppdocs/

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The
49th Annual Meeting of the Association for Computational Linguistics (ACL
2011): http://ai.stanford.edu/~amaas/data/sentiment

A simplified description of GloVe: Global Vectors for Word Representation
algorithm: http://mlexplained.com/2018/04/29/paper-dissected-glove-
global-vectors-for-word-representation-explained/

GloVe: Global Vectors for Word Representation, Jeffrey Pennington, Richard Socher,
Christopher D. Manning: https://nlp.stanford.edu/projects/glove/

Math theory behind Neural Networks, Ian Goodfellow, Yoshua Bengio, Aaron
Courville 2016, Deep Learning.
Word embeddings: how to transform text into numbers: https://monkeylearn.
com/blog/word-embeddings-transform-text-numbers

A detailed LSTM architecture description: http://colah.github.io/posts/
2015-08-Understanding-LSTMs

Learning Long-Term Dependencies with Gradient Descent is Difficult by Yoshua
Bengio et al. (1994): http://www.iro.umontreal.ca/~lisa/pointeurs/
ieeetrnn94.pdf

On the difficulty of training recurrent neural networks by Razvan Pascanu et al.
(2013): http://proceedings.mlr.press/v28/pascanu13.pdf

Contextual Correlates of Synonymy Communications of the ACM, 627-633.
Rubenstein, H. and Goodenough, J.B. (1965).
Efficient Estimation of Word Representations in Vector Space, Mikolov, Tomas; et al.
(2013): https://arxiv.org/abs/1301.3781

Distributed Representations of Sentences and Documents, Quoc Le, Tomas Mikolov:
https://arxiv.org/pdf/1405.4053v2.pdf

https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
http://mlexplained.com/2018/04/29/paper-dissected-glove-global-vectors-for-word-representation-explained/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
https://monkeylearn.com/blog/word-embeddings-transform-text-numbers
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf
https://arxiv.org/pdf/1405.4053v2.pdf

4
Section 4: Production and

Deployment Challenges
The crucial feature of C++ is the ability of the program to be compiled and run on a variety
of hardware platforms. You can train your complex machine learning model on the fastest
GPU in the data center, and deploy it to tiny mobile devices with limited resources. This
chapter will show you how to use the C++ APIs of the TensorFlow and Caffe2 libraries to
build programs that use machine learning models for Android devices and in the cloud.

This section comprises the following chapters:

Chapter 12, Exporting and Importing Models
Chapter 13, Deploying Models on Mobile and Cloud Platforms

12
Exporting and Importing Models

In this chapter, we will discuss how to save and load model parameters during and after
training. This is quite an important issue since real model training can take a very long time
(from days to weeks), and we want to be able to save intermediate results and then load
them for use in evaluation mode in production.

Such regular save operations can be beneficial in the case of a random application crash.
Another substantial feature of any machine learning (ML) framework is its ability to export
the model architecture, which allows us to share models between frameworks and makes
model deployment easier. The main topic of this chapter is to show how to export and
import model parameters such as weights and bias values with different C++ libraries. The
second part of this chapter is all about the Open Neural Network Exchange (ONNX)
format, which is currently gaining popularity among different ML frameworks and can be
used to share trained models. This format is suitable for sharing model architectures as well
as model parameters.

The following topics will be covered in this chapter:

ML model serialization APIs in C++ libraries
Delving into ONNX format

Technical requirements
The following are the technical requirements for this chapter:

Dlib library
Shark-ML library
Shogun library
PyTorch library
A modern C++ compiler with C++17 support
CMake build system version >= 3.8

Exporting and Importing Models Chapter 12

[427]

The code files for this chapter can be found at the following GitHub repo: https://github.
com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12

ML model serialization APIs in C++ libraries
In this section, we will discuss the ML model sharing APIs in the Dlib, Shogun, Shark-ML,
and PyTorch libraries. There are three main types of sharing ML models among the
different C++ libraries:

Share model parameters (weights)
Share the entire model's architecture
Share both the model architecture and its trained parameters

In the following sections, we will look at what API is available in each library and
emphasize what type of sharing it supports.

Model serialization with Dlib
The Dlib library uses the serialization API for decision_function and neural network
type objects. Let's learn how to use it by implementing a real example.

First, we define the types for the neural network, regression kernel, and training sample:

 using namespace dlib;

 using NetworkType = loss_mean_squared<fc<1, input<matrix<double>>>>;
 using SampleType = matrix<double, 1, 1>;
 using KernelType = linear_kernel<SampleType>;

Then, we generate the training data with the following code:

 size_t n = 1000;
 std::vector<matrix<double>> x(n);
 std::vector<float> y(n);

 std::random_device rd;
 std::mt19937 re(rd());
 std::uniform_real_distribution<float> dist(-1.5, 1.5);

 // generate data
 for (size_t i = 0; i < n; ++i) {
 x[i](0, 0) = i;

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter12

Exporting and Importing Models Chapter 12

[428]

 y[i] = func(i) + dist(re);
 }

x represents the predictor variable, while y is the target variable. The target variable, y, is
salted with uniform random noise to simulate real data. These variables have a linear
dependency, which is defined with the following function:

 double func(double x) {
 return 4. + 0.3 * x;
 }

After we have generated the data, we normalize it using the vector_normalizer type
object. Objects of this type can be reused after training to normalize data with the learned
mean and standard deviation. The following snippets show how it's implemented:

 vector_normalizer<matrix<double>> normalizer_x;
 normalizer_x.train(x);

 for (size_t i = 0; i < x.size(); ++i) {
 x[i] = normalizer_x(x[i]);
 }

Finally, we train the decision_function object for kernel ridge regression with the
krr_trainer type object:

 void TrainAndSaveKRR(const std::vector<matrix<double>>& x,
 const std::vector<float>& y) {
 krr_trainer<KernelType> trainer;
 trainer.set_kernel(KernelType());
 decision_function<KernelType> df = trainer.train(x, y);
 serialize("dlib-krr.dat") << df;
 }

Note that we initialized the trainer object with the instance of
the KernelType object.

Now that we have the trained decision_function object, we can serialize it into a file
with a stream object that's returned by the serialize function:

 serialize("dlib-krr.dat") << df;

This function takes the name of the file for storage and returns an output stream object. We
used the << operator to put the learned weights of the regression model into the file. This
serialization approach only saves model parameters.

Exporting and Importing Models Chapter 12

[429]

The same approach can be used to serialize almost all ML models in the Dlib library. The
following code shows how to use it to serialize the parameters of a neural network:

 void TrainAndSaveNetwork(const std::vector<matrix<double>>& x,
 const std::vector<float>& y) {
 NetworkType network;
 sgd solver;
 dnn_trainer<NetworkType> trainer(network, solver);
 trainer.set_learning_rate(0.0001);
 trainer.set_mini_batch_size(50);
 trainer.set_max_num_epochs(300);
 trainer.be_verbose();
 trainer.train(x, y);
 network.clean();
 serialize("dlib-net.dat") << network;
 net_to_xml(network, "net.xml");
 }

For neural networks, there is also the net_to_xml function, which saves the model
structure, but there is no function to load this saved structure into our program. It is the
user's responsibility to implement a loading function. The net_to_xml function exists if we
wish to share the model between frameworks as it is written in the Dlib documentation.

To check that parameter serialization works as expected, we generate new test data to
evaluate a loaded model on them:

 std::cout << "Target values \n";
 std::vector<matrix<double>> new_x(5);
 for (size_t i = 0; i < 5; ++i) {
 new_x[i].set_size(1, 1);
 new_x[i](0, 0) = i;
 new_x[i] = normalizer_x(new_x[i]);
 std::cout << func(i) << std::endl;
 }

Note that we reused the normalizer object. In general, its parameters should be serialized
and loaded too because during evaluation we need to transform new data into the same
statistical characteristics that we used for the training data.

To load a serialized object in the Dlib library, we can use the deserialize function. This
function takes the filename and returns the input stream object:

 void LoadAndPredictKRR(const std::vector<matrix<double>>& x) {
 decision_function<KernelType> df;
 deserialize("dlib-krr.dat") >> df;
 // Predict
 std::cout << "KRR predictions \n";

Exporting and Importing Models Chapter 12

[430]

 for (auto& v : x) {
 auto p = df(v);
 std::cout << static_cast<double>(p) << std::endl;
 }
 }

As we discussed previously, serialization in the Dlib library only stores model parameters.
So, to load them, we need to use the model object with the same properties that it had
before serialization was performed. For a regression model, this means that we should
instantiate a decision function object with the same kernel type. For a neural network
model, this means that we should instantiate a network object of the same type that we
used for serialization:

 void LoadAndPredictNetwork(const std::vector<matrix<double>>& x) {
 NetworkType network;
 deserialize("dlib-net.dat") >> network;
 // Predict
 auto predictions = network(x);
 std::cout << "Net predictions \n";
 for (auto p : predictions) {
 std::cout << static_cast<double>(p) << std::endl;
 }
 }

In this section, we saw that the Dlib serialization API allows us to save and load ML model
parameters but has limited options to serialize and load model architectures. In the next
section, we will look at the Shogun library model's serialization API.

Model serialization with Shogun
The Shogun library can save model parameters in different file formats such as ASCII,
JSON, XML, and HDF5. This library can't load model architectures from a file and is only
able to save and load the weights of the exact model. But there is an exception for neural
networks: the Shogun library can load a network structure from a JSON file. An example of
this functionality is shown in the following example.

As in the previous example, we start by generating the training data:

const int32_t n = 1000;
SGMatrix<float64_t> x_values(1, n);
SGVector<float64_t> y_values(n);

std::random_device rd;
std::mt19937 re(rd());

Exporting and Importing Models Chapter 12

[431]

std::uniform_real_distribution<double> dist(-1.5, 1.5);

// generate data
for (int32_t i = 0; i < n; ++i) {
 x_values.set_element(i, 0, i);
 auto y_val = func(i) + dist(re);
 y_values.set_element(y_val, i);
}

auto x = some<CDenseFeatures<float64_t>>(x_values);
auto y = some<CRegressionLabels>(y_values);

// rescale
auto x_scaler = some<CRescaleFeatures>();
x_scaler->fit(x);
x_scaler->transform(x, true);

We filled the x object of the CDenseFeatures type with the predictor variable values and
the y object of the CRegressionLabels type with the target variable values. The linear
dependence is the same as what we used in the previous example. We also rescaled the x
values with the object of the CRescaleFeatures type.

To show how the serialization API in the Shogun library works, we will use the
CLinearRidgeRegression and CNeuralNetwork models.

The following code sample shows how to train and serialize the
CLinearRidgeRegression model:

void TrainAndSaveLRR(Some<CDenseFeatures<float64_t>> x,
 Some<CRegressionLabels> y) {
 float64_t tau_regularization = 0.0001;
 auto model =
 some<CLinearRidgeRegression>(tau_regularization, nullptr, nullptr);
 model->set_labels(y);
 if (!model->train(x)) {
 std::cerr << "training failed\n";
 }
 auto file = some<CSerializableHdf5File>("shogun-lr.dat", 'w');
 if (!model->save_serializable(file)) {
 std::cerr << "Failed to save the model\n";
 }
}

Exporting and Importing Models Chapter 12

[432]

Here, we saved the model parameters in the HDF5 file format with an object of the
CSerializableHdf5File type. For other file formats, we can find the corresponding
types in the library. All serializable models in the Shogun library have the
save_serializable and load_serializable functions for saving and loading model
parameters, respectively. These functions take a serialization file object. In this case, this
object was of the CSerializableHdf5File type.

The following code shows how to train and save the parameters of a neural network object:

void TrainAndSaveNET(Some<CDenseFeatures<float64_t>> x,
 Some<CRegressionLabels> y) {
 auto dimensions = x->get_num_features();
 auto layers = some<CNeuralLayers>();
 layers = wrap(layers->input(dimensions));
 layers = wrap(layers->linear(1));
 auto all_layers = layers->done();
 auto network = some<CNeuralNetwork>(all_layers);
 // configure network parameters
 ...

 network->set_labels(y);
 if (network->train(x)) {
 auto file = some<CSerializableHdf5File>("shogun-net.dat", 'w');
 if (!network->save_serializable(file)) {
 std::cerr << "Failed to save the model\n";
 }
 } else {
 std::cerr << "Failed to train the network\n";
 }
}

Here, we can see that neural network serialization is similar to serializing the linear
regression model.

To test our serialized model, we will generate a new set of test data. The following code
shows how we do this:

SGMatrix<float64_t> new_x_values(1, 5);
std::cout << "Target values : \n";
for (index_t i = 0; i < 5; ++i) {
 new_x_values.set_element(static_cast<double>(i), 0, i);
 std::cout << func(i) << std::endl;
}

auto new_x = some<CDenseFeatures<float64_t>>(new_x_values);
x_scaler->transform(new_x, true);

Exporting and Importing Models Chapter 12

[433]

Notice that we reused the x_scaler object. But as we mentioned previously, it should be
serialized and loaded too if we plan to stop and relaunch our application after training.

The following code shows the deserialization process:

void LoadAndPredictLRR(Some<CDenseFeatures<float64_t>> x) {
 auto file = some<CSerializableHdf5File>("shogun-lr.dat", 'r');
 auto model = some<CLinearRidgeRegression>();
 if (model->load_serializable(file)) {
 auto y_predict = model->apply_regression(x);
 std::cout << "LR predicted values: \n" << y_predict->to_string() <<
 << std::endl;
 }
}
...
LoadAndPredictLRR(new_x);

Here, the new CLinearRidgeRegression object was created and
the load_serializable method was used to load its parameter.

As we mentioned previously, there is a particular function that's used to load a neural
network structure from JSON files or strings. The problem is that we can't export this
structure as a file with the library API, so we should make it by ourselves or write our
custom exporter. However, this functionality allows us to define neural network
architectures without programming in a declarative style. This can be useful for
experiments because we don't need to recompile a whole application. It also allows us to
deploy a new architecture to production without program updates, but note that we need
to take care of preserving the input and output network tensor dimensions.

To load the neural network from the JSON-formatted string in the Shogun library, we can
use an object of the CNeuralNetworkFileReader type. The following code shows how to
use it:

Some<CNeuralNetwork> NETFromJson() {
 CNeuralNetworkFileReader reader;
 const char* net_str =
 "{"
 "\"optimization_method\": \"NNOM_GRADIENT_DESCENT\","
 "\"max_num_epochs\": 1000,"
 "\"gd_mini_batch_size\": 0,"
 "\"gd_learning_rate\": 0.01,"
 "\"gd_momentum\": 0.9,"
 "\"layers\":"
 "{"
 "\"input1\":"
 "{"

Exporting and Importing Models Chapter 12

[434]

 "\"type\": \"NeuralInputLayer\","
 "\"num_neurons\": 1,"
 "\"start_index\": 0"
 "},"
 "\"linear1\":"
 "{"
 "\"type\": \"NeuralLinearLayer\","
 "\"num_neurons\": 1,"
 "\"inputs\": [\"input1\"]"
 "}"
 "}"
 "}";
 auto network = wrap(reader.read_string(net_str));
 return network;
}

Here, we defined the neural network architecture with a JSON string. This is the same
neural network architecture that we used for training. Then, the read_string method of
the CNeuralNetworkFileReader object was used to load and create an object of the
CNeuralNetwork type.

The following code shows how to use the NETFromJson function to create a network object
from the JSON string and initialize it with the serialized parameters:

void LoadAndPredictNET(Some<CDenseFeatures<float64_t>> x) {
 auto file = some<CSerializableHdf5File>("shogun-net.dat", 'r');
 auto network = NETFromJson();
 if (network->load_serializable(file)) {
 auto new_x = some<CDenseFeatures<float64_t>>(x);
 auto y_predict = network->apply_regression(new_x);
 std::cout << "Network predicted values: \n"
 << y_predict->to_string() << std::endl;
 }
}

The newly created neural network object is of the CNeuralNetwork type. We used the
load_serializable method of the new neural network object to load the previously
serialized parameters. It's essential to preserve the same architecture of ML model objects
that are used for serialization and deserialization as a different architecture can lead to
runtime errors when deserialization is performed.

In this section, we looked at how to use the Shogun library API for serialization. This
library doesn't provide any functions that can be used to export ML model architectures,
but it can load them from a JSON string. ML model parameters can be serialized into
various file formats. In the next section, we will delve into the Shark-ML library's
serialization API.

Exporting and Importing Models Chapter 12

[435]

Model serialization with Shark-ML
The Shark-ML library has a unified API for serializing models of all kinds. Every model has
the write and read methods for saving and loading model parameters, respectively. These
methods take an instance of the boost::archive object as an input parameter.

Let's look at an example of model parameter serialization with the Shark-ML library. First,
we generate training data for the linear regression model, as we did in the previous
examples:

std::vector<RealVector> x_data(n);
std::vector<RealVector> y_data(n);

std::random_device rd;
std::mt19937 re(rd());
std::uniform_real_distribution<double> dist(-1.5, 1.5);

RealVector x_v(1);
RealVector y_v(1);
for (size_t i = 0; i < n; ++i) {
 x_v(0) = i;
 x_data[i] = x_v;
 y_v(0) = func(i) + dist(re); // add noise
 y_data[i] = y_v;
}

Data<RealVector> x = createDataFromRange(x_data);
Data<RealVector> y = createDataFromRange(y_data);
RegressionDataset data(x, y);

Here, we created two vectors, x_data and y_data, which contain predictor and target
value objects of the RealVector type. Then, we made the x and the y objects of the Data
type and placed them into the data object of the RegressionDataset type.

The following code shows how to train a linear model object with the dataset object we
initialized previously:

LinearModel<> model;
LinearRegression trainer;
trainer.train(model, data);

Here, we trained the LinearModel object with the trainer of the LinearRegression type.

Exporting and Importing Models Chapter 12

[436]

Now that we've trained the model, we can save its parameters in a file using
the boost::archive::polymorphic_binary_oarchive object. The following code
shows how to do this:

std::ofstream ofs("shark-linear.dat");
boost::archive::polymorphic_binary_oarchive oa(ofs);
model.write(oa);

The archive object, oa, was initialized with the ofs object of the std::ofstream type. The
output stream type was chosen because we needed to save the model parameters.

The following code shows how to load saved model parameters:

 std::ifstream ifs("shark-linear.dat");
 boost::archive::polymorphic_binary_iarchive ia(ifs);
 LinearModel<> model;
 model.read(ia);

We loaded the model parameters with the read method, which took the
boost::archive::polymorphic_binary_iarchive object, which was initialized with
the std::ifstream object. Notice that we created a new LinearModel object.

Instead of using binary serialization, the Shark-ML library allows us to use the
boost::archive::polymorphic_text_oarchive and
boost::archive::polymorphic_text_iarchive types to serialize to an ASCII text file.

The following code shows how to generate new test values so that we can check the model:

 std::vector<RealVector> new_x_data;
 for (size_t i = 0; i < 5; ++i) {
 new_x_data.push_back({static_cast<double>(i)});
 std::cout << func(i) << std::endl;
 }

The following code shows how to use the model for prediction purposes:

 auto prediction = model(createDataFromRange(new_x_data));
 std::cout << "Predictions: \n" << prediction << std::endl;

The prediction was made with a call to the model's object functional operator.

Exporting and Importing Models Chapter 12

[437]

In this section, we saw that the Shark-ML library has an API that we can use to save and
load parameters but that it lacks the functions to save and load ML model architectures.

In the next section, we will look at the PyTorch library's serialization API.

Model serialization with PyTorch
In this section, we will discuss two approaches to network parameter serialization that are
available in the PyTorch C++ library. The first is using the torch::save function, while
the second is using an object of the torch::serialize::OutputArchive type for writing
parameters into it.

Let's prepare the neural network for further use.

Neural network initialization
Let's start by generating the training data. The following code shows how we can do this:

 torch::DeviceType device = torch::cuda::is_available()
 ? torch::DeviceType::CUDA
 : torch::DeviceType::CPU;

 std::random_device rd;
 std::mt19937 re(rd());
 std::uniform_real_distribution<float> dist(-0.1f, 0.1f);

 // generate data
 size_t n = 1000;
 torch::Tensor x;
 torch::Tensor y;
 {
 std::vector<float> values(n);
 std::iota(values.begin(), values.end(), 0);
 std::shuffle(values.begin(), values.end(), re);
 std::vector<torch::Tensor> x_vec(n);
 std::vector<torch::Tensor> y_vec(n);
 for (size_t i = 0; i < n; ++i) {
 x_vec[i] = torch::tensor(
 values[i],
 torch::dtype(torch::kFloat).device(device).requires_grad(false));
 y_vec[i] = torch::tensor(
 (func(values[i]) + dist(re)),
 torch::dtype(torch::kFloat).device(device).requires_grad(false));
 }

Exporting and Importing Models Chapter 12

[438]

 x = torch::stack(x_vec);
 y = torch::stack(y_vec);
 }

 // normalize data
 auto x_mean = torch::mean(x, /*dim*/ 0);
 auto x_std = torch::std(x, /*dim*/ 0);
 x = (x - x_mean) / x_std;

Usually, we want to utilize as many hardware resources as possible. So, first, we checked
whether a GPU with CUDA technology was available in the system with the
torch::cuda::is_available() call. Then, we generated 1,000 predictor variable values
and shuffled them. For each value, we calculated the target value with the linear function
we used in the previous examples. All the values were moved into the torch::Tensor
objects with torch::tensor function calls. Notice that we used a previously detected
device for tensor creation. After we moved all the values to tensors, we used the
torch::stack function to concatenate the predictor and target values in two distinct
single tensors. This was required to perform data normalization with the PyTorch linear
algebra routines. Then, we used the torch::mean and torch::std functions to calculate
the mean and standard deviation of predictor values and normalized them.

In the following code, we're defining the NetImpl class, which implements our neural
network:

 class NetImpl : public torch::nn::Module {
 public:
 NetImpl() {
 l1_ = torch::nn::Linear(torch::nn::LinearOptions(1,
 8).with_bias(true));
 register_module("l1", l1_);
 l2_ = torch::nn::Linear(torch::nn::LinearOptions(8,
 4).with_bias(true));
 register_module("l2", l2_);
 l3_ = torch::nn::Linear(torch::nn::LinearOptions(4,
 1).with_bias(true));
 register_module("l3", l3_);
 // initialize weights
 for (auto m : modules(false)) {
 if (m->name().find("Linear") != std::string::npos) {
 for (auto& p : m->named_parameters()) {
 if (p.key().find("weight") != std::string::npos) {
 torch::nn::init::normal_(p.value(), 0, 0.01);
 }
 if (p.key().find("bias") != std::string::npos) {
 torch::nn::init::zeros_(p.value());
 }

Exporting and Importing Models Chapter 12

[439]

 }
 }
 }
 }
 torch::Tensor forward(torch::Tensor x) {
 auto y = l1_(x);
 y = l2_(y);
 y = l3_(y);
 return y;
 }
 private:
 torch::nn::Linear l1_{nullptr};
 torch::nn::Linear l2_{nullptr};
 torch::nn::Linear l3_{nullptr};
 }
 TORCH_MODULE(Net);

Here, we defined our neural network model as a network with three fully connected
neuron layers with a linear activation function. Each layer is of the torch::nn::Linear
type. In the constructor of our model, we initialized all the network parameters with small
random values. We did this by iterating over all the network modules (see the modules
method call) and applying the torch::nn::init::normal_ function to the parameters
that were returned by the named_parameters() module's method. Biases were initialized
to zeros with the torch::nn::init::zeros_ function. The named_parameters()
method returned objects consisting of a string name and a tensor value, so for initialization,
we used its value method.

Now, we can train the model with our generated training data. The following code shows
how to train our model:

 Net model;
 model->to(device);

 // initialize optimizer --
 double learning_rate = 0.01;
 torch::optim::Adam optimizer(
 model->parameters(),
 torch::optim::AdamOptions(learning_rate).weight_decay(0.00001));

 // training
 int64_t batch_size = 10;
 int64_t batches_num = static_cast<int64_t>(n) / batch_size;
 int epochs = 10;
 for (int epoch = 0; epoch < epochs; ++epoch) {
 // train the model ---
 model->train(); // switch to the training mode

Exporting and Importing Models Chapter 12

[440]

 // Iterate the data
 double epoch_loss = 0;
 for (int64_t batch_index = 0; batch_index < batches_num;
++batch_index) {
 auto batch_x = x.narrow(0, batch_index * batch_size, batch_size);
 auto batch_y = y.narrow(0, batch_index * batch_size, batch_size);
 // Clear gradients
 optimizer.zero_grad();
 // Execute the model on the input data
 torch::Tensor prediction = model->forward(batch_x);
 torch::Tensor loss = torch::mse_loss(prediction, batch_y);
 // Compute gradients of the loss and parameters of our model
 loss.backward();
 // Update the parameters based on the calculated gradients.
 optimizer.step();
 }
 }

To utilize all our hardware resources, we moved the model to the selected computational
device. Then, we initialized an optimizer. In our case, the optimizer used the Adam
algorithm. Afterwards, we ran a standard training loop over the epochs, where for each
epoch, we took the training batch, cleared the optimizer's gradients, performed a forward
pass, computed the loss, performed a backward pass, and updated the model weights with
the optimizer step.

To select a batch of training data from the dataset, we used the tensor's narrow method,
which returned a new tensor with a reduced dimension. This function takes a new number
of dimensions as the first parameter, the start position as the second parameter, and the
number of elements to remain as the third parameter.

As we mentioned previously there are two approaches we can use to serialize model
parameters in PyTorch in the C++ API (the Python API provides even more reach). Let's
look at them.

Using the torch::save and torch::load functions
The first approach we can use to save model parameters is using the torch::save
function, which recursively saves parameters from the passed module:

 torch::save(model, "pytorch_net.pt");

To use it correctly with our custom modules, we need to register all the submodules in the
parent one with the register_module module's method.

Exporting and Importing Models Chapter 12

[441]

To load the saved parameters, we can use the torch::load function:

 Net model_loaded;
 torch::load(model_loaded, "pytorch_net.pt");

The function fills the passed module parameters with the values that are read from a file.

Using PyTorch archive objects
The second approach is to use an object of the torch::serialize::OutputArchive type
and write the parameters we want to save into it. The following code shows how to
implement the SaveWeights method for our model. This method writes all the parameters
and buffers that exist in our module to the archive object, and then it uses the save_to
method to write them in a file:

 void NetImpl::SaveWeights(const std::string& file_name) {
 torch::serialize::OutputArchive archive;
 auto parameters = named_parameters(true /*recurse*/);
 auto buffers = named_buffers(true /*recurse*/);
 for (const auto& param : parameters) {
 if (param.value().defined()) {
 archive.write(param.key(), param.value());
 }
 }
 for (const auto& buffer : buffers) {
 if (buffer.value().defined()) {
 archive.write(buffer.key(), buffer.value(), /*is_buffer*/
true);
 }
 }
 archive.save_to(file_name);
 }

It is important to save buffers tensors too. Buffers can be retrieved from a module with the
named_buffers module's method. These objects represent the intermediate values that are
used to evaluate different modules. For example, we can be running mean and standard
deviation values for the batch normalization module. We need them to continue being
trained if we used serialization to save the intermediate steps and if our training process
was stopped for some reason.

Exporting and Importing Models Chapter 12

[442]

To load parameters that have been saved this way, we can use the
torch::serialize::InputArchive object. The following code shows how to implement
the LoadWeights method for our model:

 void NetImpl::LoadWeights(const std::string& file_name) {
 torch::serialize::InputArchive archive;
 archive.load_from(file_name);
 torch::NoGradGuard no_grad;
 auto parameters = named_parameters(true /*recurse*/);
 auto buffers = named_buffers(true /*recurse*/);
 for (auto& param : parameters) {
 archive.read(param.key(), param.value());
 }
 for (auto& buffer : buffers) {
 archive.read(buffer.key(), buffer.value(), /*is_buffer*/ true);
 }
 }

This method uses the load_from method of the archive object to load parameters from
the file. Then, we took the parameters and buffers from our module with
the named_parameters and named_buffers methods and incrementally filled in their
values with the read method of the archive object. Notice that we used an instance of the
torch::NoGradGuard class to tell the PyTorch library that we don't perform any model
calculation and graph-related operations. It's essential to do this because the PyTorch
construct calculation graph and any unrelated operations can lead to errors.

Now, we can use the new instance of our model_loaded model with load parameters to
evaluate the model on some test data. Note that we need to switch the model to the
evaluation model with the eval method. Generated test data values should also be
converted into tensor objects with the torch::tensor function and moved to the same
computational device that our model uses. The following code shows how we can
implement this:

 model_loaded->to(device);
 model_loaded->eval();
 std::cout << "Test:\n";
 for (int i = 0; i < 5; ++i) {
 auto x_val = static_cast<float>(i) + 0.1f;
 auto tx = torch::tensor(x_val,
torch::dtype(torch::kFloat).device(device));
 tx = (tx - x_mean) / x_std;
 auto ty = torch::tensor(func(x_val),
torch::dtype(torch::kFloat).device(device));
 torch::Tensor prediction = model_loaded->forward(tx);
 std::cout << "Target:" << ty << std::endl;

Exporting and Importing Models Chapter 12

[443]

 std::cout << "Prediction:" << prediction << std::endl;
 }

In this section, we looked at two types of serialization in the PyTorch library. The first
approach was using the torch::save and torch::load functions, which easily save and
load all the model parameters, respectively. The second approach was using objects of the
torch::serialize::InputArchive and torch::serialize::OutputArchive types
so that we can select what parameters we want to save and load.

In the next section, we will discuss the ONNX file format, which allows us to share our ML
model architecture and model parameters among different frameworks.

Delving into ONNX format
ONNX format is a special file format used to share neural network architectures and
parameters between different frameworks. It is based on the Google Protobuf format and
library. The reason why this format exists is to test and run the same neural network model
in different environments and on different devices. Usually, researchers use a
programming framework that they know how to use in order to develop a model, and then
run this model in a different environment for production purposes or if they want to share
their model with other researchers or developers. This format is supported by all leading
frameworks, such as PyTorch, TensorFlow, MXNet, and others. But now, there is a lack of
support for this format from the C++ API of these frameworks and at the time of writing,
they only have a Python interface for dealing with ONNX format. Some time ago, Facebook
developed the Caffe2 neural network framework in order to run models on different
platforms with the best performance. This framework also had a C++ API, and it was able to
load and run models saved in ONNX format. Now, this framework has been merged
with PyTorch. There is a plan to remove the Caffe2 API and replace it with a new
combined API in PyTorch. But at the time of writing, the Caffe2 C++ API is still available as
part of the PyTorch 1.2 (libtorch) library.

Usually, we, as developers, don't need to know how ONNX format works internally
because we are only interested in files where the model is saved. Internally, ONNX format
is a Protobuf formatted file. The following code shows the first part of the ONNX file,
which describes how to use the ResNet neural network architecture for image classification:

 ir_version: 3
 graph {
 node {
 input: "data"
 input: "resnetv24_batchnorm0_gamma"
 input: "resnetv24_batchnorm0_beta"

Exporting and Importing Models Chapter 12

[444]

 input: "resnetv24_batchnorm0_running_mean"
 input: "resnetv24_batchnorm0_running_var"
 output: "resnetv24_batchnorm0_fwd"
 name: "resnetv24_batchnorm0_fwd"
 op_type: "BatchNormalization"
 attribute {
 name: "epsilon"
 f: 1e-05
 type: FLOAT
 }
 attribute {
 name: "momentum"
 f: 0.9
 type: FLOAT
 }
 attribute {
 name: "spatial"
 i: 1
 type: INT
 }
 }
 node {
 input: "resnetv24_batchnorm0_fwd"
 input: "resnetv24_conv0_weight"
 output: "resnetv24_conv0_fwd"
 name: "resnetv24_conv0_fwd"
 op_type: "Conv"
 attribute {
 name: "dilations"
 ints: 1
 ints: 1
 type: INTS
 }
 attribute {
 name: "group"
 i: 1
 type: INT
 }
 attribute {
 name: "kernel_shape"
 ints: 7
 ints: 7
 type: INTS
 }
 attribute {
 name: "pads"
 ints: 3
 ints: 3

Exporting and Importing Models Chapter 12

[445]

 ints: 3
 ints: 3
 type: INTS
 }
 attribute {
 name: "strides"
 ints: 2
 ints: 2
 type: INTS
 }
 }
 ...
 }

Usually, ONNX files come in binary format to reduce file size and increase loading speed.

Now, let's learn how to use the Caffe2 C++ API to load and run ONNX models.
Unfortunately, there is only one available C++ library API that can be used to run models
saved in ONNX format. This because Caffe2 can automatically convert them into its
internal representation. Other libraries do such conversion in their Python modules. The
ONNX community provides pre-trained models for the most popular neural network
architectures in the publicly available Model Zoo (https://github.com/onnx/models).
There are a lot of ready to use models that can be used to solve different ML tasks. For
example, we can take the ResNet-50 model for image classification tasks (https://github.
com/onnx/models/tree/master/vision/classification/resnet). For this model, we have
to download the corresponding synset file with image class descriptions to be able to return
classification results in a human-readable manner. The link to the file is https://github.
com/onnx/models/blob/master/vision/classification/synset.txt.

To be able to use the Caffe2 C++ API, we have to use the following headers:

 #include <caffe2/core/init.h>
 #include <caffe2/onnx/backend.h>
 #include <caffe2/utils/proto_utils.h>

However, we still need to link our program to the libtorch.so library.

First, we need to initialize the Caffe2 library:

 caffe2::GlobalInit(&argc, &argv);

https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt

Exporting and Importing Models Chapter 12

[446]

Then, we need to load the Protobuf model representation. This can be done with an
instance of the onnx_torch::ModelProto class. To use an object of this class to load the
model, we need to use the ParseFromIstream method, which takes the std::istream
object as an input parameter. The following code shows how to use an object of the
onnx_torch::ModelProto class:

 onnx_torch::ModelProto model_proto;
 {
 std::ifstream file(argv[1], std::ios_base::binary);
 if (!file) {
 std::cerr << "File " << argv[1] << "can't be opened\n";
 return 1;
 }
 if (!model_proto.ParseFromIstream(&file)) {
 std::cerr << "Failed to parse onnx model\n";
 return 1;
 }
 }

The caffe2::onnx::Caffe2Backend class should be used to convert the Protobuf ONNX
model into an internal representation of Caffe2. This class contains the Prepare method,
which takes the Protobuf formatted string, along with the model's description, a string
containing the name of the computational device, and some additional settings (typically,
these settings can be empty). The following code shows how to use
the SerializeToString method of the onnx_torch::ModelProto class to make the
model's string representation before we prepare the model:

 std::string model_str;
 if (model_proto.SerializeToString(&model_str)) {
 caffe2::onnx::Caffe2Backend onnx_backend;
 std::vector<caffe2::onnx::Caffe2Ops> ops;
 auto model = onnx_backend.Prepare(model_str, "CPU", ops);
 if (model != nullptr) {
 ...
 }
 }

Now that we've prepared the model for evaluation, we have to prepare input and output
data containers. In our case, the input is a tensor of size 1 x 3 x 224 x 224, which
represents the RGB image for classification. But the Caffe2 ONNX model takes a vector of
caffe2::TensorCPU objects as input, so we need to move our image to the inputs vector.
Caffe2 tensor objects are not copyable, but they can be moved. The outputs vector should
be empty.

Exporting and Importing Models Chapter 12

[447]

The following snippet shows how to prepare the input and output data for the model:

 caffe2::TensorCPU image = ReadImageTensor(argv[2], 224, 224);

 std::vector<caffe2::TensorCPU> inputs;
 inputs.push_back(std::move(image));

 std::vector<caffe2::TensorCPU> outputs(1);

The model is an object of the Caffe2BackendRep class, which uses the Run method for
evaluation. We can use it in the following way:

model->Run(inputs, &outputs);

The output of this model is image scores (probabilities) for each of the 1,000 classes of the
ImageNet dataset, which was used to train the model. The following code shows how to
decode the model's output:

 std::map<size_t, std::string> classes = ReadClasses(argv[3]);
 for (auto& output : outputs) {
 const auto& probabilities = output.data<float>();
 std::vector<std::pair<float, int>> pairs; // prob : class index
 for (auto i = 0; i < output.size(); i++) {
 if (probabilities[i] > 0.01f) {
 pairs.push_back(
 std::make_pair(probabilities[i], i + 1)); // 0 - background
 }
 }
 std::sort(pairs.begin(), pairs.end());
 std::reverse(pairs.begin(), pairs.end());
 pairs.resize(std::min(5UL, pairs.size()));
 for (auto& p : pairs) {
 std::cout << "Class " << p.second << " Label "
 << classes[static_cast<size_t>(p.second)] << " Prob "
 << p.first << std::endl;
 }

Here, we iterated over each output tensor from the outputs vector. In our case, there is
only one item, but if we were to use several input images in the inputs vector, we would
have several results. Then, we placed the score values and class indices in the vector of
corresponding pairs. This vector was sorted by score, in descending order. Then, we
printed five classes with the maximum score.

Exporting and Importing Models Chapter 12

[448]

To access the elements of the caffe2::TensorCPU object, we used the data<float>()
method, which returns the pointer to the const row-ordered floating-point values of the
tensor. In this example, the output tensor had a dimension of 1x1000, so we accessed its
values just like we did in the linear array.

To correctly finish the program, we have to shut down the Google protobuf library, which
we used to load the required ONNX files:

 google::protobuf::ShutdownProtobufLibrary();

In this section, we looked at an example of how to deal with ONNX format in the PyTorch
and Caffe2 libraries, but we still need to learn how load input images into Caffe2 tensor
objects, which we use for the model's input.

Loading images into Caffe2 tensors
Let's learn how to load an image into the Caffe2 tensor object and modify it according to the
model's input requirements. The model expects the input images to be normalized and
three-channel RGB images whose shapes are (N x 3 x H x W), where N is the batch size
and H and W are expected to be at least 224 pixels wide. Normalization assumes that the
images are loaded into a range of [0, 1] and then normalized using means equal
to [0.485, 0.456, 0.406] and standard deviations equal to [0.229, 0.224, 0.225].

Let's assume that we have the following function definition for image loading:

caffe2::TensorCPU ReadImageTensor(const std::string& file_name,
 int width,
 int height) {
 ...
}

Let's write its implementation. For image loading, we will use the OpenCV library:

// load image
auto image = cv::imread(file_name, cv::IMREAD_COLOR);

if (!image.cols || !image.rows) {
 return {};
}

if (image.cols != width || image.rows != height) {
 // scale image to fit
 cv::Size scaled(std::max(height * image.cols / image.rows, width),
 std::max(height, width * image.rows / image.cols));

Exporting and Importing Models Chapter 12

[449]

 cv::resize(image, image, scaled);

 // crop image to fit
 cv::Rect crop((image.cols - width) / 2, (image.rows - height) / 2,
width,
 height);
 image = image(crop);
}

Here, we read the image from a file with the cv::imread function. If the image dimensions
are not equal to specified ones, we need to resize the image with the cv::resize function
and crop the image if the image dimensions exceed the specified ones.

Then, we convert the image into the floating-point type and RGB format:

image.convertTo(image, CV_32FC3);
 cv::cvtColor(image, image, cv::COLOR_BGR2RGB);

After formatting is complete, we can split the image into three separate channels with red,
green, and blue colors. We should also normalize the color values. The following code
shows how to do this:

 std::vector<cv::Mat> channels(3);
 cv::split(image, channels);

 std::vector<double> mean = {0.485, 0.456, 0.406};
 std::vector<double> stddev = {0.229, 0.224, 0.225};

 size_t i = 0;
 for (auto& c : channels) {
 c = ((c / 255) - mean[i]) / stddev[i];
 ++i;
 }

Each channel was subtracted by the corresponding mean and divided by the corresponding
standard deviation for the normalization process.

Then, we should concatenate the channels:

 cv::vconcat(channels[0], channels[1], image);
 cv::vconcat(image, channels[2], image);
 assert(image.isContinuous());

The normalized channels were concatenated into one contiguous image with the
cv::vconcat function.

Exporting and Importing Models Chapter 12

[450]

The following code shows how to initialize the Caffe2 tensor with the image data:

 std::vector<int64_t> dims = {1, 3, height, width};

 caffe2::TensorCPU tensor(dims, caffe2::DeviceType::CPU);
 std::copy_n(reinterpret_cast<float*>(image.data),
 image.size().area(),
 tensor.mutable_data<float>());

 return tensor;

Here, the image data was copied into the caffe2::TensorCPU object, which was
initialized with the specified dimensions. The computational device was equal to
caffe2::DeviceType::CPU. This tensor object was created with the floating-point
underlying type by default, so we used the mutable_data<float>() member function to
access the internal storage of the tensor. The OpenCV image data was accessed with the
cv::Mat::data type member. We cast the image data into the floating-point type because
this member variable is of the unsigned char * type. The pixel's data was copied with
the standard std::copy_n function. Finally, in the last snippet of code, we returned the
tensor object.

Another important function that was used in the ONNX format example was a function
that can read class definitions from a synset file. We will take a look at this in the next
section.

Reading the class definition file
We used the ReadClasses function in this example to load the map of objects. Here, the
key was an image class index and the value was a textual class description. This function is
trivial and reads the synset file line by line. In such a file, each line contains a number and a
class description string, separated with the space character. The following code shows its
definition:

using Classes = std::map<size_t, std::string>;
Classes ReadClasses(const std::string& file_name) {
 Classes classes;
 std::ifstream file(file_name);
 if (file) {
 std::string line;
 std::string id;
 std::string label;
 std::string token;
 size_t idx = 1;
 while (std::getline(file, line)) {

Exporting and Importing Models Chapter 12

[451]

 std::stringstream line_stream(line);
 size_t i = 0;
 while (std::getline(line_stream, token, ' ')) {
 switch (i) {
 case 0:
 id = token;
 break;
 case 1:
 label = token;
 break;
 }
 token.clear();
 ++i;
 }
 classes.insert({idx, label});
 ++idx;
 }
 }
 return classes;
}

Notice that we used the std::getline function in the internal while loop to tokenize a
single line string. We did this by specifying the third parameter that defines the delimiter
character value.

Summary
In this chapter, we learned how to save and load model parameters in different ML
frameworks. We saw that all the frameworks we used in the Shogun, Shark-ML, Dlib, and
PyTorch libraries have an API for model parameter serialization. Usually, these are quite
simple functions that work with model objects and some input and output streams. Also,
we discussed another type of serialization API that can be used to save and load the overall
model architecture. At the time of writing, the frameworks we used don't fully support
such functionality. The Shogun toolkit can load neural network architectures from the
JSON descriptions, but can't export them. The Dlib library can export neural networks in
XML format but can't load them. The PyTorch C++ API lacks a model architecture that
supports exporting, but it can load and evaluate model architectures that have been
exported from the Python API with its TorchScript functionality. However, the PyTorch
library does provide access to the Caffe2 library API, which allows us to load and evaluate
models saved in ONNX format from C++.

Exporting and Importing Models Chapter 12

[452]

We briefly looked at ONNX format and realized that it is quite a popular format for sharing
models among different ML frameworks. It supports almost all operations and objects that
are used to serialize complex neural network models effectively. At the time of writing, it is
supported by all popular ML frameworks, such as TensorFlow, PyTorch, MXNet, and
others. Also, Microsoft provides the ONNX runtime implementation, which allows us to
run the ONNX model's inference without us having to depend on any other frameworks.

And at the end of this chapter, we developed a C++ application that can be used to run the
inference of the ResNet-50 model, which was trained with the MXNet framework and
exported in ONNX format. This application was made with the Caffe2 C++ API in order to
load the model and evaluate it on the loaded image for classification.

In the next chapter, we will discuss how to deploy ML models developed with C++ libraries
to mobile devices and server instances.

Further reading
Shark-ML documentation: http://www.shark-ml.org/sphinx_pages/build/
html/rest_sources/tutorials/tutorials.html

Dlib documentation: http://dlib.net/

Shogun toolkit documentation: https://www.shogun-toolbox.org/

PyTorch C++ API: https://pytorch.org/cppdocs/

ONNX official page: https://onnx.ai/

ONNX Model Zoo: https://github.com/onnx/models

ONNX ResNet models for image classification: https://github.com/onnx/
models/tree/master/vision/classification/resnet

Caffe2 tutorials: https://github.com/leonardvandriel/caffe2_cpp_tutorial/

http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://www.shark-ml.org/sphinx_pages/build/html/rest_sources/tutorials/tutorials.html
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
http://dlib.net/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://www.shogun-toolbox.org/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/onnx/models/tree/master/vision/classification/resnet
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/
https://github.com/leonardvandriel/caffe2_cpp_tutorial/

13
Deploying Models on Mobile

and Cloud Platforms
In this chapter, we'll discuss deploying machine learning models on mobile devices
running on both the Android operating system and the Google Cloud Platform (GCP).

Using C++ on mobile devices allows us to make programs faster and more compact. We can
utilize as many computational resources as possible because modern compilers can
optimize the program concerning the target CPU architecture. C++ doesn't use an
additional garbage collector for memory management, which can have a significant impact
on program performance. Program size can be reduced because C++ doesn't use an
additional VM and is compiled directly to machine code. These facts make C++ the right
choice for mobile devices with a limited amount of resources and can be used to solve
heavy computational tasks.

Using C++ to implement machine learning models that are used for the cloud can provide
other benefits. As we mentioned previously, you can increase application performance by
compiling a program for your specific architecture; usually, this plays a significant role in
the data preprocessing step. The starting time is also much shorter for a native application
than for interpretable programs. This fact can make your application more responsive if
you're using cloud machines that are only launched by client requests. These types of
machines are used for reducing the cloud service's cost.

The following topics will be covered in this chapter:

Image classification on Android mobile
Machine learning in the cloud – using Google Compute Engine

Deploying Models on Mobile and Cloud Platforms Chapter 13

[454]

Technical requirements
The following are the technical requirements for this chapter:

Android Studio, Android SDK, Android NDK
A Google account
GCP SDK
PyTorch library
cpp-httplib library
A modern C++ compiler with C++17 support
CMake build system version >= 3.8

The code files for this chapter can be found at the following GitHub repo: https://github.com/
PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13

Image classification on Android mobile
There are two popular approaches regarding how to deploy a machine learning model to a
mobile device with Android. We can either use the PyTorch framework, which now
incorporates Caffe2, or we can use the TensorFlow Lite framework. We'll use the PyTorch
framework in this chapter since we have discussed it in the previous chapters.

The mobile version of the PyTorch framework
There is no available binary distribution of PyTorch for mobile devices, so we need to build
it from source code. We can do this in the same way as we compile its regular version but
with additional CMake parameters to enable mobile mode. You also have to install the
Android Native Development Kit (NDK), which includes an appropriate version of the
C/C++ compiler and the Android native libraries that are required to build the application.
The following code snippet shows how to use the command-line environment to check out
PyTorch and build its Android mobile version:

cd /home/[USER]
git clone https://github.com/pytorch/pytorch.git
cd pytorch/
git checkout v1.2.0
git submodule update --init
export ANDROID_NDK=/home/[USER]/Android/Sdk/ndk/20.0.5594570
export ANDROID_ABI='armeabi-v7a'

/home/[USER]/pytorch/scripts/build_android.sh \

https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13
https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-CPP/tree/master/Chapter13

Deploying Models on Mobile and Cloud Platforms Chapter 13

[455]

-DBUILD_CAFFE2_MOBILE=OFF \
-DBUILD_SHARED_LIBS=ON \
-DCMAKE_PREFIX_PATH=$(python -c 'from distutils.sysconfig import
get_python_lib; print(get_python_lib())') \
-DPYTHON_EXECUTABLE=$(python -c 'import sys; print(sys.executable)') \

Here, we assumed that /home/[USER] is the user's home directory. The main requirement
when it comes to building the mobile version of PyTorch is to declare the ANDROID_NDK
environmental variable, which should point to the Android NDK installation directory. The
simplest way to install Android development tools is to download the Android Studio IDE
and use the SDK Manager tool from that. You can find the SDK Manager under the Tools |
SDK Manager menu. You can use this manager to install appropriate Android SDK
versions. You can install the corresponding NDKs by using the SDK Tools tab in the
manager's window. You can also use this tab to install the CMake utility. The
ANDROID_ABI environment variable can be used to specify the ARM CPU architecture's
compatibility for the compiler to generate architecture-specific code. In this example, we
used the armeabi-v7a architecture.

We used the build_android.sh script from the PyTorch source code distribution to build
mobile PyTorch binaries. This script uses the CMake command internally, which is why it
takes CMake parameter definitions as arguments. Notice that we passed the
BUILD_CAFFE2_MOBILE=OFF parameter to disable building the mobile version of Caffe2,
which is hard to use in the current version because the library is deprecated. The second
important parameter we used was BUILD_SHARED_LIBS=ON, which enabled us to build
shared libraries. We did this because the static versions of the mobile PyTorch 1.2 libraries
can't be used now because of broken initialization functions. The other parameters that
were configured were the Python installation paths for intermediate build code generation.

Now that we have the mobile PyTorch libraries, that is, libc10.so and libtorch.so, we
can start developing the application. We are going to build a simple image classification
application based on the ResNet-18 neural network architecture. This architecture has the
smallest number of parameters within the ResNet networks family, so we can use it on
devices with a low amount of memory.

Using TorchScript for a model snapshot
In this section, we will discuss how to get the model snapshot file so that we can use it in
our mobile application. In the previous chapters, we discussed how to save and load model
parameters and how to use ONNX format to share models between frameworks. When we
use the PyTorch framework, there is another method we can use to share models between
the Python API and C++ API called TorchScript.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[456]

This method uses real-time model tracing to get a special type of model definition that can
be executed by the PyTorch engine, regardless of API. For PyTorch 1.2, only the Python API
can create such definitions, but we can use the C++ API to load the model and execute it.
Also, the mobile version of the PyTorch framework still doesn't allow us to program neural
networks with a full-featured C++ API; only the ATen library is available.

So, in this example, we are going to use the TorchScript model to perform image
classification. To get this model, we need to use the Python API to load the pre-trained
model, trace it, and save the model snapshot. The following code shows how to do this
with Python:

import torch
import urllib
from PIL import Image
from torchvision import transforms

Download pretrained model
model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True)
model.eval()

Download an example image from the pytorch website
url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg",
"dog.jpg")

try:
 urllib.URLopener().retrieve(url, filename)
except:
 urllib.request.urlretrieve(url, filename)

sample execution
input_image = Image.open(filename)
preprocess = transforms.Compose([
 transforms.Resize(256),
 transforms.CenterCrop(224),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
 0.225]),
])
input_tensor = preprocess(input_image)

create a mini-batch as expected by the model
input_batch = input_tensor.unsqueeze(0)

traced_script_module = torch.jit.trace(model, input_batch)

traced_script_module.save("model.pt")

Deploying Models on Mobile and Cloud Platforms Chapter 13

[457]

In this programming sample, we performed the following steps:

We downloaded a pre-trained model with the torch.hub.load() function.1.
Then, we downloaded an input image with the urllib module.2.
With the input image acquired, we used the PIL library to resize and normalize3.
it.
Using the unsqueeze() function, we added a batch size dimension to the input4.
tensor.
Then, we used the torch.jit.trace() function to run the loaded model and5.
trace it into a script.
Finally, we simply saved the script module into a file with the save() method.6.

Now that we have saved the script module, we can start creating an Android application
that will use it for image classification.

The Android Studio project
In this section, we will use the Android Studio IDE to create our mobile application. We can
use a default Native C++ wizard in the Android Studio IDE to create an application stub.
Android Studio will create a specific project structure; the following sample shows the most
valuable parts of it:

app
 |
 src
 |
 main
 cpp
 |
 CMakeLists.txt
 native-lib.cpp
 java
 |
 com
 |
 example
 |
 Camera2
 |
 MainActivity.java
 res
 |
 layout

Deploying Models on Mobile and Cloud Platforms Chapter 13

[458]

 |
 activity_main.xml
 values
 |
 colors.xml
 strings.xml
 styles.xml
 ...
 build.gradle
 ...
build.gradle
local.properties
...

The cpp folder contains the C++ part of the whole project. In this project, the Android
Studio IDE created the C++ part as a native shared library project that had been configured
with the CMake build generation system. The java folder contains the Java part of the
project. In our case, it is a single file that defines the main activity—the object that's used as
a connection between the UI elements and event handlers. The res folder contains project
resources, such as UI elements and strings definitions.

We also need to create the jniLibs folder, under the main folder, with the following
structure:

app
 |
 src
 |
 main
 |
 ...
 jniLibs
 |
 armeabi-v7a
 |
 libc10.so
 libtorch.so
 x86
 |
 ...

Android Studio requires us to place additional native libraries in such folders to correctly
package them into the final application. It also allows the JNI system to be able to find these
libraries. Notice that we placed PyTorch libraries in the armeabi-v7a folder because they
have only been compiled for this CPU architecture. If you have libraries for other
architectures, you have to create folders with corresponding names.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[459]

The IDE uses the Gradle build system for project configuration, so there are two files
named build.gradle, which contains the main settings, and local.properties, which
contains user-defined values.

Now, we can adapt the default UI for our purposes. We'll learn how to do this in the next
section.

The UI and Java part of the project
Our application will have the following user interface:

Deploying Models on Mobile and Cloud Platforms Chapter 13

[460]

It has a button that we can use to launch a native camera application to take a photo, a text
view to show image classification descriptions, and an image view to show the photo. We
should define these UI elements in the activity_main.xml file of the project. The
following snippet shows this file:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="10dp"
 android:paddingRight="10dp">
<TextView
 android:text="@string/btn_name"
 android:textStyle="bold"
 android:id="@+id/textViewClass"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_above="@+id/btnTakePicture"/>
<Button
 android:id="@+id/btnTakePicture"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_name"
 android:textStyle="bold"
 android:layout_centerHorizontal="true"
 android:layout_alignParentBottom="true" />
<ImageView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:id="@+id/capturedImage"
 android:layout_above="@+id/textViewClass"
 android:contentDescription="@string/img_desc"/>
</RelativeLayout>

We should also define the text captions for the UI elements in the strings.xml file, which
you can find in the res folder. The following snippet shows an interesting part of this file:

<resources>
 <string name="app_name">Camera2</string>
 <string name="btn_name">Take a photo</string>
 <string name="img_desc">Photo</string>
</resources>

Deploying Models on Mobile and Cloud Platforms Chapter 13

[461]

Now that the UI elements have been defined, we can connect them to event handlers in the
MainActivity class to make our application respond to users' actions. The following code
sample shows how we can modify the MainActivity class so that it suits our needs:

public class MainActivity extends AppCompatActivity {
 private ImageView imgCapture;
 private static final int Image_Capture_Code = 1;
 ...
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 initClassifier(getAssets());
 setContentView(R.layout.activity_main);
 imgCapture = findViewById(R.id.capturedImage);
 Button btnCapture = findViewById(R.id.btnTakePicture);
 btnCapture.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent cInt = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 startActivityForResult(cInt, Image_Capture_Code);
 }
 });
 }
 ...
}

Here, we added a reference to the ImageView element and the imgCapture member value
to the MainActivity class. We also defined the Image_Capture_Code value in order to
identify the activity event that corresponds to the user's request for image classification.

We made connections between the UI elements and their event handlers in the
onCreate() method of the MainActivity class. In this method, we defined the UI
element's layout by calling the setContentView() method and passing the identifier of
our Main Activity XML definition to it. Then, we saved the reference to the ImageView
element and the imgCapture variable. The findViewById() method was used to get the
UI element's object reference from the Activity layout. In the same way, we took the
reference to the button element. With the setOnClickListener() method of the button
element, we defined the event handler for the button click event. This event handler is
the OnClickListener class instance where we overrode the onClick() method. We
asked the Android system to capture a photo with the default camera application by
instantiating the Intent class object with the MediaStore.ACTION_IMAGE_CAPTURE
parameter in the onClick() method.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[462]

We identified the image that was captured with our previously defined
Image_Capture_Code code and passed it into the startActivityForResult() method
with the intent class object, cInt. The startActivityForResult() method launches the
image capturing software and then passes the result to the onActivityResult event
handler of our Activity object. The following code shows its implementation:

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == Image_Capture_Code) {
 if (resultCode == RESULT_OK) {
 Bitmap bp = (Bitmap) Objects.requireNonNull(
 data.getExtras()).get("data");
 if (bp != null) {
 Bitmap argb_bp = bp.copy(Bitmap.Config.ARGB_8888,
 true);
 if (argb_bp != null) {
 float ratio_w = (float) bp.getWidth() / (float)
 bp.getHeight();
 float ratio_h = (float) bp.getHeight() / (float)
 bp.getWidth();
 int width = 224;
 int height = 224;
 int new_width = Math.max((int) (height * ratio_w),
 width);
 int new_height = Math.max(height, (int) (width *
 ratio_h));
 Bitmap resized_bitmap =
 Bitmap.createScaledBitmap(argb_bp,
 new_width, new_height, false);
 Bitmap cropped_bitmap =
 Bitmap.createBitmap(resized_bitmap, 0, 0,
 width, height);
 int[] pixels = new int[width * height];
 cropped_bitmap.getPixels(pixels, 0, width, 0, 0,
 width, height);
 String class_name = classifyBitmap(pixels, width,
 height);
 imgCapture.setImageBitmap(cropped_bitmap);
 TextView class_view =
 findViewById(R.id.textViewClass);
 class_view.setText(class_name);
 }
 }
 } else if (resultCode == RESULT_CANCELED) {
 Toast.makeText(this, "Cancelled",
 Toast.LENGTH_LONG).show();

Deploying Models on Mobile and Cloud Platforms Chapter 13

[463]

 }
 }
 }

The onActivityResult() method processes the application's results. Activity called
this method when the user created a photo after they pressed the button on the main
application view. In the first lines of this method, we checked that we had the
Image_Capture_Code code, which identifies that Intent contains a bitmap. We also
checked whether there were any errors by comparing resultCode with the predefined
RESULT_OK value. Then, we got a Bitmap object from the Intent data object by accessing
the data field of the Bundle object that was returned by the getExtras method. If the
Bitmap object isn't null, we convert it into ARGB format with the copy() method of the
Bitmap object; the Bitmap.Config.ARGB_8888 parameter specifies the desired format.
The acquired Bitmap object was scaled and cropped to 224x224, as required by the ResNet
architecture. The Bitmap class from the Android framework already has a method named
createScaledBitmap for bitmap scaling. We also used the createBitmap() method to
crop the original image because the createScaledBitmap() method created a new
bitmap from the captured image but with new dimensions passed as parameters. We
performed image resizing, which preserves the original width to height ratio because one of
the dimensions can be larger than 224; that is why we used cropping to make the final
image.

The Bitmap getPixels() method was used to get raw color values from the Bitmap
object. This method filled the array with the color values of the Int type. Each of the 4
bytes in this array represents one color component, the highest byte is the Alpha value,
while the lowest one represents the Blue value. The method filled the color values in the
row-major format. Then, the pixels values were passed to the native library for
classification; see the classifyBitmap() method call for more details. When the native
library finished performing classification, we displayed the cropped image that was used
for classification by passing it into the ImageView object with the setImageBitmap()
method call. We also displayed the classification text in the TextField object by calling the
setText method.

There are two methods, classifyBitmap and initClassifier, which are JNI calls to the
native library functions that are implemented with C++. To connect the native library with
the Java code, we use the Java Native Interface (JNI). This is a standard mechanism that's
used for calling C/C++ functions from Java. First, we have to load the native library with the
system.LoadLibrary call. Then, we have to define the methods that are implemented in
the native library by declaring them as public native. The following snippet shows how
to define these methods in Java:

public class MainActivity extends AppCompatActivity {

Deploying Models on Mobile and Cloud Platforms Chapter 13

[464]

...
static {
 System.loadLibrary("native-lib");
}
public native String classifyBitmap(int[] pixels, int width, int height);
public native void initClassifier(AssetManager assetManager);
...
}

Notice that we called the initClassifier() method in the onCreate() method and
passed it into the AssetManager object, which was returned by
the getAssets Activity() method. The AssetManager manager object allows us to
read assets, such as data files that were packaged into the Android APK application bundle.
To add assets to the Android application, you have to create the assets folder in the main
folder of the project and place the required file there. For this example, we used the
model.pt and synset.txt files as application assets. The model.pt file is the TorchScript
model snapshot, which we use for classification. The synset.txt file, on the other hand,
contains the ordered list of classification descriptions; their order is the same as the order
that was used for the class indices for model training. You can download the file
from https://github.com/onnx/models/blob/master/vision/classification/synset.
txt.

In the next section, we will discuss the C++ part of the project.

The C++ native part of the project
We perform the main classification task in the native C++ library. The Android Studio IDE
has already created the native-lib.cpp file for us, so we just have to modify it. The
following code snippet shows what header files we should include in order to work with
the JNI, PyTorch, and Android asset libraries:

#include <jni.h>
#include <string>
#include <iostream>

#include <torch/script.h>
#include <caffe2/serialize/read_adapter_interface.h>

#include <android/asset_manager_jni.h>
#include <android/asset_manager.h>

https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt
https://github.com/onnx/models/blob/master/vision/classification/synset.txt

Deploying Models on Mobile and Cloud Platforms Chapter 13

[465]

If you want to use the Android logging system to output some messages to the IDE's
logcat, you can define the following macro, which uses the __android_log_print()
function:

#include <android/log.h>

#define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG, "CAMERA_TAG",
__VA_ARGS__)

The first native function we used in the Java code was the initClassifier() function. To
implement it in the C++ code and make it visible in the Java code, we have to follow JNI
rules to make the function declaration correct. The name of the function should include the
full Java package name, including namespaces, and our first two required parameters
should be of the JNIEnv* and jobject types. The following code shows how to define this
function:

extern "C" JNIEXPORT void JNICALL
Java_com_example_camera2_MainActivity_initClassifier(
 JNIEnv *env, jobject /*self*/, jobject j_asset_manager)
{
 AAssetManager *asset_manager = AAssetManager_fromJava(env,
j_asset_manager);
 if (asset_manager != nullptr) {
 LOGD("initClassifier start OK");
 auto model = ReadAsset(asset_manager, "model.pt");
 if (!model.empty()) {
 g_image_classifier.InitModel(model);
 }
 auto synset = ReadAsset(asset_manager, "synset.txt");
 if (!synset.empty()) {
 VectorStreamBuf<char> stream_buf(synset);
 std::istream is(&stream_buf);
 g_image_classifier.InitSynset(is);
 }
 LOGD("initClassifier finish OK");
 }
}

Deploying Models on Mobile and Cloud Platforms Chapter 13

[466]

The initClassifier() function initializes the g_image_classifier global object,
which is of the ImageClassifier type. We use this object to perform image classification
in our application. There are two main entities that we initialized to make this object work
as expected. The first one was model initialization from the snapshot, while the second was
class descriptions, which we loaded from the synset file. As we saw previously, the synset
and model snapshot files were attached to our application as assets, so to access them, we
used the reference (or the pointer) to the application's AssetManager object. We passed the
Java reference to the AssetManager object as the function's parameter when we called this
function from the Java code. In the C/C++ code, we used the AAssetManager_fromJava()
function to convert the Java reference into a C++ pointer. Then, we used the ReadAsset()
function to read assets from the application bundle as std::vector<char> objects. Our
ImageClassifier class has the InitModel() and InitSynset() methods to read the
corresponding entities.

The following code shows the ReadAsset() function's implementation:

std::vector<char> ReadAsset(AAssetManager *asset_manager, const std::string
&name) {
 std::vector<char> buf;
 AAsset *asset = AAssetManager_open(asset_manager, name.c_str(),
 AASSET_MODE_UNKNOWN);
 if (asset != nullptr) {
 LOGD("Open asset %s OK", name.c_str());
 off_t buf_size = AAsset_getLength(asset);
 buf.resize(buf_size + 1, 0);
 auto num_read = AAsset_read(asset, buf.data(), buf_size);
 LOGD("Read asset %s OK", name.c_str());
 if (num_read == 0)
 buf.clear();
 AAsset_close(asset);
 LOGD("Close asset %s OK", name.c_str());
 }
 return buf;
}

There are four Android framework functions that we used to read an asset from the
application bundle. The AAssetManager_open() function opened the asset and returned
the not null pointer to the AAsset object. This function assumes that the path to the asset is
in the file path format and that the root of this path is the assets folder. After we opened
the asset, we used the AAsset_getLength() function to get the file size and allocated the
memory for std::vector<char> with the std::vector::resize() method. Then, we
used the AAsset_read() function to read the whole file to the buf object.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[467]

This function does the following:

Takes the pointer to the asset object to read from
The void* pointer to the memory buffer to read in
Measures the size of the bytes to read.

So, as you can see, the assets API is pretty much the same as the standard C library API for
file operations. When we'd finished working with the asset object, we used
AAsset_close() to notify the system that we don't need access to this asset anymore. If
your assets are in .zip archive format, you should check the number of bytes returned by
the AAsset_read() function because the Android framework reads archives chunk by
chunk.

You may have noticed that we used the VectorStreamBuf adapter to pass data to the
ImageClassifier::InitSynset() method. This method takes an object of the
std::istream type. To convert std::vector<char> into the std::istream type object,
we developed the following adapter class:

template<typename CharT, typename TraitsT = std::char_traits<CharT> >
struct VectorStreamBuf : public std::basic_streambuf<CharT, TraitsT> {
 explicit VectorStreamBuf(std::vector<CharT> &vec) {
 this->setg(vec.data(), vec.data(), vec.data() + vec.size());
 }
};

The following code shows the ImageClassifier class' declaration:

class ImageClassifier {
 public:
 using Classes = std::map<size_t, std::string>;
 ImageClassifier() = default;
 void InitSynset(std::istream &stream);
 void InitModel(const std::vector<char> &buf);
 std::string Classify(const at::Tensor &image);
 private:
 Classes classes_;
 torch::jit::script::Module model_;
};

We declared the global object of this class in the following way at the beginning of the
native-lib.cpp file:

ImageClassifier g_image_classifier;

Deploying Models on Mobile and Cloud Platforms Chapter 13

[468]

The following code shows the InitSynset() method's implementation:

void ImageClassifier::InitSynset(std::istream &stream) {
 LOGD("Init synset start OK");
 classes_.clear();
 if (stream) {
 std::string line;
 std::string id;
 std::string label;
 std::string token;
 size_t idx = 1;
 while (std::getline(stream, line)) {
 auto pos = line.find_first_of(" ");
 id = line.substr(0, pos);
 label = line.substr(pos + 1);
 classes_.insert({idx, label});
 ++idx;
 }
 }
 LOGD("Init synset finish OK");
}

The lines in the synset file are in the following format:

[ID] space character [Description text]

So, we read this file line by line and split each line at the position of the first space
character. The first part of each line is the class identifier, while the second one is the class
description. All the classes in this file are ordered, so the line number is the class number
that's used for training the model. Therefore, to match the model's evaluation result with
the correct class description, we created the dictionary (map) object, where key is the line
number and value is the class description. The InitSynset() function takes
std::istream as a parameter because we're going to be using the same code for other
samples, where we read the synset file with the standard C++ Streams API.

The following code shows the ImageClassifier::InitModel() method's
implementation:

void ImageClassifier::InitModel(const std::vector<char> &buf) {
 model_ = torch::jit::load(std::make_unique<ModelReader>(buf),
 at::kCPU);
}

Deploying Models on Mobile and Cloud Platforms Chapter 13

[469]

Here, we simply used a single function call to load the TorchScript model snapshot. The
torch::jit::load() function did all the hard work for us; it loaded the model and
initialized it with weights, which were also saved in the snapshot file. The main difficulty
with this function is reading the model snapshot from the memory buffer, as in our case.
The torch::jit::load() function doesn't work with standard C++ streams and types;
instead, it accepts a pointer to an object of the
caffe2::serialize::ReadAdapterInterface class. The following code shows how to
make the concrete implementation of the caffe2::serialize::ReadAdapterInterface
class, which wraps the std::vector<char> object:

class ModelReader : public caffe2::serialize::ReadAdapterInterface {
 public:
 explicit ModelReader(const std::vector<char> &buf) : buf_(&buf) {}
 ~ModelReader() override {};
 virtual size_t size() const override {
 return buf_->size();
 }
 virtual size_t read(uint64_t pos, void *buf, size_t n,
 const char *what)
 const override {
 std::copy_n(buf_->begin() + pos, n, reinterpret_cast<char *>(buf));
 return n;
 }
 private:
 const std::vector<char> *buf_;
};

The ModelReader class overrides two methods, size() and read(), from the
caffe2::serialize::ReadAdapterInterface base class. Their implementations are
pretty obvious: the size() method returns the size of the underlying vector object, while
the read() method copies the n bytes (chars) from the vector to the destination buffer with
the standard algorithm function, that is, std::copy_n.

The primary purpose of the ImageClassifier class is to perform image classification. The
following code shows the implementation of the target method of this class, that is,
Classify():

std::string ImageClassifier::Classify(const at::Tensor &image) {
 std::vector<torch::jit::IValue> inputs;
 inputs.emplace_back(image);
 at::Tensor output = model_.forward(inputs).toTensor();
 LOGD("Output size %d %d %d", static_cast<int>(output.ndimension()),
 static_cast<int>(output.size(0)),
 static_cast<int>(output.size(1)));
 auto max_result = output.squeeze().max(0);

Deploying Models on Mobile and Cloud Platforms Chapter 13

[470]

 auto max_index = std::get<1>(max_result).item<int64_t>();
 auto max_value = std::get<0>(max_result).item<float>();
 max_index += 1;
 return std::to_string(max_index) + " - " + std::to_string(max_value) +
 " - " + classes_[static_cast<size_t>(max_index)];
}

This function takes the at::Tensor object, which contains the image data, as an input
parameter. We used the forward() method of the torch::jit::script::Module class
to evaluate the model on the input image. Notice that the forward() method takes a vector
of torch::jit::IValue objects. There is an implicit cast from the at::Tensor type to the
torch::jit::IValue type, which means we can use the ATen library's tensor objects
transparently. The output of the model is a 1x1000 dimensional tensor, where each value is
the class score. To determine the most probable class for the given image, we looked for the
column with the maximum value with the at::Tensor::max() method. The preceding
squeeze() method removed the first dimension and made the tensor one-dimensional.
The at::Tensor::max() method returns a pair of values; the first is the actual maximum
value, while the second is its index. We incremented the index of the class we got because
we have the same increment in the InitSynset() function. Then, we used this index to
find the class description in the classes_ map, which we found in the InitSynset()
method and called from the initClassifier() function.

The last JNI function we need to implement is classifyBitmap(). The following code
shows how we declare it:

extern "C" JNIEXPORT jstring JNICALL
Java_com_example_camera2_MainActivity_classifyBitmap(
JNIEnv *env, jobject /*self*/, jintArray pixels, jint width, jint height) {
...
}

This function takes three parameters: the pixels object and its width and height
dimensions. The pixels object is a reference to the Java int[] array type, so we have to
convert it into a C/C++ array to be able to process it. The following code shows how we can
extract separate colors and put them into distinct buffers:

jboolean is_copy = 0;
jint *pixels_buf = env->GetIntArrayElements(pixels, &is_copy);

auto channel_size = static_cast<size_t>(width * height);
using ChannelData = std::vector<float>;
size_t channels_num = 3; // RGB image
std::vector<ChannelData> image_data(channels_num);
for (size_t i = 0; i < channels_num; ++i) {
 image_data[i].resize(channel_size);

Deploying Models on Mobile and Cloud Platforms Chapter 13

[471]

}

// split original image
for (int y = 0; y < height; ++y) {
 for (int x = 0; x < width; ++x) {
 auto pos = x + y * width;
 auto pixel_color = static_cast<uint32_t>(pixels_buf[pos]);
 // ARGB format
 uint32_t mask{0x000000FF};
 for (size_t i = 0; i < channels_num; ++i) {
 uint32_t shift = i * 8;
 uint32_t channel_value = (pixel_color >> shift) & mask;
 image_data[channels_num - (i + 1)][pos] =
 static_cast<float>(channel_value);
 }
 }
}

env->ReleaseIntArrayElements(pixels, pixels_buf, 0);

JNIEnv's GetIntArrayElements() method returned the pointer to the jint array's
elements, where the jint type is actually the regular C/C++ int type. With the pointer to
the image's pixels data at hand, we processed it. We separated each color value into
components because we needed to normalize each color channel separately.

We defined the image_data object of the std::vector<ChannelData> type to hold the
color channel's data. Each channel object is of the ChannelData type, which is
std::vector<float> underneath. The channel data was filled in by iterating over the
image pixels row by row and splitting each pixel color into components. We got each color
component by shifting the color value, which is of the int type, to the right by 8 bits three
times. We didn't need the alpha color component; that is why we only performed the shift
three times. After shifting, we extracted the exact component value by applying the AND
operator with the 0x000000FF mask value. We also cast the color values to the floating-
point type because we need values in the [0,1] range for later and we need to normalize
them. After we'd finished working with the pixel values, we released the data pointer with
the ReleaseIntArrayElements() method of the JNIEnv object.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[472]

Now that we've extracted the color channels from the pixel data, we have to create tensor
objects from them. Using tensor objects allows us to perform vectorized calculations that
are more computationally effective. The following code snippet shows how to create
at::Tensor objects from floating-point vectors:

std::vector<int64_t> channel_dims = {height, width};

std::vector<at::Tensor> channel_tensor;
at::TensorOptions options(at::kFloat);
options = options.device(at::kCPU).requires_grad(false);

for (size_t i = 0; i < channels_num; ++i) {
 channel_tensor.emplace_back(
 torch::from_blob(image_data[i].data(),
 at::IntArrayRef(channel_dims),
 options).clone());
}

Notice that we specified the at::kFloat type in at::TensorOptions to make it
compatible with our floating-point channel's vectors. We also used the
torch::from_blob() function to make a tensor object from the raw array data; we used
this function in previous chapters. Simply put, we initialized the channel_tensor vector,
which contains three tensors with values for each color channel.

The ResNet model we're using requires that we normalize the input image; that is, we
should subtract a distinct predefined mean value from each channel and divide it with a
distinct predefined standard deviation value. The following code shows how we can
normalize the color channels in the channel_tensor container:

std::vector<float> mean{0.485f, 0.456f, 0.406f};
std::vector<float> stddev{0.229f, 0.224f, 0.225f};

for (size_t i = 0; i < channels_num; ++i) {
 channel_tensor[i] = ((channel_tensor[i] / 255.0f) - mean[i]) /
stddev[i];
}

After we've normalized each channel, we have to make a tensor from them to satisfy the
ResNet model's requirements. The following code shows how to use the stack() function
to combine channels:

auto image_tensor = at::stack(channel_tensor);
image_tensor = image_tensor.unsqueeze(0);

The stack() function also adds a new dimension to the new tensor. This new tensor's
dimensions become 3 x height x width.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[473]

Another of the model's requirements is that it needs a batch size dimension for the input
image tensor. We used the tensor's unsqueeze() method to add a new dimension to the
tensor so that its dimensions became 1 x 3 x height x width.

The following code shows the final part of the classifyBitmap() function:

std::string result = g_image_classifier.Classify(image_tensor);

return env->NewStringUTF(result.c_str());

Here, we called the Classify() method of the global g_image_classifier object to
evaluate the loaded model on the prepared tensor, which contains the captured image.
Then, we converted the obtained classification string into a Java String object by calling
the NewStringUTF() method of the JNIEnv type object. As we mentioned previously, the
Java part of the application will show this string to the user in the onActivityResult()
method.

In this section, we looked at the implementation of image classification applications for the
Android system. We learned how to export a pre-trained model from a Python program as
a PyTorch script file. Then, we delved into developing a mobile application with Android
Studio IDE and the mobile version of the PyTorch C++ library.

In the next section, we will discuss and deploy an application for image classification to the
Google Compute Engine platform.

Machine learning in the cloud – using
Google Compute Engine
Usually, after implementing an application in a development environment, we need to
deploy it to a production environment on the customer's side or to a could service platform.
Services have become very popular because you can configure the computational
environments for your customer's needs with an excellent balance ratio between cost,
scalability, and performance. Also, the use of such services eliminates the need for your
customers to maintain the hardware devices they're using.

So, let's learn how to deploy a simple image classification application to the Google
Compute Engine platform. Initially, we need to develop and test such an application in a
development environment. We are going to make an HTTP service that responds to POST
requests with image data encoded in multipart format. Let's start by implementing the
server.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[474]

The server
The core of our application is the server. Let's assume that we've already implemented
image classification in the same way we did in the previous section, that is, by using a
model saved as a TorchScript snapshot and loaded into
the torch::jit::script::Module object. We encapsulated this functionality in the
following class:

class Network {
 public:
 Network(const std::string& snapshot_path,
 const std::string& synset_path,
 torch::DeviceType device_type);
 std::string Classify(const at::Tensor& image);
 private:
 torch::DeviceType device_type_;
 Classes classes_;
 torch::jit::script::Module model_;
};

The following code shows an implementation of the main routine of our application:

#include <torch/script.h>
#include "network.h"
#include "third-party/httplib/httplib.h"
#include "utils.h"

int main(int argc, char** argv) {
 try {
 std::string snapshoot_path;
 std::string synset_path;
 std::string www_path;
 std::string host = "localhost";
 int port = 8080;
 if (argc >= 4) {
 snapshoot_path = argv[1];
 synset_path = argv[2];
 www_path = argv[3];
 if (argc >= 5)
 host = argv[4];
 if (argc >= 6)
 port = std::stoi(argv[5]);
 torch::DeviceType device_type = torch::cuda::is_available()
 ?
torch::DeviceType::CUDA
 :
torch::DeviceType::CPU;

Deploying Models on Mobile and Cloud Platforms Chapter 13

[475]

 Network network(snapshoot_path, synset_path, device_type);
 ...
 // HTTP service implementation
 ...
 } else {
 std::cout << "usage: " << argv[0]
 << " <model snapshoot path> <synset file path>
 <www dir=../../client> "
 "[host=localhost] [port=8080]\n";
 }
 } catch (const std::exception& err) {
 std::cerr << err.what();
 } catch (...) {
 std::cerr << "Unhandled exception";
 }
 return 1;
}

Here, we read the parameters required by our application upon startup. There are three
required parameters: the path to the model snapshot file, the path to the synset file, and the
path to the directory where we place our HTML client application files. There are also two
optional parameters: the server host IP address and the server network port.

After we've read the program parameters, we can initialize the Network type object with a
specified model snapshot and synset files. We also dynamically determined whether there
is a CUDA device available on the machine where we start the server. We did this with the
torch::cuda::is_available() function.

If a CUDA device is available, we can move our model to this device to increase
computational performance. The following code shows how we can load a model into the
specified device:

model_ = torch::jit::load(snapshot_path, device_type);

The torch::jit::load() function accepts the device type as its second parameter and
automatically moves the model to the specified device.

There is a lightweight C++ single-file header-only cross-platform HTTP/HTTPS library
available named cpp-httplib. We can use it to implement our server. The following code
shows how we used the httplib::Server type to instantiate the server object so that it
can handle HTTP requests:

httplib::Server server;

Deploying Models on Mobile and Cloud Platforms Chapter 13

[476]

The httplib::Server class also implements a simple static file server. The following code
snippet shows how to set up the directory for loading static pages:

server.set_base_dir(www_path.c_str());

The path that's passed into the set_base_dir() method should point to the directory we
use to store the HTML pages for our service. To be able to see what's going on in the server
when it's launched, we can configure the logging function. The following code shows how
to print minimal request information when the server accepts the incoming message:

server.set_logger([](const auto& req, const auto& /*res*/) {
 std::cout << req.method << "\n" << req.path << std::endl;
});

It is also able to handle HTTP errors when our server works. The following snippet shows
how to fill the response object with error status information:

server.set_error_handler([](const auto& /*req*/, auto& res) {
 std::stringstream buf;
 buf << "<p>Error Status: ";
 buf << res.status;
 buf << "</p>";
 res.set_content(buf.str(), "text/html");
});

The server sends this response object to the client in the case of an error.

Now, we have to configure the handler for our server object so that it can handle POST
requests. There is a POST method in the httplib::Server class that we can use for this
purpose. This method takes the name of the request's pattern and the handler object.

The special URL pattern should be used by the client application to perform a request; for
example, the address can look like http://localhost:8080/imgclassify, where
imgclassify is the pattern. We can have different handlers for different requests. The
handler can be any callable object that accepts two arguments: the first should be of the
const Request type, while the second should be of the Response& type. The following
code shows our implementation of the image classification request:

server.Post("/imgclassify", [&](const auto& req, auto& res) {
 std::string response_string;
 for (auto& file : req.files) {
 auto body = req.body.substr(file.second.offset,
 file.second.length);
 try {
 auto img = ReadMemoryImageTensor(body, 224, 224);
 response_string += "; " + network.Classify(img);

Deploying Models on Mobile and Cloud Platforms Chapter 13

[477]

 } catch (...) {
 response_string += "; Classification failed";
 }
 }
 res.set_content(response_string.c_str(), "text/html");
});

In this handler, we iterated over all the files in the input request. For each file, we
performed the following steps:

Extracted the bytes representing the image1.
Decoded the bytes into the image object2.
Converted the image object into a tensor3.
Classified the image4.

The Request type object has a files member, which can be used to iterate the information
chunks about files that are sent with a given request. Each chunk is of the MultipartFile
type and contains information about the filename, the type, the starting position in the
whole message body, and the length. The body of the Request object is a std::string
object, so we used the substr() method to extract the particular file data by specifying the
start position and the length of the file. We used the ReadMemoryImageTensor() function
to decode the file data into an image. This function also scaled and normalized the image to
satisfy the ResNet model's requirements. The result of calling this function was a PyTorch
tensor object. Then, we used the Network object to classify the image tensor with the
ResNet model that was loaded from the snapshot. Moreover, the Classify() method
returned a string containing the classification information we got from our classifier. This
string was used to fill the response object.

We can use the listen() method of the httplib::Server type object to enable it to
accept incoming connections and processing messages. The following code shows how to
do this:

if(!server.listen(host.c_str(), port)) {
 std::cerr << "Failed to start server\n";
}

The listen() method automatically binds the server socket to the given IP address and
the port number.

In this section, we looked at the main implementation stages for the server part of our
service. In the next section, we'll look at the implementation of the client.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[478]

The client
The client part of our server can be implemented in different languages and with different
technologies that support the HTTP protocol. The most straightforward implementation of
the client application can be written with HTML and Javascript. We can use such a client
with any modern browser.

There will be two files in our client application. The first one will be the index.html file,
which should contain the definition of a simple web page with a form for uploading files.
The following code shows how we can write this file:

<html lang="en">
 <head>
 <title>Upload Files</title>
 </head>
 <body>
 <form method="post" enctype="multipart/form-data">
 <input type="file" name="files[]" multiple>
 <input type="submit" value="Upload File" name="submit">
 </form>
 <script src="upload.js"></script>
 </body>
</html>

The form is a standard HTML element with two fields inside it. The first field is a standard
input element for file selection, while the second is a standard input element for form data
submission.

The second file is a JavaScript implementation of the HTML form event handler. The
following snippet represents the upload.js file's implementation:

const url = 'http://localhost:8080/imgclassify';
const form = document.querySelector('form');

form.addEventListener('submit', e => {
 e.preventDefault();
 const files = document.querySelector('[type=file]').files;
 const formData = new FormData();
 for (let i = 0; i < files.length; i++) {
 let file = files[i];
 formData.append('files[]', file);
 }
 fetch(url, {
 method: 'POST',
 body: formData
 }).then(response => {

Deploying Models on Mobile and Cloud Platforms Chapter 13

[479]

 console.log(response);
 if (response.ok) {
 let text = response.text();
 text.then(data=>{
 alert(data)});
 } else {
 alert("Error :" + response.status);
 }
 });
});

In this implementation, we got the form element object from the HTML document with the
document.querySelector('form').files call. Then, we added an event listener for
the submit event using the addEventListener() method. The submit event occurs
when a user presses the submit button. Regarding the event listener's implementation, we
did the following:

First, we got the list of files our user selected for submission with the following1.
code:

document.querySelector('[type=file]').files

Then, we created the FormData object.2.
Next, we populated the form data object with files data by sequentially calling3.
the append() method by passing the file object to it.
Finally, we used the formData object to send a request to the server using the4.
fetch() method.

We defined the target server request URL in the url string object at the
beginning of the file. You should change the IP address in this URL to the
external address of your server.

The fetch() method returned the promise object, which belongs to the asynchronous
API, so we used the then() method to define the code that will run after the client receives
a response. In the response handler, we checked the error status with the ok field of the
response object. In the case of an error, we show the alert message with an error status
code. In the case of a successful response, we gather the text data from the response object.
Note that this operation is performed asynchronously. When the text data is ready, our
handler will show it in the alert window.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[480]

Now that we have the server and client parts of our service, we recommend that you test
them in your local development environment. After doing this, we can compile the server
part and start it locally. Here, the path to the folder that contains the client source code
should be passed as a command-line parameter. Then, we can test our service by opening
the http://localhost:8080 URL in a browser.

Now, we'll learn how to deploy this service to the server.

Service deployment
Now that we've implemented and tested our server application in our local development
environment, we are ready to deploy it to the cloud. We need to have a Google account and
be registered in the GCP to be able to continue. It is enough to have a free subscription to
GCP to perform the following steps and try our server application in the Google Compute
Engine:

Log into your Google account and go to GCP: https://console.cloud.google.1.
com.
On the main page, open the Go to Compute Engine link or use the Navigation2.
Menu and select the Compute Engine link.
On the Compute Engine page, select the VM Instances option.3.
Click the Create instance link at the top of the page and create a VM instance4.
with the following characteristics:

Name: classify-server
Zone: choose appropriate to you, us-central1-a
Generation: first
Machine-type: n1-standard-1
CPU platform: automatic
Boot disk: New 10 GB standard persistent disk
Image: Debian GNU/Linux 9 (stretch)
Identity and API access: Compute Engine default service account
Access scopes: Allow default access
Firewall: Allow HTTP traffic

We can also add a GPU to our VM instance configuration. Be aware that a GPU
can significantly raise the cost of the service, so think carefully about whether
using a GPU is right for you. Usually, for machine learning inference tasks,
having multi-core CPUs is more than enough. In other cases, if we plan to use
GCP to train machine learning algorithms, its powerful GPUs can significantly
reduce training time.

https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

Deploying Models on Mobile and Cloud Platforms Chapter 13

[481]

On the VM instances page, select the VM instance that we created. Start it by5.
clicking the Start button at the top of the page.
To be able to work with GCP effectively, we need to install the GCP SDK. The6.
SDK can help us share files from our local system to the remote VM instance
machine without a browser. Before installing the GCP SDK, please make sure
that your system has Python 2 installed with a release number of Python 2.7.9 or
higher. The GCP SDK can be downloaded from https://cloud.google.com/
sdk/docs/. The SDK is an archive file. We can extract the contents of the file into
any location on our filesystem. Then, we can run the gcloud application from the
[bin] folder with the init parameter to initialize the SDK. This should look
similar to ./google-cloud-sdk/bin/gcloud init. This utility should ask us
to log into our Google account to continue. The following snippet shows the
possible command-line session:

Would you like to log in (Y/n)? y
Your browser has been opened to visit:
https://accounts.google.com/o/oauth2/auth?...

After authorization, we can select the project for the current work session. The
GCP initialized the project when we initially created the VM instance, so if we
take a look at the top of the Compute Engine page, we should see a tab called My
First Project. The following snippet shows the possible command-line
session:

Pick cloud project to use:
[1] hardy-aleph-253219
[2] Create a new project
Please enter numeric choice or text value (must exactly match list
item): 1

Now, we can select default choices for the other questions to finish the GCP SDK's
initialization.

We can use the GCP SDK to copy the server application's source code to the7.
running instance. To copy a folder from our local machine to the remote one, we
can use the following command:

gcloud compute scp --recurse [LOCAL_PATH]
[INSTANCE_NAME]:~/[DEST_PATH]

https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/

Deploying Models on Mobile and Cloud Platforms Chapter 13

[482]

Here, LOCAL_PATH is the path to some folder on our local machine,
INSTANCE_NAME is the name of the target VM instance, and DEST_PATH is the
name of the folder in the home directory of our user on the remote machine. We
should verify that we're using the same username on the local machine and the
remote machine because the gcloud utility always places files in the home
directory with the username that's being used on the local machine.

On the VM instances page, we have to identify the VM instance that we started8.
previously and where we copied the source files. Then, we should find the
column named Connect, select SSH, and choose the Open in browser
window option. This action opens a new browser window with an interactive
command-line session connected to your remote machine. We can also use the
GCP SDK to configure the SSH session with standard utilities.
In the command-line window, we can use the following commands to configure9.
the development environment that's required for us to build our server
application on the remote machine:

sudo apt-get install git
sudo apt-get install cmake
sudo apt-get install g++
sudo apt-get install libopencv-dev
sudo apt-get install libprotobuf-dev
sudo apt-get install unzip
sudo apt-get install python-pip
sudo apt-get install libopenblas-dev
sudo apt-get install pybind11-dev
pip install pyyaml
pip install typing

Now that we've configured the development environment, we can continue10.
working with the source code and build the required third-party libraries. We
have two such dependencies: the cpp-httplib library and the PyTorch
framework. The cpp-httplib library is a single-file header-only library, so it is
enough to clone it to our source code tree. The following snippet shows the
commands you'll need to use to do this:

cd ~/[DEST_PATH]/server
git clone https://github.com/yhirose/cpp-httplib third-
party/httplib

Deploying Models on Mobile and Cloud Platforms Chapter 13

[483]

There are two ways to get the PyTorch framework's dependency. If your11.
environment has a GPU with CUDA support, you can download the pre-
compiled binaries from the official site. The following snippet shows how to do
this:

cd third-party
wget --no-check-certificate
https://download.pytorch.org/libtorch/cu100/libtorch-shared-with-de
ps-1.2.0.zip
unzip libtorch-shared-with-deps-1.2.0.zip
cd ..

The second way is to build PyTorch from certain sources. This is the only option12.
you have if your environment doesn't have a GPU because the official binaries
require working CUDA support. However, if your goal is to perform inference
only, you won't need this because, in many cases, a modern CPU can fully satisfy
your needs. Also, when you build PyTorch from sources, you can include the
FBGEMM library in your build. It is a low-precision, high-performance matrix-
matrix multiplication and convolution library for server-side inference that was
developed by Facebook engineers. Now, you can use FBGEMM as a backend of
the Caffe2 and PyTorch quantized operators for x86 machines by using the
USE_FBGEMM CMake option during a build. The following snippet shows how to
clone, build, and install the PyTorch C++ library from sources:

cd third-party
git clone https://github.com/pytorch/pytorch.git
cd pytorch/
git checkout v1.2.0
git submodule update --init --recursive
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=~/dev/server/third-party/libtorch -
DUSE_CUDA=OFF -DUSE_CUDNN=OFF -DUSE_OPENMP=ON -DBUILD_TORCH=ON -
DUSE_FBGEMM=ON -DBUILD_PYTHON=OFF
cmake --build . --target install -- -j8

Notice that we have to recursively initialize the PyTorch git submodules because
many of them also contain many dependencies as submodules.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[484]

Now that we've configured the development environment and gathered all the13.
dependencies, we can build our server application on the removed VM. To do
this, use the following commands:

cd ~/[DEST_PATH]/server
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=~/dev/server/third-party/libtorch
cmake --build . --target all

To run the server application, we need two more files: the model snapshot file14.
and the synset file, which contains class descriptions. We can copy them from the
local development environment to the remote machine with the following
commands while using the GCP SDK:

gcloud compute scp [LOCAL_PATH]/model.pt
[INSTANCE_NAME]:~/[DEST_PATH]/model
gcloud compute scp [LOCAL_PATH]/synset.txt
[INSTANCE_NAME]:~/[DEST_PATH]/model

If you only need to copy a couple of files, you can use a web-based SSH
connection window. There is a menu for copying files from the local machine.

Before we can start our application, we need to configure the GCP Firewall to15.
allow incoming connections to the server program we want to launch. On the
GCP Console page, go to the Navigation Menu and open the VPC network link.
On the VPC network page, open the Firewall rules link. Then, on the Firewall
rules page, click the Create a firewall rule button to create a new firewall rule.
We can find this button at the top of the page. For a new firewall rule, we have to
enter the following information:

Name: classify-server
Target tags: http-server
Actions on match: allow
Source IP ranges: 0.0.0.0/0
Protocol and ports: tcp:8080

Then, we need to click on the Create button to finish the rule creation process.

We also need to remember the IP addresses that have been assigned to the VM16.
instance we are using. There are two IP addresses: one that's internal and one
that's external. We can find them on the VM Instance page when we're looking
at a particular VM instance record. The internal IP address is statically assigned,
and we can even see it for stopped instances. The external IP address is
dynamically assigned when you start the instance.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[485]

To start our server application, we can use the following command:17.

cd ~/[DEST_PATH]/server/build
./classify-server ~/[DEST_PATH]/model/model.pt
~/[DEST_PATH]/model/synset.txt ~/[DEST_PATH]/client/ [internal ip]
8080

[internal ip] is the IP address we examined in step 16. The number 8080
means that the application has been configured to listen for incoming messages
on port 8080. We also have to carefully check the paths to the model snapshot
file, the synset file, and the path to the directory where we placed our static client
files.

To make our HTML client work, we have to update the upload.js file. At the18.
beginning of the file, there's a definition for the url string. It will be in the
following form:

const url = 'http://localhost:8080/imgclassify';

Change the localhost address to the external IP address that we examined in
step 16. By doing this, we can access our service by using the following URL in
any browser:

http://[external ip]:8080

The client's page should look as follows:

You would see the following response message if you submit the Newfoundland
dog image:

Deploying Models on Mobile and Cloud Platforms Chapter 13

[486]

This page shows that our model assigned a value of 13.909313 to the 256 class, which is
Newfoundland dog. This score was the highest among our classes.

Summary
In this chapter, we discussed how to deploy machine learning models, especially neural
networks, to mobile and cloud platforms. We examined that, on these platforms, we
usually need a customized build of the machine learning framework that we used in our
project. Mobile platforms use different CPUs, and sometimes, they have specialized neural
network accelerator devices, so you need to compile your application and machine learning
framework in regards to these architectures. The architectures that are used for cloud
machines differ from development environments, and you often use them for two different
purposes. The first case is to use powerful machine configuration with GPUs to accelerate
the machine learning training process, so you need to build your application while taking
the use of one or multiple GPUs into account. The other case is using a cloud machine for
inference only. In this case, you typically don't need a GPU at all because a modern CPU
can satisfy your performance requirements.

In this chapter, we developed an image classification application for the Android platform.
We learned how to connect the Java module with the native C++ library through JNI. Then,
we examined how to build the PyTorch C++ library for Android using the NDK and saw
what limitations there are to using the mobile version.

Finally, we implemented and deployed the HTTP image classification service for the
Google Compute Engine platform. We learned how to create and configure VM instances,
as well as how to configure the environment on a particular VM instance machine so that
we could build our application and its third-party dependencies. We saw that different
configurations for VM instances might require different runtime binaries for machine
learning frameworks, so we built the PyTorch C++ library for the selected configuration.
This custom build allowed us to utilize the maximum performance of the CPU-only
machine. We also implemented a simple HTML client for our service for testing purposes.

Deploying Models on Mobile and Cloud Platforms Chapter 13

[487]

Further reading
PyTorch C++ API: https://pytorch.org/cppdocs/

Transferring files to instances (GCP): https://cloud.google.com/compute/
docs/instances/transfer-files

Google Cloud SDK documentation: https://cloud.google.com/sdk/docs/

Build a Mobile App Using Compute Engine and REST: https://cloud.google.
com/solutions/mobile/mobile-compute-engine-rest

Documentation for app developers: https://developer.android.com/docs

Android NDK: https://developer.android.com/ndk

Android NDK: Using C/C++ Native Libraries to Write Android Apps: https://
expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-
android-apps-21550cdd86a

https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://cloud.google.com/solutions/mobile/mobile-compute-engine-rest
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/docs
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/ndk
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a
https://expertise.jetruby.com/android-ndk-using-c-c-native-libraries-to-write-android-apps-21550cdd86a

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

The C++ Workshop
Dale Green, Kurt Guntheroth, Et al

ISBN: 978-1-83921-374-8

Get to grips with fundamental concepts and conventions of C++ 11
Learn about best practices for clean code and how to avoid common pitfalls
Reuse and reduce common code using the C++ standard library
Debug and compile logical errors and handle exceptions in your programs
Keep your development process bug-free with C++ unit testing

https://www.packtpub.com/programming/the-c-workshop

Other Books You May Enjoy

[489]

Expert C++
Vardan Grigoryan, Shunguang Wu

ISBN: 978-1-83855-265-7

Understand memory management and low-level programming in C++ to write
secure and stable applications
Discover the latest C++20 features such as modules, concepts, ranges, and
coroutines
Understand debugging and testing techniques and reduce issues in your
programs
Design and implement GUI applications using Qt5
Use multithreading and concurrency to make your programs run faster
Develop high-end games by using the object-oriented capabilities of C++
Explore AI and machine learning concepts with C++

https://www.packtpub.com/programming/mastering-c-programming

Other Books You May Enjoy

[490]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
activation function, properties
 continuous differentiability 340
 monotonicity 341
 non-linearity 340
 smooth functions, with monotone derivatives 341
 value range 340
activation functions 334
AdaBoost loss 290
Adaptive Boosting (AdaBoost) 286
adjusted R squared 79
Alternating Least Squares (ALS) 256
Android mobile
 image classification on 454
Android Studio project
 about 457, 458, 459
 C++ native part 464, 466, 467, 468, 469, 470,

471, 472, 473
 Java part 459, 460, 461, 463, 464
 user interface 459, 460, 461, 463, 464
anomaly detection
 application, exploring 140, 142
 approaches, learning 142
 C++ implementation, of isolation forest algorithm

150, 151, 152, 154, 156
 C++ libraries, examples 150
 Density estimation approach 147, 148, 149, 150
 Dlib library, using 157
 with isolation forest 145
 with Local Outlier Factor (LOF) method 144, 145
 with One-Class SVM (OCSVM) 146
 with statistical tests 142, 143
anomaly model formula 147
application programming interface (API) 51, 298
Area Under Receiver Operating Characteristic

curve (AUC-ROC) 82

artificial intelligence (AI) 12
artificial neural networks (ANN)
 about 15, 316, 317, 319, 320
 creating, with C++ libraries 352
 overview 314
 regularization 341
 training, with backpropagation method 321, 322
 training, with loss functions 331, 334
artificial neuron 315, 316
ATen 362
autoencoders 185
axon 315

B
backpropagation algorithm
 used, for training RNN 382, 383, 384
backpropagation method, modes
 about 322
 batch mode 323
 mini-batch mode 323
 stochastic mode 322
backpropagation method
 example 324, 325, 326, 327, 328, 329, 330,

331

 problems 323, 324
 used, for training ANN 321, 322
backpropagation through time (BPTT) 383
bagging approach
 about 283
 used, for creating ensembles 283, 284, 285,

286

batch normalization 342, 343
Bernoulli loss 290
bias 85, 86
bidirectional RNN 389
biological neuron 315
blending 292

[492]

blind signal separation (BSS) 173
blue, green, red (BGR) 66
Bootstrap samples 284
Broyden–Fletcher–Goldfarb–Shanno (BFGS) 356
business intelligence (BI) 12

C
C++ data structures
 data formats, parsing to 41, 43
 matrix objects, initializing from 60
 tensor objects, initializing from 60
C++ libraries, used for creating ensembles
 examples 298
C++ libraries
 dealing, with classification task 224
 examples, for anomaly detection 150
 ML model serialization APIs 427
 used, for creating ANN 352
 used, to creating MLP for regression task 352
C++
 used, for plotting data 135, 136
Caffe2 tensor object
 images, loading into 448, 449, 450
central processing unit (CPU) 17, 71
Chebyshev distance 106
Chinese Whispers algorithm 133
classification 208
classification and regression tree (CART) 299
classification methods
 exploring 209
 kernel ridge regression (KRR) 214
 kNN method 221, 222, 223
 logistic regression 210, 211, 212, 213
 multi-class classification 223
 overview 208
 SVM method 214, 215, 216, 217, 218, 219,

220

classification metrics
 about 79
 accuracy 80
 AUC–ROC 82, 83
 F-score 82
 Log-Loss 83
 precision 81
 recall 81

classification task
 applicable areas 209
classifiers 208
clustering algorithms, types
 about 106
 density-based clustering algorithms 112
 hierarchical clustering algorithms 110, 112
 model-based clustering algorithms 113
 partition-based clustering algorithms 107
 spectral clustering algorithms 110
Clustering Large Applications based on

RANdomized Search (CLARANS) 108
clustering task samples
 used, for dealing with Dlib library examples 124
 used, for dealing with Shark-ML library examples

119

 used, for dealing with Shogun library examples
114

clustering
 about 15
 distance, measuring 104
coefficient of determination 78
cold start problem 261, 262
collaborative filtering
 about 264, 265, 266, 267, 268
 implementing, with Eigen library 269, 270, 271,

272, 273, 274, 275
 implementing, with mlpack library 276, 278
Common Objects in Context (COCO) 49
Condorcet's jury theorem (1784) 281
confidence interval (CI) 262
content-based recommendations 254, 255
convolution network
 architecture 350
convolution operator 345, 346, 347
convolutional layer, characteristic
 receptive field 349
convolutional layer
 convolution operator 345, 346, 347
convolutional networks
 exploring 345
coordinate list format 276
cosine distance 260
cosine proximity loss function 333
cross-entropy loss function 333

[493]

cross-validation technique
 K-fold cross-validation 93
 problems 93
CSV files
 preprocessing 45, 46
 reading, with Dlib library 49
 reading, with Fast-CPP-CSV-Parser library 43,

44, 45
 reading, with Shark-ML library 46
 reading, with Shogun library 47, 48
customer relationship management (CRM) 12

D
data formats
 parsing, to C++ data structures 41, 43
data scaling 261
data
 normalizing 69, 70
 normalizing with Shogun library 71
 normalizing, with Dlib library 72
 normalizing, with Eigen library 70, 71
 normalizing, with Shark-ML library 73
 normalizing, with Shogun library 72
 plotting, with C++ 135, 136
decision tree algorithm
 overview 293, 294, 295, 296
deep learning 351
deep learning, areas
 bioinformatics 351
 computer vision 351
 discovery of new drugs 351
 recommender systems 351
 speech recognition 351
dendrites 315
dendrogram 110
density-based clustering algorithms 112
Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) 113
deoxyribonucleic acid (DNA) 15
dimension reduction algorithms
 using, with С++ libraries 186
dimension reduction
 linear methods, exploring 169
dimensionality reduction methods, Dlib library
 LDA 192

 PCA 187
 sammon mapping 193
dimensionality reduction methods
 about 169
 feature selection methods 168
 overview 167
discriminant analysis problems 208
distance measure functions
 Chebyshev distance 105, 106
 Euclidean distance 105
 Manhattan distance 105
 Squared Euclidean distance 105
distance-based clustering algorithms 107
distance
 measure, in clustering 104
distributional hypothesis 391
Dlib library
 CSV files, reading with 49
 deinterleaving in 68, 69
 examples, for dealing with clustering task

samples 124
 graph clustering algorithm, implementing 133,

135

 hierarchical clustering algorithms, implementing
129, 131

 k-means clustering algorithms, implementing
124, 126, 127

 ML model serialization APIs, using with 427,
428, 429, 430

 Multivariate Gaussian model, implementing 159,
160

 Newman modularity-based graph clustering
algorithm, implementing 131, 133

 spectral clustering algorithms, implementing
127, 129

 used, for manipulating images 61
 used, for normalizing data 72
 used, for solving linear regression tasks 38
 used, to creating MLP for regression task 352,

354, 355
 using 61, 64, 65, 66, 187, 235
 using, for anomaly detection 157
 using, for linear algebra operations 30, 31
 with KRR 235, 236
 with SVM 238, 240

[494]

Document Object Model (DOM) 51
dropout regularization 342
Dying ReLU problem 340

E
each-against-each strategy 224
Eigen library
 used, for implementing collaborative filtering

269, 270, 271, 272, 273, 274, 275
 used, for normalizing data 70, 71
 used, for performing linear algebra operations

22, 23, 24, 25
 used, for solving linear regression tasks 36
 using 60
ensemble construction, approaches
 bagging approach 283
 gradient boosting method 283
 random forest method 283
 stacking approach 283
ensemble learning
 overview 281, 282, 283
ensembles
 creating, with bagging approach 283, 284, 286
 creating, with gradient boosting method 286,

287, 288, 289, 291, 298, 299, 300, 301
 creating, with random forest algorithm in SharkML

library 303, 304
 creating, with random forest algorithm in Shogun

library 301, 302
 creating, with random forest method 292
 creating, with SharkML library 302, 303
 creating, with Shogun library 298
 creating, with stacking approach 291, 292
 creating, with stacking ensemble 304, 305, 307,

308, 309
epoch 84
Euclidean distance 105
Euclidean norm 20
Expectation–Maximization (EM) algorithm 114
explicit ratings 253

F
factor analysis 177, 178
factor load 177
factorization algorithms 258, 259

False Positive Rate (FPR) 82
Fast-CPP-CSV-Parser library
 CSV files, reading with 43, 44, 45
feature selection methods
 backward feature elimination 169
 forward feature selection 169
 high correlation filter 168
 low variance filter 168
 missing value ratio 168
 random forest 168
forget gate layer 386
fully connected layer 320

G
gated recurrent unit (GRU) 387, 388
Gaussian loss 290
Gaussian Mixture Models (GMM)
 about 114
 implementing, with Shogun library 115, 117
GCP SDK
 download link 481
general-purpose graphics processing units

(GPGPUs) 17
generalized additive model (GAM) 291
Generalized Boosting Machines (GBM) 291
global vectors (GloVe) 391, 392, 393, 395, 396
Gradient Boosted Decision Trees (GBDT) 291
Gradient Boosted Regression Trees (GBRT) 291
gradient boosting machine (GBM) 291
gradient boosting method
 about 283
 used, for creating ensembles 286, 287, 288,

289, 291, 298, 299, 300, 301
Gradient Descent (GD) 34, 69, 214, 266, 282
graph clustering algorithm
 implementing, with Dlib library 133, 135
graph theory-based clustering algorithms 108, 109
graphics processing unit (GPU) 17, 61
grid search approach 94

H
hapax 391
HDF5 files
 reading, with HighFive library 56, 58, 59
 writing, with HighFive library 56, 58, 59

[495]

He initialization method 344, 345
hierarchical clustering algorithms, types
 bottom-up-based algorithms 110
 top-down-based algorithms 110
hierarchical clustering algorithms
 about 110
 implementing, with Dlib library 129, 131
 using, with Shark-ML library 119, 122
 using, with Shogun library 119
hierarchical clustering methods
 complete linkage 111
 single linkage 111
 unweighted pairwise mean linkage 111
 weighted centroid linkage 111
 weighted centroid linkage (median) 111
 weighted pairwise mean linkage 111
HighFive library
 HDF5 files, reading with 56, 58, 59
 HDF5 files, writing with 56, 58, 59
hinge loss function 333
Human resource (HR) 12
hyperbolic tangent 338, 339, 340
hyperparameters 15

I
image classification, with LeNet architecture
 about 361, 362
 dataset files, reading 365, 366
 dataset, reading 363, 364, 365
 dataset, training 363, 364, 365
 image file, reading 366, 367
 network, training 372, 373, 374, 375, 376
 neural network definition 367, 368, 369, 370,

371

image classification
 on Android mobile 454
images
 loading, into Caffe2 tensor object 448, 449, 450
 manipulating, with Dlib libraries 61
 manipulating, with OpenCV libraries 61
 transforming, into matrix objects of various

libraries 67
 transforming, into tensor objects of various

libraries 67
implicit ratings 253

impurity function 294
independent component analysis (ICA) 173, 174,

175

input layer gate 387
ISOMAP algorithm
 about 181
 dependency parameters 181
item-based collaborative filtering 257, 258
item-based collaborative filtering, examples
 with C++ 269
items 252

J
Java Native Interface (JNI) 463
JSON files
 reading, with RapidJSON library 49, 51, 52, 53,

54, 55, 56

K
K-fold cross-validation 93
k-means algorithm 107
k-means clustering
 implementing, with Dlib library 124, 126, 127
 implementing, with Shogun library 117
 using, with Shark-ML library 122, 124
 with Shogun 119
k-medoids algorithm 107
k-nearest neighbor (KNN)
 about 14, 256
 Shark-ML library, using 247, 248
 Shogun library, using 233, 234
kernel 180
kernel function 180
kernel PCA 180
kernel ridge regression (KRR)
 about 214
 Dlib library, using 235, 236
kernel trick 180
kNN method 221, 222, 223

L
L1 loss function 332
L2 loss function 332
L2-regularization 341
Laplacian loss 290

[496]

latent semantic analysis (LSA) 393
Least Absolute Shrinkage and Selection Operator

(Lasso) regularization 91
leave-one-out method 263
leave-p-out method 263
LeNet architecture
 used, for image classification 361, 362
LibPyTorch 362
LibSVM library
 reference link 161
linear activation function 335, 336
linear algebra APIs
 using, for linear algebra operations 22
linear algebra operations
 about 19
 dot product 20
 element-wise operations 19
 inverse matrix 21
 matrix, transposing 20
 norm operation 20
 performing, with Dlib library 30, 31
 performing, with Eigen library 22, 23, 24, 25
 performing, with Shark-ML library 27, 28, 29
 performing, with xtensor library 25, 26, 27
linear algebra, concepts
 about 18
 matrix 18
 scalar 18
 tensor 19
 vector 18
linear algebra
 overview 17
 tensor representation, in computing 21, 22
linear discriminant analysis (LDA) 175, 176, 177,

305

linear methods, for dimension reduction
 about 169
 factor analysis 177
 independent component analysis (ICA) 173, 175
 linear discriminant analysis (LDA) 175
 multidimensional scaling (MDS) 178
 principal component analysis (PCA) 169, 170,

171

 singular value decomposition (SVD) 171, 172
linear regression tasks

 solving, with different libraries 33, 34, 35, 36
 solving, with Dlib 38
 solving, with Eigen 36
 solving, with Shark-ML 37
 solving, with Shogun 37
linear regression
 overview 32, 33
linearly separable 211
Local Outlier Factor (LOF) 144
logarithm of the odds 211
logistic regression
 about 210, 211, 212, 213, 214
 Shark-ML library, using 240, 242
 Shogun library, using 226, 227, 228
long short-term memory (LSTM) 385, 386, 387
loss functions
 about 16, 331
 used, for training ANN 331, 334

M
machine learning (ML)
 about 75
 fundamentals 13
machine learning in cloud, using Google Compute

Engine
 about 473
 client, implementing 478, 479, 480
 server, implementing 474, 475, 476, 477
 service deployment 480, 481, 482, 484, 485,

486

machine learning models
 dealing with 15, 16
machine learning, techniques
 unsupervised learning 15
Manhattan distance 105
matrix 18
matrix objects
 initializing, from C++ data structures 60
 various libraries, images transforming into 67
max-margin objective 333
mean absolute error (MAE) loss function 78, 332
mean squared error (MSE) loss function 35, 77,

274, 331
mean squared logarithmic error (MSLE) loss

function 332

[497]

meta-attribute 283
ML model serialization APIs, with PyTorch C++

library
 neural network initialization 437, 438, 439, 440
 PyTorch archive objects, using 441, 442, 443
 torch functions, using 440
ML model serialization APIs
 using, in C++ libraries 427
 using, with Dlib library 427, 428, 429, 430
 using, with PyTorch C++ library 437
 using, with SharkML library 435, 436
 using, with Shogun library 430, 431, 432, 433,

434

ML models
 performance metrics 76
MLP, creating for regression task
 C++ libraries, used 352
 Dlib library, used 352, 354, 355
 SharkML library, used 358
 Shogun library, used 355, 356, 357
mlpack library
 used, for implementing collaborative filtering

276, 278
model parameter estimation 16, 17
model selection, with grid search technique
 about 92
 cross-validation technique 93
 DLib example 98, 100
 grid search approach 94
 SharkML example 97, 98
 Shogun example 95, 96, 97
model selection
 grid search technique 92
Model Zoo
 URL 445
model-based clustering algorithms 113
Modified National Institute of Standards and

Technology (MNIST)
 URL 361
multi-class classification 223
multidimensional scaling (MDS) 178, 179
multilayer perceptron (MLP) 317
multilayer RNN 389, 390
Multiple Additive Regression Trees (MART) 291
multiple linear regression 33

multivariable linear regression 33
Multivariate Gaussian model
 using, with Dlib library 159, 160

N
Native Development Kit (NDK) 454
natural language processing (NLP)
 with RNN 390, 391
negative log-likelihood loss function 333
neural network initialization
 about 344
 He initialization method 344, 345
 Xavier initialization method 344
neural network layers, types
 hidden 319
 input 319
 output 319
Newman modularity-based graph clustering

algorithm
 implementing, with Dlib library 131, 133
non-linear methods, for dimension reduction
 about 179
 autoencoders 185
 distributed stochastic neighbor embedding 183,

184, 185
 ISOMAP algorithm 181
 kernel PCA 180
 sammon mapping 182
non-negative matrix factorization (NMF) 259
non-parametric 15
non-personalized recommendations 254
normalization, type
 centering (mean-centering) 261
 double standardization 261
 standardization (z-score) 261
normalized cuts problem task 110
novelty detection 140

O
one-against-all strategy 224
One-Class SVM (OCSVM)
 about 147
 implementing, with Dlib library 157, 158
 implementing, with SharkML library 163, 164
 implementing, with Shogun library 161, 162

[498]

Open Neural Network Exchange (ONNX) format
 about 426
 class definition file, reading 450
 delving into 443, 445, 446, 447, 448
 images, loading into Caffe2 tensor object 448,

449, 450
OpenCV library
 deinterleaving in 67
 used, for manipulating images 61
 using 62, 63, 64
operating system (OS) 135
optimizer 17
ordinary least squares (OLS) 34
outlier detection 140
overfitting 75

P
parametric 15
partition-based clustering algorithms
 about 107
 distance-based clustering algorithms 107
 graph theory-based clustering algorithms 108,

109

PCA matrix 190
Pearson's correlation coefficient 260
perceptron 316, 317, 319, 320
Perceptron Convergence Theorem 316
performance metrics, ML models
 about 76
 classification metrics 79
 regression metrics 76
polynomial degree 84, 95
pooling layers 348
pooling operation 348
preferences correlation
 about 259
 cosine distance 260
 Pearson's correlation coefficient 260
 Spearman's correlation 260
principal component analysis (PCA)
 about 169, 170, 187, 188
 using, for data compression 188, 189, 190, 191,

192

principal components scores 172
product factors (I) 259

Projected Clustering (PROCLUS) 108
PyTorch C++ library
 ML model serialization APIs, using with 437
PyTorch framework
 mobile version 454, 455

Q
quality metrics, categories
 decision support 263
 prediction accuracy 263
 rank accuracy metrics 263
Quantile loss 290

R
R squared metric 78, 79
Radial Basis Kernel 158
random forest algorithm, SharkML library
 used, for creating ensembles 303, 304
random forest algorithm, Shogun library
 used, for creating ensembles 301, 302
random forest method
 about 283
 overview 296, 298
 used, for creating ensembles 292
random-access memory (RAM) 21
RapidJSON library
 JSON files, reading with 49, 51, 52, 53, 54, 55,

56

receptive field 349
recommender system algorithms, fundamentals
 cold start problem 261, 262
 content-based recommendations 254, 255
 data scaling 261
 factorization algorithms 258, 259
 item-based collaborative filtering 257, 258
 non-personalized recommendations 254
 preferences correlation 259
 relevance of recommendations 262, 263
 standardization 261
 system quality, assessing 263, 264
 user-based collaborative filtering 255, 256, 257
recommender system algorithms
 approaches 252
 overview 252, 253, 254
rectified linear unit (ReLU) 339

[499]

recurrent neural network (RNN)
 sentiment analysis example 396, 397, 398, 399,

400, 401, 403, 404, 405, 407, 408, 410, 412,
413, 415, 417, 419, 421, 422

 training, with backpropagation algorithm 382,
383, 384

 with natural language processing (NLP) 390,
391

red, green, and blue (RGB) 64
regression metrics
 about 76
 adjusted R squared 79
 mean absolute error (MAE) 78
 mean squared error (root mean squared error)

77

 R squared metric 78
 root mean squared error (RMSE) 77
regularization, methods
 batch normalization 342, 343
 dropout regularization 342
 L2-regularization 341
regularization
 about 90, 341
 data augmentation 92
 early stopping 92
 for neural networks 92
 L1 regularization (Lasso) 91
 L2 regularization (Ridge) 91
 loss function modification approach 90
 training data preprocessing approach 90
relevance of recommendations 262, 263
ResNet-50 model
 reference link 445
Ridge regularization 91
RNN architectures
 about 385
 bidirectional RNN 389
 gated recurrent unit (GRU) 387, 388
 long short-term memory (LSTM) 385, 386, 387
 multilayer RNN 389, 390
RNN concept
 overview 379, 380, 381, 382
root mean squared error (RMSE) 77, 78, 259

S
sammon mapping 182, 183
scalar 18
sentiment analysis example
 with RNN 396, 397, 398, 399, 400, 401, 403,

404, 405, 407, 408, 410, 412, 413, 415, 417,
419, 421, 422

Shark-ML library, using for ANN
 about 358
 architecture definition 358
 loss function definition 358
 network initialization 359
 network training 359
 optimizer configuration 359
 programming sample 359, 360, 361
Shark-ML library
 CrossEntropy class 84
 CSV files, reading with 46
 examples, for dealing with clustering task

samples 119
 hierarchical clustering algorithms, implementing

119, 122
 k-means clustering algorithms, implementing

122, 124
 LDA algorithms, implementing 203, 205
 ML model serialization APIs, using with 435, 436
 NegativeAUC class 83
 One-Class SVM (OCSVM), implementing 163,

164

 PCA algorithms, implementing 202
 used, for creating ensembles 302, 303
 used, for normalizing data 73
 used, for performing linear algebra operations

27, 28
 used, for solving linear regression tasks 37
 using 60, 202, 240
 using, for linear algebra operations 29
 with kNN algorithm 247, 248
 with logistic regression 240, 242
 with SVM 244, 246
 with SVM method 245
Shogun library
 about 114
 CAccuracyMeasure class 80
 CRecallMeasure and CPrecisionMeasure class

[500]

81

 CSV files, reading with 47, 48
 examples, for dealing with clustering task

samples 114
 factor analysis algorithm, implementing 200
 hierarchical clustering algorithms, implementing

119

 ICA algorithm, implementing 198
 ISOMAP dimensionality reduction algorithm,

implementing 197
 k-means clustering algorithms, implementing

117, 119
 kernel PCA, implementing 195, 196
 ML model serialization APIs, using with 430,

431, 432, 433, 434
 multidimensional scaling algorithm (MDS),

implementing 196
 One-Class SVM (OCSVM), implementing 161,

162

 PCA algorithm, implementing 194
 t-SNE algorithm, implementing 201
 used, for creating ensembles 298
 used, for normalizing data 71, 72
 used, for solving linear regression tasks 37
 used, to creating MLP for regression task 355,

356, 357
 using 61, 194, 226
 with kNN algorithm 233, 234
 with logistic regression 226, 227, 228
 with SVMs 230, 231, 232
shooting tournament strategy 224
sigmoid activation function 337, 338
Simple API for XML (SAX) 51
simple linear regression 33
Single Instruction Multiple Data (SIMD) 17, 71
single-layer perceptron (SLP) 317
singular value decomposition (SVD) 171, 172,

258

Spearman's correlation 260
spectral clustering algorithms
 about 110
 implementing, with Dlib library 127, 129
spectral decomposition 258
Squared Euclidean distance 105
stacking approach
 about 283

 used, for creating ensembles 291, 292
stacking ensemble
 used, for creating ensembles 304, 305, 307,

308, 309
standard template library (STL) 30
standardization 261
stepwise activation function 334, 335
Stochastic GBM 291
stochastic gradient boosting 290
stochastic neighbor embedding (SNE) 183
stretching the axes technique 222
Subspace Clustering (SUBCLU) 113
supervised learning 14
Support Vector Machine (SVM) 14, 69
surfaces 181
SVM method
 about 214, 215, 216, 217, 218, 219, 220
 Dlib library, using 238, 240
 Shark-ML library, using 244, 245, 246
 Shogun library, using 230, 231, 232
SVMLight library
 reference link 161
Swiss Roll Dataset
 reference link 186
synapse 315
system quality
 assessing 263, 264

T
tensor 19
tensor objects
 initializing, from C++ data structures 60
 various libraries, images transforming into 67
tensor representation
 in computing 21, 22
terabytes (TB) 257
testing operation 84
TorchScript
 using, for model snapshot 455, 457
training process 89, 90
True Positive Rate (TPR) 82
truncated backpropagation through time (TBPTT)

384

U
underfitting 75
unsupervised learning 15
user factors (U) 259
user-based collaborative filtering 255, 256, 257

V
validation 84
vanishing gradient problem 338
variance 87, 88, 89
vector 18
vectorized 17

W
weak models 288
weight decay 92
Word2Vec 391, 392

X
xavier initialization method 344
xtensor library
 used, for performing linear algebra operations

25, 26, 27

Z
ZeroOneLoss class 80

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Overview of Machine Learning
	Chapter 1: Introduction to Machine Learning with C++
	Understanding the fundamentals of ML
	Venturing into the techniques of ML
	Supervised learning
	Unsupervised learning

	Dealing with ML models
	Model parameter estimation

	An overview of linear algebra
	Learning the concepts of linear algebra
	Basic linear algebra operations
	Tensor representation in computing
	Linear algebra API samples
	Using Eigen
	Using xtensor
	Using Shark-ML
	Using Dlib

	An overview of linear regression
	Solving linear regression tasks with different libraries
	Solving linear regression tasks with Eigen
	Solving linear regression tasks with Shogun
	Solving linear regression tasks with Shark-ML
	Linear regression with Dlib

	Summary
	Further reading

	Chapter 2: Data Processing
	Technical requirements
	Parsing data formats to C++ data structures
	Reading CSV files with the Fast-CPP-CSV-Parser library
	Preprocessing CSV files
	Reading CSV files with the Shark-ML library
	Reading CSV files with the Shogun library
	Reading CSV files with the Dlib library
	Reading JSON files with the RapidJSON library
	Writing and reading HDF5 files with the HighFive library

	Initializing matrix and tensor objects from C++ data structures
	Eigen
	Shark-ML
	Dlib
	Shogun

	Manipulating images with the OpenCV and Dlib libraries
	Using OpenCV
	Using Dlib

	Transforming images into matrix or tensor objects of various libraries
	Deinterleaving in OpenCV
	Deinterleaving in Dlib

	Normalizing data
	Normalizing with Eigen
	Normalizing with Shogun
	Normalizing with Dlib
	Normalizing with Shark-ML

	Summary
	Further reading

	Chapter 3: Measuring Performance and Selecting Models
	Technical requirements
	Performance metrics for ML models
	Regression metrics
	Mean squared error and root mean squared error
	Mean absolute error
	R squared
	Adjusted R squared

	Classification metrics
	Accuracy
	Precision and recall
	F-score
	AUC–ROC
	Log-Loss

	Understanding the bias and variance characteristics
	Bias
	Variance
	Normal training
	Regularization
	L1 regularization – Lasso
	L2 regularization – Ridge
	Data augmentation
	Early stopping
	Regularization for neural networks

	Model selection with the grid search technique
	Cross-validation
	K-fold cross-validation

	Grid search
	Shogun example
	Shark-ML example
	Dlib example

	Summary
	Further reading

	Section 2: Machine Learning Algorithms
	Chapter 4: Clustering
	Technical requirements
	Measuring distance in clustering
	Euclidean distance
	Squared Euclidean distance
	Manhattan distance
	Chebyshev distance

	Types of clustering algorithms
	Partition-based clustering algorithms
	Distance-based clustering algorithms
	Graph theory-based clustering algorithms

	Spectral clustering algorithms
	Hierarchical clustering algorithms
	Density-based clustering algorithms
	Model-based clustering algorithms

	Examples of using the Shogun library for dealing with the clustering task samples
	GMM with Shogun
	K-means clustering with Shogun
	Hierarchical clustering with Shogun

	Examples of using the Shark-ML library for dealing with the clustering task samples
	Hierarchical clustering with Shark-ML
	K-means clustering with Shark-ML

	Examples of using the Dlib library for dealing with the clustering task samples
	K-means clustering with Dlib
	Spectral clustering with Dlib
	Hierarchical clustering with Dlib
	Newman modularity-based graph clustering algorithm with Dlib
	Chinese Whispers – graph clustering algorithm with Dlib

	Plotting data with C++
	Summary
	Further reading

	Chapter 5: Anomaly Detection
	Technical requirements
	Exploring the applications of anomaly detection
	Learning approaches for anomaly detection
	Detecting anomalies with statistical tests
	Detecting anomalies with the Local Outlier Factor method
	Detecting anomalies with isolation forest
	Detecting anomalies with One-Class SVM (OCSVM)
	Density estimation approach (multivariate Gaussian distribution) for anomaly detection
	C++ implementation of the isolation forest algorithm for anomaly detection
	Using the Dlib library for anomaly detection
	One-Cass SVM with Dlib
	Multivariate Gaussian model with Dlib

	OCSVM with Shogun
	OCSVM with Shark-ML

	Summary
	Further reading

	Chapter 6: Dimensionality Reduction
	Technical requirements
	An overview of dimension reduction methods
	Feature selection methods
	Dimensionality reduction methods

	Exploring linear methods for dimension reduction
	Principal component analysis
	Singular value decomposition
	Independent component analysis
	Linear discriminant analysis
	Factor analysis
	Multidimensional scaling

	Exploring non-linear methods for dimension reduction
	Kernel PCA
	IsoMap
	Sammon mapping
	Distributed stochastic neighbor embedding
	Autoencoders

	Understanding dimension reduction algorithms with various С++ libraries
	Using the Dlib library
	PCA
	Data compression with PCA

	LDA
	Sammon mapping

	Using the Shogun library
	PCA
	Kernel PCA
	MDS
	IsoMap
	ICA
	Factor analysis
	t-SNE

	Using the Shark-ML library
	PCA
	LDA

	Summary
	Further reading

	Chapter 7: Classification
	Technical requirements
	An overview of classification methods
	Exploring various classification methods
	Logistic regression
	KRR
	SVM
	kNN method
	Multi-class classification

	Examples of using C++ libraries for dealing with the classification task
	Using the Shogun library
	With logistic regression
	With SVMs
	With the kNN algorithm

	Using the Dlib library
	With KRR
	With SVM

	Using the Shark-ML library
	With logistic regression
	With SVM
	With the kNN algorithm

	Summary
	Further reading

	Chapter 8: Recommender Systems
	Technical requirements
	An overview of recommender system algorithms
	Non-personalized recommendations
	Content-based recommendations
	User-based collaborative filtering
	Item-based collaborative filtering
	Factorization algorithms
	Similarity or preferences correlation
	Pearson's correlation coefficient
	Spearman's correlation
	Cosine distance

	Data scaling and standardization
	Cold start problem
	Relevance of recommendations
	Assessing system quality

	Understanding collaborative filtering method details
	Examples of item-based collaborative filtering with C++
	Using the Eigen library
	Using the mlpack library

	Summary
	Further reading

	Chapter 9: Ensemble Learning
	Technical requirements
	An overview of ensemble learning
	Using a bagging approach for creating ensembles
	Using a gradient boosting method for creating ensembles
	Using a stacking approach for creating ensembles
	Using the random forest method for creating ensembles
	Decision tree algorithm overview
	Random forest method overview

	Examples of using C++ libraries for creating ensembles
	Ensembles with Shogun
	Using gradient boosting with Shogun
	Using random forest with Shogun

	Ensembles with Shark-ML
	Using random forest with Shark-ML
	Using a stacking ensemble with Shark-ML

	Summary
	Further reading

	Section 3: Advanced Examples
	Chapter 10: Neural Networks for Image Classification
	Technical requirements
	An overview of neural networks
	Neurons
	The perceptron and neural networks
	Training with the backpropagation method
	Backpropagation method modes
	Stochastic mode
	Batch mode
	Mini-batch mode

	Backpropagation method problems
	The backpropagation method – an example

	Loss functions
	Activation functions
	The stepwise activation function
	The linear activation function
	The sigmoid activation function
	The hyperbolic tangent
	Activation function properties

	Regularization in neural networks
	Different methods for regularization

	Neural network initialization
	Xavier initialization method
	He initialization method

	Delving into convolutional networks
	Convolution operator
	Pooling operation
	Receptive field
	Convolution network architecture

	What is deep learning?
	Examples of using C++ libraries to create neural networks
	Simple network example for the regression task
	Dlib
	Shogun
	Shark-ML
	Architecture definition
	Loss function definition
	Network initialization
	Optimizer configuration
	Network training
	The complete programming sample

	Understanding image classification using the LeNet architecture
	Reading the training dataset
	Reading dataset files
	Reading the image file

	Neural network definition
	Network training

	Summary
	Further reading

	Chapter 11: Sentiment Analysis with Recurrent Neural Networks
	Technical requirements
	An overview of the RNN concept
	Training RNNs using the concept of backpropagation through time
	Exploring RNN architectures
	LSTM
	GRUs
	Bidirectional RNN
	Multilayer RNN

	Understanding natural language processing with RNNs
	Word2Vec
	GloVe

	Sentiment analysis example with an RNN
	Summary
	Further reading

	Section 4: Production and Deployment Challenges
	Chapter 12: Exporting and Importing Models
	Technical requirements
	ML model serialization APIs in C++ libraries
	Model serialization with Dlib
	Model serialization with Shogun
	Model serialization with Shark-ML
	Model serialization with PyTorch
	Neural network initialization
	Using the torch::save and torch::load functions
	Using PyTorch archive objects

	Delving into ONNX format
	Loading images into Caffe2 tensors
	Reading the class definition file

	Summary
	Further reading

	Chapter 13: Deploying Models on Mobile and Cloud Platforms
	Technical requirements
	Image classification on Android mobile
	The mobile version of the PyTorch framework
	Using TorchScript for a model snapshot
	The Android Studio project
	The UI and Java part of the project
	The C++ native part of the project

	Machine learning in the cloud – using Google Compute Engine
	The server
	The client
	Service deployment

	Summary
	Further reading

	Other Books You May Enjoy
	Index

